Pusan Kyŏngnam Math J 10(1994), No 2, pp. 359-362

A NOTE ON SINGULAR COMPACTIFICATIONS

KEUN PARK

Throughout this paper, all topological spaces concerned are assumed to be Hausdorff and the space X to be noncompact and locally compact.

For Hausdorff compactifications αX and γX of X, we say that $\gamma X \leq \alpha X$ if there is a continuous map $f : \alpha X \to \gamma X$ such that $f \circ \alpha = \gamma$. Then, the family of all Hausdorff compactifications of X is a complete lattice with this partial order \leq . Let Y be compact and let $f : X \to Y$ be continuous with f(X) dense in Y. The subset S(f) of Y defined by $\{p \in Y | \text{ for any neighborhood } U \text{ of } p$, the closure of $f^{-1}(U)$ in X is not compact $\}$ is called the singular set of f. And also, f is called singular([1],[2]) if S(f) = Y. The singular set S(f) is equal to the set $L(f) = \bigcap \{Cl_Y f(X - F) | F \text{ is compact in } X\}([3])$ and S(f) = L(f) is a remainder of X([7]).

For a singular map $f : X \to Y$, the singular compactification of X induced by f, which is denoted by $X \cup_f S(f)$, is constructed as follows([6],[8]);

On the set $X \cup S(f)$, basic neighborhoods of $p \in X$ are the same in X and $p \in S(f) = Y$ has basic neighborhoods of the form $V \cup \{f^{-1}(V) - F\}$, where V is a neighborhood of p and F is any compact subset in X.

This is a generalization of the double circumference construction of Alexandroff and Urysohn([6]). Let $C^*(X)$ be the set of all continuous and bounded map from X to the real line R For a compactification αX of X and f in $C^*(X)$, we denote f^{α} the extension of f to αX if exists. Let $C_{\alpha}(X)$ denote the set of f in $C^*(X)$ which have extension to αX , and $S^{\alpha}(S^*)$ denote the set of f in $C_{\alpha}(X)(C^*(X))$ which is singular. In this note, we will show that for a connected space X, X has no 2-point compactification if and only if $\alpha X = \sup\{X \cup_f S(f) | f \in S^{\alpha}\}$ for any compactification αX of X, and that if X is weakly 1-complemented, then $\alpha X = \sup\{X \cup_f S(f) | f \in S^{\alpha}\}$ for any compactification αX of X.

Received November 30,1994.

Keun Park

LEMMA 1([5]). If f is in $C_{\alpha}(X)$, then $f^{\alpha}(\alpha X - X) = S(f)$.

R.E.Chandler and G.D.Faulkner obtained a necessary and sufficient condition for a compactification αX to be $\sup\{X \cup_f S(f) | f \in \mathcal{G}\}$, which is useful.

PROPOSITION 2([5]). Let αX be a compactification of X, and let \mathcal{G} be a subcollection of S^{α} . Then, $\alpha X = \sup\{X \cup_f S(f) | f \in \mathcal{G}\}$ if and only if $\mathcal{G}^{\alpha} = \{f^{\alpha} | f \in S^{\alpha}\}$ separates points in $\alpha X - X$.

LEMMA 3. If X has no 2-point compactification, then $\alpha X = \sup\{X \cup_f S(f) | f \in S^{\alpha}\}$ for any compactification αX of X.

Proof. The argument is similar to that of Theorem 3 of [5]. Suppose that X has no 2-point compactification and let αX be any compactification of X. Since X has no 2-point compactification, $\alpha X - X$ is connected by Lemma 6.16 of [4]. Let p and q be distinct points of $\alpha X - X$. Then, there exists a continuous map $f : \alpha X \to [0, 1]$ such that f(p) = 0 and f(q) = 1. Let g be the restriction of f to X. Then, since $S(g) = f(\alpha X - X) = [0, 1]$, we have that g is singular with the extension f to αX which separates p and q. Hence, by Proposition 2, we see that $\alpha X = \sup\{X \cup_f S(f) | f \in S^{\alpha}\}$.

LEMMA 4([4],[9]). X has n-point compactifications if and only if there exist n open, nonempty pairwise disjoint subsets $\{G_i\}_{i=1}^n$ of X such that $K = X - \bigcup_{i=1}^n G_i$ is compact but for each $i, K \cup G_i$ is not compact.

DEFINITION 5. A space X is called weakly 1-complemented if for any compact subset K of X, there exist a compact subset F and a connected subset C of X such that $K \subset F, K \cap C = \emptyset$ and $F \cup C = X$.

PROPOSITION 6. If X is weakly 1-complemented, then $\alpha X = \sup\{X \cup_f S(f) | f \in S^{\alpha}\}$ for any compactification αX of X.

Proof. By Lemma 3, it is sufficient to show that X has no 2-point compactification. If X has a 2-point compactification, then by Lemma 4, there exist open, nonempty pairwise disjoint subsets G_1 and G_2 of X such that $K = X - (G_1 \cup G_2)$ is compact but for each $i = 1, 2, K \cup G_i$ is not compact. Since X is weakly 1-complemented, there exist a compact subset F and a connected subset C of X such that $K \subset F, K \cap C = \emptyset$ and $F \cup C = X$. Then, we have that $C \subset G_i$ for

some *i*. we may assume that $C \subset G_1$. Then, since $K \cup G_2$ is a closed subset of the compact Hausdorff space F, we have a contradiction that $K \cup G_2$ is compact.

