REMARK ON q-BERNOULLI

AND EULERIAN NUMBERS*

Han Soo Kim and Pil-Sang Lim, Taekyun Kim

0. Introduction

Throughout this paper $\mathbf{Z}_{p}, \mathbf{Q}_{p}, \mathbf{C}$ and \mathbf{C}_{p} will respectively denote the ring of p-adic rational integers, the field of p-adic rational numbers, the complex number field and the completion of the algebraic closure of \mathbf{Q}_{p}.

Let v_{p} be the normalized exponential valuation of \mathbf{C}_{p} with $|p|_{p}=$ $p^{-v_{p}(p)}=p^{-1}$. When one talks of q-extension, q is variously considered as an indeterminate, a complex number $q \in \mathbf{C}$, or p-adic number $q \in$ \mathbf{C}_{p}. If $q \in \mathbf{C}$, we assume $|q|<1$. If $q \in \mathbf{C}_{p}$, we assume $|q-1|_{p}<p^{-\frac{1}{p-1}}$, so that $q^{x}=\exp \left(x \log _{p} q\right)$ for $|x|_{p} \leq 1$. The usual Bernoulli numbers are defined by

$$
\sum_{n=0}^{\infty} B_{n} \frac{t^{n}}{n!}=\frac{t}{e^{t}-1}
$$

which can be written symbolically as $e^{B t}=\frac{t}{e^{t-1}}$, interpolated to means B^{k} must be replaced by B_{k}. This relation can also be written $e^{(B+1) t}-$ $e^{B t}=t$, or if we equate powers of t,

$$
B_{0}=1, \quad(B+1)^{k}-B^{k}= \begin{cases}1 & \text { if } k=1 \\ 0 & \text { if } k>1 .\end{cases}
$$

In the p-adic case, the numbers can be represented by

$$
B_{n}=\int_{\mathbf{Z}_{p}} x^{\boldsymbol{n}} d \mu_{0}(x)
$$

where $\mu_{0}(x)=\mu_{0}\left(x+p^{N} \mathbf{Z}_{p}\right)=\frac{1}{p^{N}}$.

Supported by the Basic Scrence Research Institute Program, Ministry of Education and TGRC-KOSEF, 1994.

In this paper, we will give a new relation on q-Bernoulli numbers and q-Euler numbers.

1. q-Eulerian numbers

For $q \in \mathbf{C}$ (or \mathbf{C}_{p}), we define the number $E_{n}(\rho: q), n \geq 0$, for a root of unity $\rho \neq 1$, by

$$
\frac{\rho}{q e^{t}-\rho}=\sum_{n=0}^{\infty} E_{n}(\rho: q) \frac{t^{n}}{n!}
$$

Let $\sum_{n=0}^{\infty} E_{n}(x, \rho: q) \frac{t^{n}}{n^{1}}=\frac{\rho e^{x t}}{q e^{t}-\rho}$. Then $E_{n}(x, \rho: q)=\sum_{n=0}^{\infty}\binom{n}{t} E_{n}(\rho:$ $q) x^{n-1}, \rho \neq 1$, with the usual convention of replacing $E^{n}(\rho: q)$ by $E_{n}(\rho: q)$.

For $\rho^{k} \neq 1,0 \leq a<k$, we have

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \sum_{\zeta^{k}=1} E_{n}(\rho \zeta: q) \zeta^{a} \frac{t^{n}}{n!} \\
& =\sum_{\zeta^{k}=1} \frac{\zeta^{a+1} \rho}{q e^{t}-\rho \zeta}=\sum_{\zeta^{k}=1} \frac{\zeta^{a+1}}{\rho^{-1} q e^{t}-1} \\
& =\frac{k \rho^{-a} q^{k} e^{a t}}{\rho^{-k} q^{k} e^{k t}-1}=\frac{\rho^{k} e^{a t}}{\left(q e^{t}\right)^{k}-\rho k} k q^{k} \rho^{-a} \\
& =\sum_{n=0}^{\infty} E_{n}\left(\frac{a}{k}, \rho^{k}: q^{k}\right) \frac{(k t)^{n}}{n!} k q^{k} \rho^{-a} \\
& =k^{n+1} \rho^{-a} q^{k} \sum_{n=0}^{\infty} E_{n}\left(\frac{a}{k}, \rho^{k}: q^{k}\right) \frac{t^{n}}{n!} .
\end{aligned}
$$

