Pusan Kyŏngnam Math J. 10(1994), No 2, pp 381-384

PURE SIMPLICITY OF A GROUP OVER ITS ENDOMORPHISM RING

DONGSOO LEE* AND CHULHWAN PARK

1.Introduction

Given any associative ring R, let M be a right R-module with a submodule N and let K be a left R-module. Then we may form the following sequence (not necessarily exact)

$$0 \longrightarrow N \otimes_R K \xrightarrow{\iota \otimes \mathbf{1}_K} M \otimes_R K$$

where *i* is the inclusion homomorphism from N into M and 1_K is the identity homomorphim on K. If, for a given K, the sequence is exact for all N and M, then K is said to be left flat: if M and N are given and the sequence is exact for all K, then N is called a pure submodule of M. If an R-module has no nontrivial pure submodules then it is called pure simple. It is well known that an abelian group G forms a module over its endomorphism ring E(G) where E(G) is the set of all endomorphism of G. In this short paper, we will find a necessary and sufficient condition under that an abelian torsion group G is pure simple as E(G)-module.

2. Results

In order to describe this condition we require the following propositon which was proved by P.M.Cohn.

PROPOSITION. Let M be a right R-module. Then a submodule N of M is a pure submodule of M if and only if, for any finite sets of elements $m_i \in M, n_j \in N$ and $r_{ij} \in R(i = 1, \dots m : j = 1, 2, \dots, n)$, the relations $n_j = \sum m_i r_{ij}$ imply the existence of elements $a_i \in N$ such that $n_j = \sum a_i r_{ij}$.

Received December 9,1994

The Present Studies were Supported (in part) by the Basic Science Rsearch Institute Program, Ministry of Education, 1993, Project No BSRI-94-1402

Proof. See theorem 2.4. of [1].

From the proposition, we can have the following examples.

EXAMPLES.

(1) Let p be prime. Clearly Z_{p^n} is a pure simple as $E(Z_{p_n})$ -module. In fact every subgroup of Z_{p^n} is a cyclic subgroup generated by $\overline{p^k}$. Let ϕ_{p^k} be an endomorphism of Z_{p^n} defined by $(\bar{x})\phi_{p^k} = \overline{xp^k}$. Then $\overline{1}\phi_{p^k} = \overline{p^k}$, but $\overline{x}\phi_{p^k} \neq \overline{p^k}$ for every $\overline{x} \in \langle \overline{p^k} \rangle$. Thus by proposition Z_{p^n} is pure simple.

(2) Let p and q be distinct primes. Then a direct sum of Z_p and Z_q is not pure simple because $Z_p \oplus 0$ and $0 \oplus Z_q$ are pure submodules of $Z_p \oplus Z_q$. We know that $E(Z_p \oplus Z_q) = \begin{pmatrix} E(Z_p) & 0\\ 0 & E(Z_q) \end{pmatrix}$ If for every j, $\sum_i (\overline{a_i}, \overline{b_i}) \begin{pmatrix} \alpha_{ij} & 0\\ 0 & \beta_{ij} \end{pmatrix} = (\overline{z_j}, \overline{0}) \in Z_p \oplus 0$, then for every j, $\sum_i \overline{b_i} \beta_{ij} = \overline{0}$ and $\sum_i \overline{a_i} \alpha_{ij} = \overline{z_j}$. Thus for every j, $\sum_i (\overline{a_i}, \overline{0}) \begin{pmatrix} \alpha_{ij} & 0\\ 0 & \beta_{ij} \end{pmatrix} = (\overline{z_j}, \overline{0})$. Hence $Z_p \oplus 0$ is a pure submodule by proposition.

Using these examples, we can get the following theorem.

THEOREM. Let G be an abelian torsion group. Then G is pure simple as E(G)-module if and only if G is a p-group.

