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SOBOLEV’S LEMMA AND THE SPACES D,(Q).

YOUNG SIK PARK

0. Introduction

It is well known that if p(z) = In(1 + {z{), then the space D, coin-
cides with D = C§°(R"). We can show the above result by Sobolev’s
Lemma. Also we have the same results for the Beurilng’s generalized
distributions.

1. Definitions and notations

The normalized Lebesqgue measure on R™ is the measure m,, defined
by dmg(z) = (27)""/2dz. The usual Lebesgue spaces L?, or LF(R"®),
will be normed by means of m,:

Wl ={ [ 1fPam > (1<p <o)
For each t € R™, the character e; is the function defined by
eiz) = e =exp{e(tizy + -+ + tazn)]  (z € R").

The Fourier transform of the function f € L(R™) is the function f
defined by

f(t) = fR feidmn (€ R").

The relation S| € S, shall mean that the closure of Sy is compact and
contained in the interior of S;. If {$;}52, is a sequence of sets, the
relation S, /' S shall mean that S, € S,+1(3 = 1,2,---) and that
S = US,. Let p be a real-valued function on R", continuous at the
origin and having the property

(@)  0=p(0)=lim p(z) < p(§+n) < p(€) +p(n) (&€ RM).
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DEFINITION 1.1. Let My = Mgy(n) be the set of ali continuous
real-valued functions p on R" satisfying the conditions («) and

p(€)

leiz 1§17

(ﬂ) Ju(P) = df < 00,

DEFINITION 1.2. Let p satisfy (a). If ¢ € LI(R™) and if A is a real
number, we write

6lla = 1P = / |3(E)|O de.

Let Dy be the set of all ¢ in L!'{ R") such that ¢ has compact support
and ||¢]|x < oo for all A > 0. The elements of D, will be called test
functions.

DEFINITION 1.3. Let p; and p; be the elements in Mg(n). If for
some real a and positive b we have py(€) < a + bpi(€) (Y€ € R").
Then p; is said to be dominated by p; with some constant translation.
We denote this by p; < p;.

DEFINITION 1.4. If K is a compact subset of R*, D,(K) = {¢ €
Dy; suppp C K}. Note that the space Dy(K) is a Fréchet space under
the natural linear structure and the seminorms ||-{|m (m =1,2,---).

DEFINITION 1.5. If  is an open subset of R" and if K, /' / Q we
define Dp((?) as the inductive limit of the Fréchet spaces Dy(K,), ie.,
Dp(2) = indlimg, g Dp( K, ).

DEFINITION 1.6. Let M = {p € Mo(n) : p satisfy condition ()} :

() po<p, where po(z)=In(l+fz[) (z€R").

2. Sobolev’s Lemima

The elements of the dual space D}(§2) will be called Beurling’s gen-
eralized distributions. Here we call them simply generalized distribu-
tions.
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DEFINITION 2.1. A complex measurable function f, defined in an
open set {2 C R”, is said to be locally L? in Qif [ |f[*dim, < oo for
every compact i C ().

DEFINITION 2.2. A distribution (resp. generalized distribution)
u € D'(R) (resp D,(12)) is locally L? if there is a function g, locally L?
in §, such that u(¢) = [, gddm, for every ¢ € D(2) (resp. Dp(Q)).
To say that a function f has a distribution (resp. generalized distri-
bution) derivative D®f which is locally L? refers to the distribution
(resp. generchzed distribution) D, f and means, explicitly, that there
is a function g, locally L2, such that

]Q gddimn = (~1)1" [ﬂ D% ¢dm,

for every ¢ € D(Q) (resp. D,(2)).
We shall write DF for the differential operator (3/3z,)*.

LEMMA 2.3. Suppose n,q,r are integers, with n > 0,q > 0, and
2r > 2q + n. Suppose f is a function in an open set I C R®, where
distribution (resp. generalized distribution) derivatives D¥ ars locally
I?inQ, for1 <t <n, 0<k<r. Then there exists a function
F € (L' N L2)(R™) satisfying the following :

(1) f = F in an open set w such that w € Q.
(2) Jon(1 4 WP LE)Pdma(y) < oo.
(3) Jra(L+1gDIF(y)ldmaly) < oo, where ly| = (y§ +---+y75)'/*.

Proof. Choose 3 € D(Q) (resp. Dp(Q?)) so that 1» = 1 on &, and
define F on R" by

F(z)

P(x)f(x) if z€Ql
0 if z¢Q.

Then F € (L' N L2)(R") and f = F in w. By the Plancherel Theorem

[3], we have

/ \FPdm, < 0o and / Y2 | Fy)Pdma(y) < 00 {1 <: < n)
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Hence,
/R (1 + )" E(y)ldmn < oo

since  (1+[y)*" < (2n+2)"(1+y{"+- - - y2"). By the Schwarz inequality
we have

([ bE)dmaw)?
< [ Q@) [ 0+ )

o
= Man/ (1+ )21t < o
0

where M = [p.(1 + [y))*|F(y)|*dma(y) and o, is the (n — 1)-
dimenstonal volume of the unit sphere in R".

LEMMA 2.4. (The Inversion Theorem, [3]) If f € LMR™),f €
LY(R"), and fy = [, fe.dm, (z € R"), then f(z) = fo(z) for
almost every (z € R").

THEOREM 2.5. (Sobolev’s Lemma) Under the assumptions of the
Lemma. 2.3, there exists a function fo € C9(Q) such that f, = f(z)
for almost every z € (0.

Proof. Let F' be the function defined in Lemma 2.3. Dedine F(z) =
fro Fezdm, (z € R*). Then F, = F ae. on R" by the Inversion
Theorem 2.4. ¥ o = (2,,--- ,z,) and 2’ = (21 + €, 22, ,Zn), e # 0,

then
Fu(@') = Fu(z) _

i€

n etty; . 1 i .
[ s F) e v g (y).

n E

The dominated convergence theorem can be applied, since 1, F € LY,
and yields

8 . - -
P =i [ P dng).
9.71 R~
Iteration of the proof of the above leads therefore to conclusion F,, €

CW(R"™). Consequently, f = F, ae. in w. Define fo = F,(z), if
z € w. Then the function fy is the desired one.
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COROLLARY 2.6. If all distribution (resp. generalized distribution)
derivatives of f, Theorem 2.5, are locally L? in Q, then fy € C°(Q).

Proof. By the above Theorem it is clear.

3. The spaces D,(2)

We recall some properties of the spaces Dp(Q). If p1 < p2, then
D,, C Dp, and D, (Q) is dense in D,,() for each oper @ C R".

Conversely, if for some compact K C R" with K # ¢, Dp (K) C
Dp,(K), then py < p1. Let p € Mo(n). Then D,(2) C D(Q) for every
open  in R™ if and only if py < p, where pp(z) = In(1+]z|) (x € R™).

PrOPOSITION 3.1. The space D) (resp Dp(2)) is the set of all
functions ¢ on an open set Q@ C R", where all distribution (resp. gen-
eralized distribution) derivatives are locally L? in Q, and each ¢ has
compact support_in Q. with the limit topolagy.

Proof. 1t is clear by Sobolev’s Lemma.

PROPOSITION 3.2. Let py(z) = In(1 + |z|). Then the test function

space Dy, is the set of all functions ¢ in L'(R™) with compact support
such that

1912 = [ 1+ k)" Ide < oo

for all nonegative intergers n. Therefore, the space Dy, coinsides with
the space D.

Proof. 1t is obvious by Lemma 2.3 and Theorem 2.5.
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