Therefore we obtain the following
Lemma 1. For $k>1, \rho^{k} \neq 1,0 \leq a<k$, we have

$$
\sum_{\zeta^{k}=1} E_{n}(\rho \zeta: q) \zeta^{a}=k^{n+1} \rho^{-a} q^{k} E_{n}\left(\frac{a}{k}, \rho^{k}: q^{k}\right)
$$

It is easy to see that

$$
\sum_{\zeta^{k}=1} E_{n}(\rho \zeta: q)=k^{n+1} E_{n}\left(\rho^{k}: q^{k}\right), n \geq 0
$$

for ρ any root of unity and integer $k \geq 1$.
For $E_{n}(\rho: q), n \geq 0, q \in \mathbf{C}_{p}$,

$$
\rho=q e^{(E(\rho \cdot q)+1) t}-\rho e^{E(\rho \cdot q) t}
$$

or if we equate powers of t,

$$
\begin{aligned}
& q(E(\rho: q)+1)^{n}-\rho E_{n}(\rho: q)= \begin{cases}\rho & \text { if } n=0 \\
0 & \text { if } n \geq 1\end{cases} \\
& q E_{0}(\rho: q)-\rho E_{0}(\rho: q)=\rho
\end{aligned}
$$

Thus we have

$$
E_{0}(\rho: q)=\frac{\rho}{q-\rho}
$$

However,

$$
\begin{aligned}
& q E_{n}(\rho: q)+q \sum_{i=1}^{n}\binom{n}{i} E_{n-i}(\rho: q)-\rho E_{n}(\rho: q) \\
& =q \sum_{i=0}^{n}\binom{n}{i} E_{n-i}(\rho)-\rho E_{n}(\rho) \\
& =q(E(\rho: q)+1)^{n}-\rho E_{n}(\rho: q)=0 \text { for } n \geq 1
\end{aligned}
$$

so that

$$
(q-\rho) E_{n}(\rho: q)=-q \sum_{t=1}^{n}\binom{n}{i} E_{n-z}(\rho: q) \quad \text { for } \quad n \geq 1
$$

If $\rho \neq 1$, then $(q-\rho)^{n+1} E_{n}(\rho: q), n \geq 1$, are polynomials of ρ with coefficients in \mathbf{Z}_{p}.

2. q-Bernoulli numbers

For $q \in \mathbf{C}$ (or \mathbf{C}_{p}) with $|q|<1$ or $|1-q|_{p}<p^{-\frac{1}{p-1}}$, we define

$$
\frac{t}{q e^{t}-1}=e^{\beta(q) t} \quad \text { and } \quad \frac{t e^{x t}}{q e^{t}-1}=e^{\beta(x \cdot q) t},
$$

or we equate power of t,

$$
q(\beta+1)^{n}-\beta_{n}= \begin{cases}1 & \text { if } n=1 \\ 0 & \text { if } n>1\end{cases}
$$

with the usual convention of replacing $\beta^{n}(q)$ by β_{n}.
For any positive integer m, we have

