REMARK ON q—BERNOULLI AND EULERIAN NUMBERS*

HAN SOO KIM AND PIL-SANG LIM, TAEKYUN KIM

0. Introduction

Throughout this paper \mathbf{Z}_p , \mathbf{Q}_p , \mathbf{C} and \mathbf{C}_p will respectively denote the ring of p-adic rational integers, the field of p-adic rational numbers, the complex number field and the completion of the algebraic closure of \mathbf{Q}_p .

Let v_p be the normalized exponential valuation of C_p with $|p|_p = p^{-v_p(p)} = p^{-1}$. When one talks of q-extension, q is variously considered as an indeterminate, a complex number $q \in C$, or p-adic number $q \in C_p$. If $q \in C$, we assume |q| < 1. If $q \in C_p$, we assume $|q-1|_p < p^{-\frac{1}{p-1}}$, so that $q^x = \exp(x \log_p q)$ for $|x|_p \le 1$. The usual Bernoulli numbers are defined by

$$\sum_{n=0}^{\infty} B_n \frac{t^n}{n!} = \frac{t}{e^t - 1},$$

which can be written symbolically as $e^{Bt} = \frac{t}{e^t - 1}$, interpolated to means B^k must be replaced by B_k . This relation can also be written $e^{(B+1)t} - e^{Bt} = t$, or if we equate powers of t,

$$B_0 = 1$$
, $(B+1)^k - B^k = \begin{cases} 1 & \text{if } k = 1 \\ 0 & \text{if } k > 1. \end{cases}$

In the p-adic case, the numbers can be represented by

$$B_n = \int_{\mathbf{Z}_p} x^n d\mu_0(x)$$

where $\mu_0(x) = \mu_0(x + p^N \mathbf{Z}_p) = \frac{1}{p^N}$.

Received November 8,1994.

Supported by the Basic Science Research Institute Program, Ministry of Education and TGRC-KOSEF, 1994.

In this paper, we will give a new relation on q-Bernoulli numbers and q-Euler numbers.

1. q-Eulerian numbers

For $q \in \mathbb{C}$ (or \mathbb{C}_p), we define the number $E_n(\rho:q)$, $n \geq 0$, for a root of unity $\rho \neq 1$, by

$$\frac{\rho}{qe^t - \rho} = \sum_{n=0}^{\infty} E_n(\rho:q) \frac{t^n}{n!}.$$

Let $\sum_{n=0}^{\infty} E_n(x, \rho: q) \frac{t^n}{n!} = \frac{\rho e^{xt}}{q e^t - \rho}$. Then $E_n(x, \rho: q) = \sum_{n=0}^{\infty} {n \choose t} E_n(\rho: q) x^{n-t}$, $\rho \neq 1$, with the usual convention of replacing $E^n(\rho: q)$ by $E_n(\rho: q)$.

For $\rho^k \neq 1$, $0 \leq a < k$, we have

$$\sum_{n=0}^{\infty} \sum_{\zeta^{k}=1} E_{n}(\rho \zeta : q) \zeta^{a} \frac{t^{n}}{n!}$$

$$= \sum_{\zeta^{k}=1} \frac{\zeta^{a+1} \rho}{q e^{t} - \rho \zeta} = \sum_{\zeta^{k}=1} \frac{\zeta^{a+1}}{\rho^{-1} q e^{t} - 1}$$

$$= \frac{k \rho^{-a} q^{k} e^{at}}{\rho^{-k} q^{k} e^{kt} - 1} = \frac{\rho^{k} e^{at}}{(q e^{t})^{k} - \rho k} k q^{k} \rho^{-a}$$

$$= \sum_{n=0}^{\infty} E_{n}(\frac{a}{k}, \rho^{k} : q^{k}) \frac{(kt)^{n}}{n!} k q^{k} \rho^{-a}$$

$$= k^{n+1} \rho^{-a} q^{k} \sum_{n=0}^{\infty} E_{n}(\frac{a}{k}, \rho^{k} : q^{k}) \frac{t^{n}}{n!}.$$

Therefore we obtain the following

LEMMA 1. For k > 1, $\rho^k \neq 1$, $0 \leq a < k$, we have

$$\sum_{\zeta^{k}=1} E_n(\rho\zeta:q)\zeta^a = k^{n+1}\rho^{-a}q^k E_n(\frac{a}{k},\rho^k:q^k).$$

It is easy to see that

$$\sum_{\zeta^k=1} E_n(\rho\zeta:q) = k^{n+1} E_n(\rho^k:q^k), n \ge 0,$$

for ρ any root of unity and integer $k \geq 1$.