Proof. Let G be pure simple as E(G)-module. Since every abelian torsion group is isomorphic to $\oplus Gp$ where Gp is a p-group [2]. From above example (2) we know that G is a p-group because $Gp \oplus Gq$ is not pure simple if $p \neq q$. Conversely, we assume that G is a p-group. Then $G = A \oplus D$ where A is the reduced subgroup and D is the divisible subgroup of G respectively. We consider the following four cases.

Case 1. If A = 0, then G is a divisible p-group and isomorphic to a direct sum of copies of $Z(p^{\infty})$. Let $\phi_p \in End(G)$ defined by $x\phi_p = xp$ and let B be a nontrivial subgroup of G. Then $\pi_{\alpha}B \neq Z(p^{\infty})$ for some index α where π_{α} is a projection. In this case $\pi_{\alpha}B$ is generated by $\frac{\overline{1}}{p^k}$ for some k. there exists $x \in G$ such that $\pi_{\alpha}(x\phi_p) = \frac{\overline{1}}{p^k}$ that is

382

 $x\phi_p \in B$. But there are no elements y in B such that $\pi_{\alpha}(y\phi_p) = \frac{\overline{1}}{p^k}$. So G is simple as E(G)-module.

Case 2. If D = 0, then G is isomorphic to $Z_{p^{i_1}} + Z_{p^{i_2}} + \cdots + Z_{p^{i_n}}$ $(i_1 \le i_2 \le \cdots \le i_n)$. Then example (1) shows that G is pure simple as E(G)-module.

Case 3. If $A \neq 0$, $D \neq 0$ and rank of D is 1, then A is isomorphic to $Z_{p'1} + Z_{p'2} + \cdots + Z_{p'n}$ $(i_1 \leq i_2 \leq \cdots \leq i_n)$ and D is isomorphic to $Z(p^{\infty})$. In this case we know that $E(G) = \begin{pmatrix} E(A) & Hom(A, D) \\ 0 & E(D) \end{pmatrix}$ where $(a,d) \begin{pmatrix} \alpha & \beta \\ 0 & j \end{pmatrix}$, $\alpha \in (A), \beta \in Hom(A, D), \gamma \in E(D)$. Note that Hom(D, A) = 0. Let $\beta \in Hom(A, D)$ define by the following

$$\begin{cases} (\overline{0}, \overline{0}, \cdots, \overline{1})\beta = \frac{\overline{1}}{p^{i_1}} & \text{and} \\ (a)\beta = 0 & \text{if } a \in Z_{p^{i_1}} \oplus Z_{p^{i_2}} \oplus \cdots \oplus Z_{p^{i_{n-1}}} \oplus 0 \end{cases}$$

and let $\phi = \begin{pmatrix} 0 & \beta \\ 0 & 0 \end{pmatrix}$. Then we can get the following equation

$$((\overline{0},\overline{0},...,\overline{1}),0)\phi = (0,\frac{\overline{1}}{p^{i_n}}) \in D$$

But we know that there are no elements of D such that $(0,d)\phi = (0, \frac{\overline{1}}{p'n})$. In fact we know that for every $d \in D$, $(0,d)\phi = (0,0)$. Thus $0 \oplus D$ is not pure submodule of G as E(G)-module. And $A \oplus 0$ is not characteristic subgroup of G. Hence we know that there are no pure submodules of G as E(G)-module.

Case 4. If rank of D is larger than 1, similarly we can know that $0 \oplus D$ is not pure submodule of G by Case 3.

From the above theorem, naturally we can get the following corollary.

COROLLARY. Every abelian torsion group G is pure semisimple as E(G)-module.

Proof. Since $G = \bigoplus Gp$ and each Gp is pure simple as E(G)-module we know that G is pure semisimple as E(G)-module

References

1 P.M.Cohn, On the free product of Associative Rings, Math.Z 71 (1959), 380-398

2 P.A.Griffith, Infinite Abehan Group Theory, University of Cichago Press, 1970.

Department of Mathematics University of Ulsan Ulsan 680-749 ,Korea