$$
\begin{aligned}
\frac{t e^{x t}}{q e^{t}-1} & =\sum_{i=0}^{m-1} \frac{t q^{i} e^{(x+z) t}}{q^{m} e^{m t}-1}=\sum_{i=0}^{m-1} \frac{q^{i}}{m} \frac{m t e^{\frac{(x+1)}{m} m t}}{q^{m} e^{m t}-1} \\
& =\sum_{i=0}^{m-1} \frac{1}{m} q^{i} e^{\beta\left(\frac{(x+1)}{m} \cdot q^{m}\right) m t} \\
& =\sum_{i=0}^{m-1} \frac{1}{m} q^{2} \sum_{k=0}^{\infty} \beta_{k}\left(\frac{(x+i)}{m}: q^{m}\right) \frac{m^{k} t^{k}}{k!} \\
& =\sum_{k=0}^{\infty}\left(m^{k-1} \sum_{i=0}^{m-1} q^{i} \beta_{k}\left(\frac{(x+i)}{m}: q^{m}\right) \frac{t^{k}}{k!}\right.
\end{aligned}
$$

Therefore we obtain the following
Theorem 1. For $k \geq 0$ integer, we have

$$
\beta_{k}(x: q)=m^{k-1} \sum_{i=0}^{m-1} q^{2} \beta_{k}\left(\frac{(x+i)}{m}: q^{m}\right) .
$$

If $q \rightarrow 1$, we have

$$
B_{k}(x)=m^{k-1} \sum_{i=0}^{m-1} B_{k}\left(\frac{x+i}{m}\right) .
$$

Let f be a fixed integer and let p be a fixed prime number. We set

$$
\begin{aligned}
& X=\underset{\stackrel{\pi}{n}}{\lim \mathbf{Z}} / f p^{n} \mathbf{Z}, \\
& X^{*}=\bigcup_{\substack{0<a<f(\\
(a, p)=1}} a+f p \mathbf{Z}_{p}, \\
& a+f p^{n} \mathbf{Z}_{p}=\left\{x \in X \mid x \equiv a\left(\bmod f p^{n}\right)\right\}
\end{aligned}
$$

where $a \in \mathrm{Z}$ lies in $0 \leq a<f p^{n}$.
Note that the natural map

$$
\mathbf{Z} / f p^{n} \mathbf{Z} \longrightarrow \mathbf{Z} / p^{n} \mathbf{Z}
$$

induces

$$
\pi: X \longrightarrow \mathbf{Z}_{p}
$$

If g is a function on \mathbf{Z}_{p}, we denote by the same g the function $g \circ \pi$ on X. Namely we consider g as a function on X.

The above theorem 1 is important for the construction of the p-adic q-Bernoulli distribution.

Theorem 2. Let q be element in \mathbf{C}_{p}. For any positive N, k and d, let $\mu_{\beta, k}=\mu_{\beta, k q}$ be defined by

$$
\mu_{\beta, k}\left(a+d p^{N} \mathbf{Z}_{p}\right)=\left(d p^{N}\right)^{k-1} q^{a} \beta_{k}\left(\frac{a}{d p^{N}}: q^{d p^{N}}\right)
$$

Then $\mu_{\beta, k}$ extends uniquely to distribution on X.

Proof. It suffice to check that

$$
\sum_{i=0}^{p-1} \mu_{\beta, k}\left(a+i d p^{N}+d p^{N+1} \mathbf{Z}_{p}\right)=\mu_{\beta, k}\left(a+d p^{N} \mathbf{Z}_{p}\right)
$$

By the definition of $\mu_{\beta, k}$, we have

$$
\begin{aligned}
& \sum_{i=0}^{p-1} \mu_{\beta, k}\left(a+\imath d p^{N}+d p^{N+1} \mathbf{Z}_{p}\right) \\
& =\left(d p^{N}\right)^{k-1} \sum_{i=0}^{p-1} q^{a+t d p^{N}} \beta_{k}\left(\frac{a+i d p^{N}}{d p^{N}}: q^{d p^{N+1}}\right) \\
& =p^{k-1} \sum_{t=0}^{p-1} q^{z d p^{N}} \beta_{k}\left(\frac{\frac{a}{d p^{N}}+i}{p}:\left(q^{d p^{N}}\right)^{p}\right) \\
& =q^{a}\left(d p^{N}\right)^{k-1} \beta_{k}\left(\frac{a}{d p^{N}}: q^{d p^{N}}\right) \\
& =\mu_{\beta, k}\left(a+d p^{N} \mathbf{Z}_{p}\right) .
\end{aligned}
$$