For $E_n(\rho:q)$, $n \geq 0$, $q \in \mathbf{C}_p$,

$$\rho = qe^{(E(\rho,q)+1)t} - \rho e^{E(\rho,q)t}.$$

or if we equate powers of t,

$$q(E(
ho:q)+1)^n-
ho E_n(
ho:q)=\left\{egin{array}{ll}
ho & ext{if } n=0 \ 0 & ext{if } n\geq 1, \ qE_0(
ho:q)-
ho E_0(
ho:q)=
ho. \end{array}
ight.$$

Thus we have

$$E_0(\rho:q)=\frac{\rho}{q-\rho}.$$

However,

$$qE_n(\rho:q) + q \sum_{i=1}^n \binom{n}{i} E_{n-i}(\rho:q) - \rho E_n(\rho:q)$$

$$= q \sum_{i=0}^n \binom{n}{i} E_{n-i}(\rho) - \rho E_n(\rho)$$

$$= q (E(\rho:q) + 1)^n - \rho E_n(\rho:q) = 0 \text{ for } n \ge 1,$$

so that

$$(q-\rho)E_n(\rho:q) = -q\sum_{i=1}^n \binom{n}{i}E_{n-i}(\rho:q)$$
 for $n \ge 1$.

If $\rho \neq 1$, then $(q - \rho)^{n+1}E_n(\rho : q)$, $n \geq 1$, are polynomials of ρ with coefficients in \mathbb{Z}_p .

2. q-Bernoulli numbers

For $q \in \mathbb{C}$ (or \mathbb{C}_p) with |q| < 1 or $|1 - q|_p < p^{-\frac{1}{p-1}}$, we define

$$\frac{t}{qe^t-1}=e^{\beta(q)t}\quad\text{and}\quad \frac{te^{xt}}{qe^t-1}=e^{\beta(x\cdot q)t},$$

or we equate power of t,

$$q(\beta+1)^n - \beta_n = \begin{cases} 1 & \text{if } n=1\\ 0 & \text{if } n>1, \end{cases}$$

with the usual convention of replacing $\beta^n(q)$ by β_n . For any positive integer m, we have

$$\frac{te^{xt}}{qe^{t}-1} = \sum_{i=0}^{m-1} \frac{tq^{i}e^{(x+i)t}}{q^{m}e^{mt}-1} = \sum_{i=0}^{m-1} \frac{q^{i}}{m} \frac{mte^{\frac{(x+i)}{m}mt}}{q^{m}e^{mt}-1}$$

$$= \sum_{i=0}^{m-1} \frac{1}{m} q^{i}e^{\beta(\frac{(x+i)}{m} \cdot q^{m})mt}$$

$$= \sum_{i=0}^{m-1} \frac{1}{m} q^{i} \sum_{k=0}^{\infty} \beta_{k} (\frac{(x+i)}{m} : q^{m}) \frac{m^{k}t^{k}}{k!}$$

$$= \sum_{k=0}^{\infty} (m^{k-1} \sum_{i=0}^{m-1} q^{i}\beta_{k} (\frac{(x+i)}{m} : q^{m}) \frac{t^{k}}{k!}.$$

Therefore we obtain the following

THEOREM 1. For $k \geq 0$ integer, we have

$$\beta_k(x:q) = m^{k-1} \sum_{i=0}^{m-1} q^i \beta_k(\frac{(x+i)}{m}:q^m).$$

If $q \to 1$, we have

$$B_k(x) = m^{k-1} \sum_{k=0}^{m-1} B_k(\frac{x+i}{m}).$$

Let f be a fixed integer and let p be a fixed prime number. We set

$$X = \lim_{\substack{\longleftarrow \\ n}} \mathbf{Z}/fp^n \mathbf{Z},$$

$$X^* = \bigcup_{\substack{0 < a < fp \\ (a,p)=1}} a + fp \mathbf{Z}_p,$$

$$a + fp^n \mathbf{Z}_p = \{x \in X | x \equiv a \pmod{fp^n}\}$$

where $a \in \mathbf{Z}$ lies in $0 \le a < fp^n$.