We call a space X to be 1-complemented (or connected at infinity) if each compact subset K is contained in some compact subset F with X - F connected. It is trivial that if X is 1-complemented, then it is weakly 1-complemented. So, we have the following as a Corollary.

COROLLARY 7. If X is 1-complemented, then $\alpha X = \sup\{X \cup_f S(f) | f \in S^{\alpha}\}$ for any compactification αX of X.

LEMMA 8([5]). If f is in S^{α} , then $X \cup_f S(f) \leq \alpha X$.

PROPOSITION 9. Let X be a connected space. Then, the following statements are equivalent.

- (1) X has no 2-point compactification
- (2) $\alpha X = \sup \{ X \cup_f S(f) | f \in S^{\alpha} \}$ for any compactification αX of X.

Proof. It is sufficient to prove that $(2)\Rightarrow(1)$. Suppose that there exists 2-point compactification αX of X with $\alpha X - X = \{-\infty, +\infty\}$. We will show that $\alpha X \neq \sup\{X \cup_f S(f) | f \in S^{\alpha}\}$. If not, then by Lemma 8 $\alpha X = X \cup_f S(f)$ for some $f \in S^{\alpha}$ or $X \cup_f S(f) < \alpha X$ for any $f \in S^{\alpha}$. In the latter case, it is impossible that $\alpha X = \sup\{X \cup_f S(f) | f \in S^{\alpha}\}$ since the compactification which is strictly less than αX is unique 1-point compactification. In the former case, we have the contradiction that $\{-\infty, +\infty\} = S(f) = Cl_R(f(X))$ is connected. This complets the proof.

The above Proposition 9 doesn't hold if the connectedness of X is deleted as you see in the following Example.

EXAMPLE 10. Let $X = (-\infty, 0] \cup [1, +\infty)$ in the real line R. Then, it is not difficult to show that X has no 3-point compactification using Lemma 4. So, by Lemma 6.12 of [4], we have that X has unique 2-point compactification. Next, we will show that $\alpha X = \sup\{X \cup_f S(f) | f \in S^{\alpha}\}$ for any compactification αX of X. Let αX be a compactification of X and let p and q be distinct points in $\alpha X - X$.

Case 1. p and q are in the same component U of $\alpha X - X$; Since αX is compact Hausdorff(so, normal), there exists a continuous map

 $f: \alpha X \to [0,1]$ such that f(p) = 0 and f(q) = 1. Let g be a restriction of f to X. Then, g(X) is dense in [0,1] since $[0,1] = f(U) \subset f(\alpha X) =$ $f(Cl_{\alpha X}(X)) \subset Cl_R(f(X)) = Cl_R(g(X)) \subset [0,1]$. And also, since $[0,1] = f(U) \subset f(\alpha X - X) = S(g) \subset [0,1]$, we have that g is singular map such that its extension f separates p and q.

Case 2. p and q are in distinct components of $\alpha X - X$; Let U be the component of p and γX be the quotient space $\alpha X/\{U, \alpha X - X - U\}$. Then, γX is a 2-point compactification. Since the 2-point compactification of X is unique, we have that there exists a continuous map $f: \alpha X \to [-\infty, 0] \cup [1, +\infty]$ such that $f(\alpha X - X) = \{-\infty, +\infty\}$, f(x) = x for $x \in X$ and f separates p and q. Define a continuous map $h: [-\infty, 0] \cup [1, +\infty] \to \{0, 1\}$ by $h([-\infty, 0]) = 0$ and $h([1, +\infty]) = 1$, and let g be the restriction of $h \circ f$ to X. Then, g is a singular map with the extension $h \circ f$ to αX , which separates p and q. Hence, by Proposition 2, we have that $\alpha X = \sup\{X \cup_f S(f) | f \in S^{\alpha}\}$.

References

- 1. G. L Cain, Jr., Compact and related mappings, Duke Math. J. 33 (1966), 639-645.
- 2. G. L. Cain, Jr, Properties of $\beta X X$ for locally connected generalized continua, Proc. Amer. Math. Soc. 79 (1980), 311-315.
- 3. G. L. Cain, Jr., R. E. Chandler and G. D. Faulkner, Singular sets and remainder, Trans. Amer. Math. Soc. 286 (1981), 161-171.
- 4. R. E. Chandler, Hausdorff compactifications, Marcel Dekker, Inc., New York, 1976
- 5. R E Chandler and G D Faulkner, Singular compactifications: The order structure, Proc. Amer. Math. Soc. 100 (1987), 377-382
- 6 R E Chandler, G. D. Faulkner, J P Guglielmi and M Memory, Generalizing the Alexandorff-Urysohn double circumference construction, Proc Amer Math. Soc. 83 (1981), 606-608.
- 7. R. E. Chandler and F. Tzung, Remainders in Hausdorff compactifications, Proc. Amer. Math. Soc. 70 (1978), 196-202.
- 8. J. P. Guglielmi, Compactifications with singular remainders, Ph D. Thesis, North Carolina State University, 1986
- K. D. Magill, Jr., N-point compactifications, Amer. Math. Monthly 72(10) (1965), 1075-1081.

Department of Mathematics University of Ulsan, Ulsan 680-749 Korea