Thus we have proved theorem 2.
Note that

$$
\int_{\mathbf{Z}_{p}} 1 d \mu_{\beta, k}(x)=\mu_{\beta, k}\left(\mathbf{Z}_{p}\right)=\beta_{k}(q) .
$$

Do q-Bernoulli numbers $\beta_{k}(q)$ occur in Witt's formula type?
Let $\alpha \in X^{*}, \alpha \neq 1, k \geq 1$. For compact-open $U \subset X$, define by

$$
\mu_{\alpha ; k}(U)=\mu_{\beta, k ; q}(U)-\alpha^{-k} \mu_{\beta, k ; q^{1 / \alpha}}(\alpha U) .
$$

Then $\mu_{\alpha ; k} \rightarrow \mu_{\text {Mazur }, \alpha ; k}$ as $q \rightarrow 1$, where $\mu_{\text {Mazur }, \alpha ; k}$ is Mazur's measure.

3. Remark

Let $C\left(\mathbf{Z}_{p}, \mathbf{C}_{p}\right)$ and $U D\left(\mathbf{Z}_{p}, \mathbf{C}_{p}\right)$ denote the space of all continuous functions and the space of all uniformly differentiable functions on \mathbf{Z}_{p} with values in \mathbf{C}_{p}.

Let $C_{p^{n}}$ be the cyclic group consisting of all p^{n}-th roots of unity in $\mathbf{C}_{p^{n}}$ for all $n \geq 0$ and \mathbf{T}_{p} be the direct limit of $C_{p^{n}}$ with respect to the natural morphisms, hence \mathbf{T}_{p} is the union of all $C_{p^{n}}$ with discrete topology.

For $f \in U D\left(\mathbf{Z}_{p}, \mathbf{C}_{p}\right)$, we have an integral $I_{0}(f)$ with respect to use so called invariant measure μ_{0};

$$
I_{0}(f)=\int_{\mathbf{z}_{p}} f(x) d \mu_{0}(x)=\lim _{n \rightarrow \infty} \frac{1}{p^{n}} \sum_{x=0}^{p^{n}-1} f(x)
$$

and the Fourier transform $\hat{f}_{q}=I_{0}\left(f \phi_{q}\right)$, where ϕ_{q} denotes a uniformly differentiable function on \mathbf{Z}_{p} belonging to $q \in \mathbf{C}_{p}$ defined by $\phi_{q}(x)=$ q^{x}.
Here, we have \boldsymbol{q}-analogue of Witt's formula

$$
I_{0}\left(x^{n} \phi_{q}(x)\right)=\beta_{n}(q) \text { for } q \in \mathbf{T}_{p}, n \geq 0 .
$$

By definition, we see that

$$
\frac{t}{q e^{t}-1}=\sum_{m=0}^{\infty} \frac{1}{(m+1)!} \frac{(m+1) H^{m}\left(q^{-1}\right)}{(q-1)} t^{m+1}
$$

where $H^{m}\left(q^{-1}\right)$ means the m-th Euler numbers.
If $m \geq 1$ and $q \neq 1$, then we have

$$
\beta_{m}=I_{0}\left(x^{m} \phi_{q}(x)\right)=\frac{m}{\omega-1} H^{m-1}\left(q^{-1}\right) .
$$