Note that the natural map

$$\mathbf{Z}/fp^{n}\mathbf{Z} \longrightarrow \mathbf{Z}/p^{n}\mathbf{Z}$$

induces

$$\pi:X\longrightarrow \mathbf{Z}_p.$$

If g is a function on \mathbb{Z}_p , we denote by the same g the function $g \circ \pi$ on X. Namely we consider g as a function on X.

The above theorem 1 is important for the construction of the p-adic q-Bernoulli distribution.

THEOREM 2. Let q be element in C_p . For any positive N, k and d, let $\mu_{\beta,k} = \mu_{\beta,k}$ g be defined by

$$\mu_{\beta,k}(a+dp^N\mathbf{Z}_p)=(dp^N)^{k-1}q^a\beta_k(\frac{a}{dp^N}:q^{dp^N}).$$

Then $\mu_{\beta,k}$ extends uniquely to distribution on X.

Proof. It suffice to check that

$$\sum_{k=0}^{p-1} \mu_{\beta,k}(a+idp^N+dp^{N+1}\mathbf{Z}_p) = \mu_{\beta,k}(a+dp^N\mathbf{Z}_p).$$

By the definition of $\mu_{\beta,k}$, we have

$$\sum_{i=0}^{p-1} \mu_{\beta,k}(a + idp^{N} + dp^{N+1}\mathbf{Z}_{p})$$

$$= (dp^{N})^{k-1} \sum_{i=0}^{p-1} q^{a+idp^{N}} \beta_{k}(\frac{a + idp^{N}}{dp^{N}} : q^{dp^{N+1}})$$

$$= p^{k-1} \sum_{i=0}^{p-1} q^{idp^{N}} \beta_{k}(\frac{\frac{a}{dp^{N}} + i}{p} : (q^{dp^{N}})^{p})$$

$$= q^{a}(dp^{N})^{k-1} \beta_{k}(\frac{a}{dp^{N}} : q^{dp^{N}})$$

$$= \mu_{\beta,k}(a + dp^{N}\mathbf{Z}_{p}).$$

Thus we have proved theorem 2.

Note that

$$\int_{\mathbf{Z}_p} 1 d\mu_{\beta,k}(x) = \mu_{\beta,k}(\mathbf{Z}_p) = \beta_k(q).$$

Do q-Bernoulli numbers $\beta_k(q)$ occur in Witt's formula type? Let $\alpha \in X^*$, $\alpha \neq 1$, $k \geq 1$. For compact-open $U \subset X$, define by

$$\mu_{\alpha;k}(U) = \mu_{\beta,k;q}(U) - \alpha^{-k}\mu_{\beta,k;q^{1/\alpha}}(\alpha U).$$

Then $\mu_{\alpha;k} \to \mu_{\text{Mazur},\alpha;k}$ as $q \to 1$, where $\mu_{\text{Mazur},\alpha;k}$ is Mazur's measure.

3. Remark

Let $C(\mathbf{Z}_p, \mathbf{C}_p)$ and $UD(\mathbf{Z}_p, \mathbf{C}_p)$ denote the space of all continuous functions and the space of all uniformly differentiable functions on \mathbf{Z}_p with values in \mathbf{C}_p .

Let C_{p^n} be the cyclic group consisting of all p^n —th roots of unity in C_{p^n} for all $n \geq 0$ and T_p be the direct limit of C_{p^n} with respect to the natural morphisms, hence T_p is the union of all C_{p^n} with discrete topology.

For $f \in UD(\mathbf{Z}_p, \mathbf{C}_p)$, we have an integral $I_0(f)$ with respect to use so called invariant measure μ_0 ;

$$I_0(f) = \int_{\mathbf{Z}_p} f(x) d\mu_0(x) = \lim_{n \to \infty} \frac{1}{p^n} \sum_{x=0}^{p^n - 1} f(x)$$

and the Fourier transform $\hat{f}_q = I_0(f\phi_q)$, where ϕ_q denotes a uniformly differentiable function on \mathbf{Z}_p belonging to $q \in \mathbf{C}_p$ defined by $\phi_q(x) =$

Here, we have q-analogue of Witt's formula

$$I_0(x^n\phi_q(x)) = \beta_n(q)$$
 for $q \in \mathbf{T}_p, n \ge 0$.

