PURE SIMPLICITY OF A GROUP OVER ITS ENDOMORPHISM RING

Dongsoo Lee* and Chulhwan Park

1.Introduction

Given any associative ring R, let M be a right R-module with a submodule N and let K be a left R-module. Then we may form the following sequence (not necessarily exact)

$$
0 \longrightarrow N \otimes_{R} K^{\stackrel{\otimes 1}{ } 1_{K}} M \otimes_{R} K
$$

where i is the inclusion homomorphism from N into M and 1_{K} is the identity homomorphim on K. If, for a given K, the sequence is exact for all N and M, then K is said to be left flat: if M and N are given and the sequence is exact for all K, then N is called a pure submodule of M. If an R-module has no nontrivial pure submodules then it is called pure simple. It is well known that an abelian group G forms a module over its endomorphism ring $E(G)$ where $E(G)$ is the set of all endomorphism of G. In this short paper, we will find a necessary and sufficient condition under that an abelian torsion group G is pure simple as $E(G)$-module.

2. Results

In order to describe this condition we require the following propositon which was proved by P.M.Cohn.

Proposition. Let M be a right R-module. Then a submodule N of M is a pure submodule of M if and only if, for any finite sets of elements $m_{2} \in M, n_{j} \in N$ and $r_{\imath \jmath} \in R(i=1, \cdots m: j=1,2, \cdots, n)$, the relations $n_{j}=\sum m_{i} r_{z j}$ imply the existence of elements $a_{i} \in N$ such that $n_{j}=\sum a_{i} r_{i j}$.

[^0]Proof. See theorem 2.4. of [1].
From the proposition, we can have the following examples.

Examples.

(1) Let p be prime. Clearly $Z_{p^{n}}$ is a pure simple as $E\left(Z_{p_{n}}\right)$-module. In fact every subgroup of $Z_{p^{n}}$ is a cyclic subgroup generated by $\overline{p^{k}}$. Let $\phi_{p^{k}}$ be an endomorphism of $Z_{p^{n}}$ defined by $(\bar{x}) \phi_{p^{k}}=\overline{x p^{k}}$. Then $\overline{1} \phi_{p^{k}}=\overline{p^{k}}$, but $\bar{x} \phi_{p^{k}} \neq \overline{p^{k}}$ for every $\bar{x} \in<\overline{p^{k}}>$. Thus by proposition $Z_{p^{n}}$ is pure simple.
(2) Let p and q be distinct primes. Then a direct sum of Z_{p} and Z_{q} is not pure simple because $Z_{p} \oplus 0$ and $0 \oplus Z_{q}$ are pure submodules of $Z_{p} \oplus Z_{q}$. We know that $E\left(Z_{p} \oplus Z_{q}\right)=\left(\begin{array}{cc}E\left(Z_{p}\right) & 0 \\ 0 & E\left(Z_{q}\right)\end{array}\right)$ If for every j, $\sum_{i}\left(\overline{a_{i}}, \overline{b_{z}}\right)\left(\begin{array}{cc}\alpha_{i j} & 0 \\ 0 & \beta_{i j}\end{array}\right)=\left(\overline{Z_{j}}, \overline{0}\right) \in Z_{p} \oplus 0$, then for every $j, \sum_{i} \overline{b_{z}} \beta_{\imath_{j}}=\overline{0}$ and $\sum_{i} \overline{a_{i}} \alpha_{i j}=\overline{z_{j}}$. Thus for every $j, \sum_{i}\left(\overline{a_{i}}, \overline{0}\right)\left(\begin{array}{cc}\alpha_{i j} & 0 \\ 0 & \beta_{2 j}\end{array}\right)=\left(\overline{z_{j}}, \overline{0}\right)$. Hence $Z_{p} \oplus 0$ is a pure submodule by proposition.

Using these examples,we can get the following theorem.
Theorem. Let G be an abelian torsion group. Then G is pure simple as $E(G)$-module if and only if G is a p-group.

Proof. Let G be pure simple as $E(G)$-module. Since every abelian torsion group is isomorphic to $\oplus G p$ where $G p$ is a p-group [2]. From above example (2) we know that G is a p-group because $G p \oplus G q$ is not pure simple if $p \neq q$. Conversely, we assume that G is a p-group. Then $G=A \oplus D$ where A is the reduced subgroup and D is the divisible subgroup of G respectively. We consider the following four cases.

