Pusan Kyŏngnam Math. J. 10(1994), No 2, pp. 339-343

SOBOLEV'S LEMMA AND THE SPACES $\mathcal{D}_p(\Omega)$.

YOUNG SIK PARK

0. Introduction

It is well known that if $p(x) = \ln(1 + |x|)$, then the space \mathcal{D}_p coincides with $\mathcal{D} = C_0^{\infty}(\mathbb{R}^n)$. We can show the above result by Sobolev's Lemma. Also we have the same results for the Beurilng's generalized distributions.

1. Definitions and notations

The normalized Lebesgue measure on \mathbb{R}^n is the measure m_n defined by $dm_n(x) = (2\pi)^{-n/2} dx$. The usual Lebesgue spaces L^p , or $L^p(\mathbb{R}^n)$, will be normed by means of m_n :

$$||f||_{L^p} = \{\int_{R^n} |f|^p dm_n\}^{1/p} \qquad (1 \le p < \infty).$$

For each $t \in \mathbb{R}^n$, the character e_t is the function defined by

$$e_t(x) = e^{itx} = \exp\{i(t_1x_1 + \cdots + t_nx_n)\} \qquad (x \in \mathbb{R}^n).$$

The Fourier transform of the function $f \in L^1(\mathbb{R}^n)$ is the function \hat{f} defined by

$$\hat{f}(t) = \int_{\mathbb{R}^n} f e_{-t} dm_n \qquad (t \in \mathbb{R}^n).$$

The relation $S_1 \in S_2$ shall mean that the closure of S_1 is compact and contained in the interior of S_2 . If $\{S_j\}_{j=1}^{\infty}$ is a sequence of sets, the relation $S_j \nearrow S$ shall mean that $S_j \in S_{j+1} (j = 1, 2, \cdots)$ and that $S = \bigcup S_j$. Let p be a real-valued function on \mathbb{R}^n , continuous at the origin and having the property

$$(\alpha) \qquad 0=p(0)=\lim_{x\to 0}p(x)\leq p(\xi+\eta)\leq p(\xi)+p(\eta) \quad (\forall \xi,\eta\in R^n).$$

Received November 10, 1994.

Young Sik Park

DEFINITION 1.1. Let $\mathcal{M}_0 = \mathcal{M}_0(n)$ be the set of all continuous real-valued functions p on \mathbb{R}^n satisfying the conditions (α) and

$$(\beta) \qquad J_n(p) = \int_{|\xi| \ge 1} \frac{p(\xi)}{|\xi|^{n+1}} d\xi < \infty.$$

DEFINITION 1.2. Let p satisfy (α). If $\phi \in L^1(\mathbb{R}^n)$ and if λ is a real number, we write

$$||\phi||_{\lambda} = ||\phi||_{\lambda}^{(p)} = \int |\hat{\phi}(\xi)| e^{\lambda p(\xi)} d\xi.$$

Let \mathcal{D}_p be the set of all ϕ in $L^1(\mathbb{R}^n)$ such that ϕ has compact support and $||\phi||_{\lambda} < \infty$ for all $\lambda > 0$. The elements of \mathcal{D}_p will be called test functions.

DEFINITION 1.3. Let p_1 and p_2 be the elements in $\mathcal{M}_0(n)$. If for some real a and positive b we have $p_2(\xi) \leq a + bp_1(\xi)$ ($\forall \xi \in \mathbb{R}^n$). Then p_2 is said to be *dominated* by p_1 with some constant translation. We denote this by $p_2 \prec p_1$.

DEFINITION 1.4. If K is a compact subset of \mathbb{R}^n , $\mathcal{D}_p(K) = \{\phi \in \mathcal{D}_p; supp \phi \subset K\}$. Note that the space $\mathcal{D}_p(K)$ is a Fréchet space under the natural linear structure and the seminorms $\|\cdot\|_m$ $(m = 1, 2, \cdots)$.

DEFINITION 1.5. If Ω is an open subset of \mathbb{R}^n and if $K_{\nu} \nearrow \Omega$ we define $\mathcal{D}_p(\Omega)$ as the inductive limit of the Fréchet spaces $\mathcal{D}_p(K_{\nu})$, i.e., $\mathcal{D}_p(\Omega) = \operatorname{ind} \lim_{K_{\nu} \in \Omega} \mathcal{D}_p(K_{\nu})$.

DEFINITION 1.6. Let $\mathcal{M} = \{p \in \mathcal{M}_0(n) : p \text{ satisfy condition } (\gamma)\}$:

(γ) $p_0 \prec p$, where $p_0(x) = \ln(1 + |x|)$ $(x \in \mathbb{R}^n)$.