Theorem 3. For $m \geq 1, q \in \mathbf{T}_{p}$, we have
(1) $I_{0}\left(\phi_{q}(x) x^{m}\right)=\beta_{m}(q)$
(2) $\frac{\beta_{m}(q)}{m}=\frac{1}{q-1} H^{m-1}\left(q^{-1}\right)$ if $q \neq 1$

$$
\begin{equation*}
x^{n}=\beta_{n}(1)+\sum_{\substack{q \in \mathbf{T}_{p} \\ q \neq 1}} \frac{\beta_{n}(q)}{n} \phi_{q}(x) \tag{3}
\end{equation*}
$$

Now, we define the convolution for any $f, g \in U D\left(\mathbf{Z}_{p}, \mathbf{C}_{p}\right)$ due to Woodcock as follows;

$$
f * g(x)=\sum_{q} \hat{f}_{q} \hat{g}_{q} \phi_{q^{-1}}(x) .
$$

Then we have $f * g \in U D\left(\mathbf{Z}_{p}, \mathbf{C}_{p}\right)$ and $(f * g)_{q}=\hat{f}_{q} \hat{g}_{q}$. Another convolution \otimes is induced by $*$ above $f^{\prime} \otimes g^{\prime}=-(f * g)^{\prime}$ for $f, g \in$ $U D\left(\mathbf{Z}_{p}, \mathbf{C}_{p}\right)$.

It is known in [3] that

$$
\begin{aligned}
& (f \otimes g)^{\prime}=f \otimes g^{\prime}+f^{\prime} \otimes g+f * g \\
& f \otimes g(z)=I_{0}^{(x)}(f(x) g(z-x))-f * g^{\prime}(z)
\end{aligned}
$$

where $I_{0}^{(x)}$ means the integrable with respect to the variable x.
We take $f=z^{m} \phi_{q}(z)$ and $g=z^{n} \phi_{q}(z)$.

$$
\begin{aligned}
& I_{0}\left(z^{m} \phi_{q}(z)\right) I_{0}\left(z^{n} \phi_{q}(z)\right) \\
& =I_{0}^{(z)} I_{0}^{(x)}\left(x^{m} q^{x}(z-x)^{n} q^{z-x}\right)-n I_{0}^{(z)}\left(\phi_{q}(z) z^{m} \otimes \phi_{q}(z) z^{n-1}\right)
\end{aligned}
$$

$\xrightarrow{\text { Let }} \cdot A_{m, n}^{g}=I_{0}\left(\phi_{q}(z) z^{m} \otimes \phi_{q}(z) z^{n-1}\right)$. Then

$$
A_{m, n}^{q}=\frac{1}{n} \sum_{j=0}^{n}\binom{n}{j}(-1)^{j} B_{m+j} \beta_{n-j}(q)-\frac{1}{n} \beta_{m}(q) \beta_{n}(q)
$$

since $A_{m, n}^{q}=A_{n-1, m+1}^{q}$.
In particular, in the case of $m=0, A_{0, n}^{q}=A_{n-1,1}^{q}$.
Thus we have the Euler identity, indeed, if $q=1$, then we have

$$
-\frac{1}{n+1} \sum_{k=2}^{n-2}\binom{n}{k} B_{k} B_{n-k}=B_{n} \quad \text { for } \quad n \geq 1
$$

References

1. L.Carlitz, q-Bernoull numbers and polynomials, Duke Math.J 15 (1948), 987-1000
2. H S Kim and P.S Lim, T.Kim, On p-adic q-Bernoulh measures, to submitted in J.Korean Math.Soc.
3. T.Kim, An analogue of Bernoulh numbers and thear congruence, Rep.Fac.Sci.Saga 22 (1994), 7-13.
4. H.S.Kım and T Kım, $O_{n} p-a d_{1} c$ differentiable and bounded functıons, to appear in Kyungpook Math.J. (1994).
5. H Tsumura, A note onq-analogue of the Dirichlet series and q-Bernoull numbers, 3 Number theory 39 (1991), 251-256

Department of Mathematics
College of Natural Sciences
Kyungpook National Unversity