Case 1. If $A=0$, then G is a divisible p-group and isomorphic to a direct sum of copies of $Z\left(p^{\infty}\right)$. Let $\phi_{p} \in \operatorname{End}(G)$ defined by $x \phi_{p}=x p$ and let B be a nontrivial subgroup of G. Then $\pi_{\alpha} B \neq Z\left(p^{\infty}\right)$ for some index α where π_{α} is a projection. In this case $\pi_{\alpha} B$ is generated by $\frac{\overline{p^{k}}}{}$ for some k. there exists $x \in G$ such that $\pi_{\alpha}\left(x \phi_{p}\right)=\frac{\overline{1}}{p^{k}}$ that is
$x \phi_{p} \in B$. But there are no elements y in B such that $\pi_{\alpha}\left(y \phi_{p}\right)=\frac{\overline{1}}{p^{k}}$. So G is simple as $E(G)$-module.

Case 2. If $D=0$, then G is isomorphic to $Z_{p^{1_{1}}}+Z_{p^{\mathbf{t}_{2}}}+\cdots+Z_{p^{\mathbf{n}^{\mathrm{n}}}}\left(i_{1} \leq\right.$ $\imath_{2} \leq \cdots \leq \imath_{n}$). Then example (1) shows that G is pure simple as $E(G)$ module.

Case 3. If $A \neq 0, D \neq 0$ and rank of D is 1 , then A is isomorphic to $Z_{p^{1_{1}}}+Z_{p^{2_{2}}}+\cdots+Z_{p^{i n}}\left(t_{1} \leq \imath_{2} \leq \cdots \leq i_{n}\right)$ and D is isomorphic to $Z\left(p^{\infty}\right)$. In this case we know that $E(G)=\left(\begin{array}{cc}E(A) & \operatorname{Hom}(A, D) \\ 0 & E(D)\end{array}\right)$ where $(a, d)\left(\begin{array}{cc}\alpha & \beta \\ 0 & j\end{array}\right), \alpha \in(A), \beta \in \operatorname{Hom}(A, D), \gamma \in E(D)$. Note that $H o m(D, A)=0$. Let $\beta \in \operatorname{Hom}(A, D)$ define by the following

$$
\begin{cases}(\overline{0}, \overline{0}, \cdots, \overline{1}) \beta=\frac{\overline{1}}{\bar{p}^{i_{2}}} & \text { and } \\ (a) \beta=0 & \text { if } a \in Z_{p^{t_{1}} \oplus Z_{p^{t_{2}}} \oplus \cdots \oplus Z_{p^{t_{n-1}}} \oplus 0}\end{cases}
$$

and let $\phi=\left(\begin{array}{ll}0 & \beta \\ 0 & 0\end{array}\right)$. Then we can get the following equation

$$
((\overline{0}, \overline{0}, \ldots, \overline{1}), 0) \phi=\left(0, \frac{\overline{1}}{p^{2_{n}}}\right) \in D
$$

But we know that there are no elements of D such that $(0, d) \phi=$ $\left(0, \frac{\bar{p}}{p^{n}}\right)$. In fact we know that for every $d \in D,(0, d) \phi=(0,0)$.Thus $0 \oplus D$ is not pure submodule of G as $E(G)$-module. And $A \oplus 0$ is not characteristic subgroup of G. Hence we know that there are no pure submodules of G as $E(G)$-module.

Case 4. If rank of D is larger than 1 , similarly we can know that $0 \oplus D$ is not pure submodule of G by Case 3 .

From the above theorem, naturally we can get the following corollary.

Corollary. Every abelian torsion group G is pure semisimple as $E(G)$-module.

Proof. Since $G=\oplus G p$ and each $G p$ is pure simple as $E(G)$-module we know that G is pure semisimple as $E(G)$-module

References

1 P.M.Cohn, On the free product of Assocsatıve Rings, Math.Z 71 (1959), 380-398
2 P.A.Griffith, Infinte Abehan Group Theory, University of Cichago Press, 1970.

Department of Mathematics
University of Ulsan
Ulsan 680-749,Korea

[^0]: Recerved December 9,1994
 The Present Stadies were Supported (in part) by the Basic Science Rsearch Instıtute Program, Ministry of Education,1993, Project No BSRI-94-1402