By definition, we see that

$$\frac{t}{qe^t-1}=\sum_{m=0}^{\infty}\frac{1}{(m+1)!}\frac{(m+1)H^m(q^{-1})}{(q-1)}t^{m+1},$$

where $H^m(q^{-1})$ means the m-th Euler numbers.

If $m \ge 1$ and $q \ne 1$, then we have

$$\beta_m = I_0(x^m \phi_q(x)) = \frac{m}{\omega - 1} H^{m-1}(q^{-1}).$$

THEOREM 3. For $m \geq 1$, $q \in \mathbf{T}_p$, we have

$$(1) I_0(\phi_q(x)x^m) = \beta_m(q)$$

(1)
$$I_0(\phi_q(x)x^m) = \beta_m(q)$$

(2) $\frac{\beta_m(q)}{m} = \frac{1}{q-1}H^{m-1}(q^{-1})$ if $q \neq 1$

$$x^{n} = \beta_{n}(1) + \sum_{\substack{q \in \mathbf{T}_{p} \\ q \neq 1}} \frac{\beta_{n}(q)}{n} \phi_{q}(x).$$

Now, we define the convolution for any $f, g \in UD(\mathbf{Z}_p, \mathbf{C}_p)$ due to Woodcock as follows;

$$f * g(x) = \sum_{q} \hat{f}_{q} \hat{g}_{q} \phi_{q^{-1}}(x).$$

Then we have $f * g \in UD(\mathbf{Z}_p, \mathbf{C}_p)$ and $(f * g)_q = \hat{f}_q \hat{g}_q$. Another convolution \otimes is induced by * above $f' \otimes g' = -(f * g)'$ for $f, g \in UD(\mathbf{Z}_p, \mathbf{C}_p)$.

It is known in [3] that

$$(f \otimes g)' = f \otimes g' + f' \otimes g + f * g$$
$$f \otimes g(z) = I_0^{(x)}(f(x)g(z-x)) - f * g'(z)$$

where $I_0^{(x)}$ means the integrable with respect to the variable x. We take $f = z^m \phi_a(z)$ and $g = z^n \phi_a(z)$.

$$I_0(z^m\phi_q(z))I_0(z^n\phi_q(z))$$

$$=I_0^{(z)}I_0^{(x)}(x^mq^x(z-x)^nq^{z-x})-nI_0^{(z)}(\phi_q(z)z^m\otimes\phi_q(z)z^{n-1}).$$

Let $A_{m,n}^q = I_0(\phi_q(z)z^m \otimes \phi_q(z)z^{n-1})$. Then

$$A_{m,n}^{q} = \frac{1}{n} \sum_{i=0}^{n} \binom{n}{i} (-1)^{i} B_{m+j} \beta_{n-j}(q) - \frac{1}{n} \beta_{m}(q) \beta_{n}(q),$$

since $A_{m,n}^q = A_{n-1,m+1}^q$.

In particular, in the case of m = 0, $A_{0,n}^q = A_{n-1,1}^q$.

Thus we have the Euler identity, indeed, if q=1, then we have

$$-\frac{1}{n+1}\sum_{k=2}^{n-2} \binom{n}{k} B_k B_{n-k} = B_n \quad \text{for} \quad n \ge 1.$$

References

- 1. L. Carlitz, q-Bernoulli numbers and polynomials, Duke Math.J 15 (1948), 987-1000
- H S Kim and P.S Lim, T.Kim, On p-adic q-Bernoulli measures, to submitted in J.Korean Math.Soc.
- 3. T.Kim, An analogue of Bernoulli numbers and their congruence, Rep.Fac.Sci.Saga 22 (1994), 7-13.

- 4. H.S.Kim and T Kim, On p-adic differentiable and bounded functions, to appear in Kyungpook Math.J. (1994).
- 5. H Tsumura, A note on q-analogue of the Dirichlet series and q-Bernoulli numbers, J Number theory 39 (1991), 251-256

Department of Mathematics College of Natural Sciences Kyungpook National University