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A NOTE ON SINGULAR COMPACTIFICATIONS
KEUN PARK

Throughout this paper, all topological spaces concerned are assumed
to be Hausdorff and the space X to be noncompact and locally com-
pact.

For Hausdorff compactifications @ X and vX of X, we say that yX <
X if there is a continuous map f : X — 4X such that foa = v.
Then, the family of all Hausdorff compactifications of X is a complete
lattice with this partial order <. Let ¥ be compact and let f : X — Y
be continuous with f(X) dense in Y. The subset S(f) of ¥ defined
by {p € Y| for any neighborhood U of p, the closure of f~}(U) in X
is not campact } is called the singular set of f. And also, f is called
singular([1],{2]) if S(f) =Y. The singular set S(f) is equal to the set
L(f) = n{Cly f(X — F){F is compact in X }[3]) and S(f) = L(f) is
a remainder of X{([7]).

For a singular map f : X —» Y, the singular compactification of
X induced by f, which is denoted by X Uy S(f), is constructed as
follows({6],{8]);

On the set X U S(f), basic neighborhoods of p € X are the same
in X and p € S(f) = Y has basic neighborhoods of the form V U
{f~Y(V) — F}, where V is a neighborhood of p and F is any compact
subset in X.

This is a generalization of the double circumference construction of
Alexandroff and Urysohn([6]). Let C*(X) be the set of all continuous
and bounded map from X to the real line R For a compactification a X
of X and f in C*(X ), we denote f* the extension of f to a.X if exists.
Let Cu(X) denote the set of f in C*(X) which have extension to aX,
and S%(S*) denote the set of f in Co(X)(C*(X)) which is singular. In
this note, we will show that for a connected space X, X has no 2-point
compactification if and only if aX = sup{X Uy S(f)|f € §} for any
compactification aX of X', and that if X is weakly 1-complemented,
then aX = sup{X Up S(f)|f € §°} for any compactification a X of X.
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LEMMA 1([5)). If f is in Co(X), then f*(aX — X) = S(f).

R.E.Chandler and G.D.Faulkner obtained a necessary and sufficient
condition for a compactification aX to be sup{XU;S(f){f € G}, which
is useful.

PROPOSITION 2(]5]). Let aX be a compactification of X, and let
G be a subcollection of 8%. Then, aX = sup{X Uy S(f)|f € G} if and
only if G* = {f*|f € §%} separates points in aX — X.

LEMMA 3. If X has no 2-point compactification, then
aX = sup{X Uy S(f)|f € §*} for any compactification aX of X.

Proof. The argument is similar to that of Theorem 3 of [5]. Suppose
that X has no 2-point compactification and let «X be any compact-
ification of X. Since X has no 2-point compactification, aX — X is
connected by Lemma 6.16 of [4]. Let p and ¢ be distinct points of
aX — X. Then, there exists a continuous map f : aX — [0,1] such
that f(p) =0 and f(g) = 1. Let g be the restriction of f to X. Then,
since S(g) = f(aX — X) = [0,1], we have that ¢ is singular with the
extension f to aX which separates p and ¢. Hence, by Proposition 2,
we see that aX = sup{X Uy S(f)|f € 5*}.

LeMMA 4([4],9]). X has n-point compactifications if and only if
there exist n open, nonempty pairwise disjoint subsets {G,}, of X
such that K = X — UL G, is compact but for each :, K UG, is not
compact.

DEFINITION 5. A space X is called weakly 1-complemented if for
any compact subset K of X, there exist a compact subset F' and a

connected subset C' of X such that K C F,KNC =@ and FUC = X.

PROPOSITION 6. If X is weakly 1-complemented, then
aX = sup{X Uy S(f)|f € §°} for any compactification aX of X.

Proof. By Lemma 3, it is sufficient to show that X has no 2-point
compactification. If X has a 2-point compactification, then by Lemma
4, there exist open, nonempty pairwise disjoint subsets Gy and G, of
X such that X = X — (G} U G3) is compact but for each ¢ = 1,2,
K U G, is not compact. Since X is weakly l-complemented, there
exist a compact subset F and a connected subset C of X such that
KCFKNC=0and FUC = X. Then, we have that C C G, for



A Note on Singular Compactifications 361

some . we may assume that C C G,. Then, since K U G; 15 a closed
subset of the compact Hausdorff space F, we have a contradiction that
K U G; 1s compact.

We call a space X to be 1-complemented (or connected at infinity)
if each compact subset K is contained in some compact subset F' with
X — F connected. It is trivial that if X is 1-complemented, then it is
weakly 1-complemented. So, we have the following as a Corollary.

COROLLARY 7. If X is l-complemented, then aX = sup{X Uy
S(f)|f € §«} for any compactification aX of X.

LEMMA 8([5]). If f isin S®, then X Uy 5(f) < aX.

PROPOSITION 9. Let X be a connected space. Then, the following
statements are equivalent.

(1) X has no 2-point compactification
(2) aX =sup{X Uys S(f){f € 5} forany compactification a X of
X.

Proof. 1t is sufficient to prove that (2)=(1). Suppose that there
exists 2-point compactification aX of X with aX — X = {—o0, +00}.
We will show that aX # sup{X Uy S(f)If € 5°}. If not, then by
Lemma 8 aX = X Uy S(f) for some f € §% or X Uy S(f) < aX for
any f € S% In the latter case, it is impossible that aX = sup{X Uy
S(f)|f € 5%} since the compactification which is strictly less than
aX is unique 1-point compactification. In the former case, we have
the contradiction that {—oco,+oo} = S(f) = Clr(f(X)) is connected.
This complets the proof.

The above Proposition 9 doesn’t hold if the connectedness of X is
deleted as you see in the following Example.

EXAMPLE 10. Let X = (—o00,0]U[1, +00) in the real line R. Then,
it is not difficult to show that X has no 3-point compactification using
Lemma 4. So, by Lemma 6.12 of [4], we have that X has unique 2-point
compactification. Next, we will show that o X = sup{X U; S(f)if €
S} for any compactification aX of X. Let aX be a compactification
of X and let p and ¢ be distinct points in aX — X.

Case 1. p and ¢ are in the same component U of aX — X; Since
aX is compact Hausdorfl(so, normal), there exists a continuous map
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f:aX - [0,1] such that f(p) =0 and f(¢q) = 1. Let g be a restriction
of f to X. Then, g(X) is dense in [0, 1] since [0,1] = f(U) C f(aX) =
F(Clax(X)) C Clr(f(X)) = Clr(g(X)) C [0,1). And also, since
[0,1) = f(U) C f(aX — X) = S(g) C {0,1], we have that g is singular
map such that its extension f separates p and q.

Case 2. p and ¢ are in distinct components of aX — X; Let U
be the component of p and vX be the quotient space aX/{U,aX —
X — U}. Then, vX is a 2-point compactification. Since the 2-point
compactification of X is unique, we have that there exists a continuous
map f : aX — [—00,0]U {1, +00] such that f(aX — X) = {—o0,+00},
f(z) =z for x € X and f separates p and q. Define a continuous map
h:[—00,0]U[1,+00] = {0,1} by h{[—00,0]} = ¢ and A([L, +o0]) = 1,
and let g be the restriction of ho f to X. Then, g is a singular map
with the extension h o f to aX, which separates p and ¢q. Hence, by
Proposition 2, we have that aX = sup{X U; S(f)|f € $°}.
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