2. Sobolev's Lemma

The elements of the dual space $\mathcal{D}'_p(\Omega)$ will be called Beurling's generalized distributions. Here we call them simply generalized distributions.

340

DEFINITION 2.1. A complex measurable function f, defined in an open set $\Omega \subset \mathbb{R}^n$, is said to be *locally* L^2 in Ω if $\int_K |f|^2 d\dot{m}_n < \infty$ for every compact $K \subset \Omega$.

DEFINITION 2.2. A distribution (resp. generalized distribution) $u \in \mathcal{D}'(\Omega)$ (resp $\mathcal{D}'_p(\Omega)$) is locally L^2 if there is a function g, locally L^2 in Ω , such that $u(\phi) = \int_{\Omega} g\phi dm_n$ for every $\phi \in \mathcal{D}(\Omega)$ (resp. $\mathcal{D}_p(\Omega)$). To say that a function f has a distribution (resp. generalized distribution) derivative $D^{\alpha}f$ which is locally L^2 refers to the *distribution* (resp. generalized distribution) $D_{\alpha}f$ and means, explicitly, that there is a function g, locally L^2 , such that

$$\int_{\Omega} g\phi dm_n = (-1)^{|\alpha|} \int_{\Omega} f D^{\alpha} \phi dm_n$$

for every $\phi \in \mathcal{D}(\Omega)$ (resp. $\mathcal{D}_p(\Omega)$).

We shall write D_i^k for the differential operator $(\partial/\partial x_i)^k$.

LEMMA 2.3. Suppose n, q, r are integers, with $n > 0, q \ge 0$, and 2r > 2q + n. Suppose f is a function in an open set $\Omega \subset \mathbb{R}^n$, where distribution (resp. generalized distribution) derivatives D_i^k are locally L^2 in Ω , for $1 \le i \le n$, $0 \le k \le r$. Then there exists a function $F \in (L^1 \cap L^2)(\mathbb{R}^n)$ satisfying the following :

- (1) f = F in an open set ω such that $\omega \in \Omega$.
- (2) $\int_{\mathbb{R}^n} (1+|y|)^{2r} |\hat{F}(y)|^2 dm_n(y) < \infty.$
- (3) $\int_{\mathbb{R}^n} (1+|y|)^q |\hat{F}(y)| dm_n(y) < \infty$, where $|y| = (y_1^2 + \dots + y_n^2)^{1/2}$.

Proof. Choose $\psi \in \mathcal{D}(\Omega)$ (resp. $\mathcal{D}_p(\Omega)$) so that $\psi = 1$ on $\bar{\omega}$, and define F on \mathbb{R}^n by

$$F(x) = \begin{cases} \psi(x)f(x) & \text{if } x \in \Omega \\ 0 & \text{if } x \notin \Omega. \end{cases}$$

Then $F \in (L^1 \cap L^2)(\mathbb{R}^n)$ and f = F in ω . By the Plancherel Theorem [3], we have

$$\int_{R^n} |\hat{F}|^2 dm_n < \infty \quad \text{and} \int_{R^n} y_i^{2r} |\hat{F}(y)|^2 dm_n(y) < \infty \quad (1 \le i \le n).$$

Hence,

$$\int_{\mathbb{R}^n} (1+|y|)^{2r} |\hat{F}(y)| dm_n < \infty$$

since $(1+|y|)^{2r} < (2n+2)^r(1+y_1^{2r}+\cdots+y_n^{2r})$. By the Schwarz inequality we have

$$\begin{aligned} &\{\int_{R^n} (1+|y|)^q |\hat{F}(y)| dm_n(y) \}^2 \\ &\leq \int_{R^n} (1+|y|)^{2r} |\hat{F}(y)|^2 dm_n(y) \cdot \int_{R^n} (1+|y|)^{2q-2r} dm_n(y) \\ &= M\sigma_n \int_0^\infty (1+t)^{2q-2r} t^{n-1} dt < \infty \end{aligned}$$

where $M = \int_{\mathbb{R}^n} (1+|y|)^{2r} |\hat{F}(y)|^2 dm_n(y)$ and σ_n is the (n-1)-dimensional volume of the unit sphere in \mathbb{R}^n .

LEMMA 2.4. (The Inversion Theorem, [3]) If $f \in L^1(\mathbb{R}^n)$, $\hat{f} \in L^1(\mathbb{R}^n)$, and $f_0 = \int_{\mathbb{R}^n} \hat{f}e_x dm_n$ $(x \in \mathbb{R}^n)$, then $f(x) = f_0(x)$ for almost every $(x \in \mathbb{R}^n)$.

THEOREM 2.5. (Sobolev's Lemma) Under the assumptions of the Lemma 2.3, there exists a function $f_0 \in C^{(q)}(\Omega)$ such that $f_0 = f(x)$ for almost every $x \in \Omega$.

Proof. Let F be the function defined in Lemma 2.3. Dedine $F_{\omega}(x) = \int_{\mathbb{R}^n} \hat{F}e_x dm_n$ $(x \in \mathbb{R}^n)$. Then $F_{\omega} = F$ a.e. on \mathbb{R}^n by the Inversion Theorem 2.4. If $x = (x_1, \dots, x_n)$ and $x' = (x_1 + \epsilon, x_2, \dots, x_n), \epsilon \neq 0$, then

$$\frac{F_{\omega}(x')-F_{\omega}(x)}{i\epsilon}=\int_{R^n}y_1\hat{F}(y)\frac{e^{i\epsilon y_1}-1}{iy_1\epsilon}e^{iyx}dm_n(y).$$

The dominated convergence theorem can be applied, since $y_1 \hat{F} \in L^1$, and yields

$$\frac{\partial}{\partial x_1}F_{\omega}(x)=i\int_{R^n}y_1\hat{F}(y)e^{iyx}dm_n(y).$$

Iteration of the proof of the above leads therefore to conclusion $F_{\omega} \in C^{(q)}(\mathbb{R}^n)$. Consequently, $f = F_{\omega}$ a.e. in ω . Define $f_0 = F_{\omega}(x)$, if $x \in \omega$. Then the function f_0 is the desired one.

342

The spaces \mathcal{D}_p

COROLLARY 2.6. If all distribution (resp. generalized distribution) derivatives of f, Theorem 2.5, are locally L^2 in Ω , then $f_0 \in C^{\infty}(\Omega)$.

Proof. By the above Theorem it is clear.

3. The spaces $\mathcal{D}_p(\Omega)$

We recall some properties of the spaces $\mathcal{D}_p(\Omega)$. If $p_1 \prec p_2$, then $\mathcal{D}_{p_1} \subset \mathcal{D}_{p_2}$ and $\mathcal{D}_{p_1}(\Omega)$ is dense in $\mathcal{D}_{p_2}(\Omega)$ for each open $\Omega \subset \mathbb{R}^n$. Conversely, if for some compact $K \subset \mathbb{R}^n$ with $\overset{\circ}{K} \neq \phi, \mathcal{D}_{p_1}(K) \subset \mathcal{D}_{p_2}(K)$, then $p_2 \prec p_1$. Let $p \in M_0(n)$. Then $\mathcal{D}_p(\Omega) \subset \mathcal{D}(\Omega)$ for every open Ω in \mathbb{R}^n if and only if $p_0 \prec p$, where $p_0(x) = \ln(1+|x|)$ $(x \in \mathbb{R}^n)$.

PROPOSITION 3.1. The space $\mathcal{D}(\Omega)$ (resp $\mathcal{D}_p(\Omega)$) is the set of all functions ϕ on an open set $\Omega \subset \mathbb{R}^n$, where all distribution (resp. generalized distribution) derivatives are locally L^2 in Ω , and each ϕ has compact support in Ω , with the limit topology.

Proof. It is clear by Sobolev's Lemma.

PROPOSITION 3.2. Let $p_0(x) = \ln(1 + |x|)$. Then the test function space \mathcal{D}_{p_0} is the set of all functions ϕ in $L^1(\mathbb{R}^n)$ with compact support such that

$$||\hat{\phi}||_n^{(p_0)} = \int_{\mathbb{R}^n} (1+|t|)^n |\hat{\phi}(t)| dt < \infty$$

for all nonegative intergers n. Therefore, the space \mathcal{D}_{p_0} coinsides with the space \mathcal{D} .

Proof. It is obvious by Lemma 2.3 and Theorem 2.5.

References

- 1. Hormander, L., Linear Partial Differential Operators, Grundlehren der mathematischen Wissenschaften 116, Springer Berlin (1963).
- 2. Goran Bjorck, Linear Partial Differential Operators and generalized distributions, Arkiv for Mathematik Band 6 nr 21, (1966).
- 3 Rudin, W, Functional Analysis, McGraw-Hill, Inc. (1991)

Department of Mathematics Pusan National University Pusasn 609-735, Korea