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REMARK ON ¢—BERNOULLI
AND EULERIAN NUMBERS*

HAN So0 KiM AND PIL-SANG LiM, TAEKYUN KIM

0. Introduction

Throughout this paper Z,, Q,, C and C, will respectively denote
the ring of p—adic rational integers, the field of p-adic rational numbers,
the complex number field and the completion of the algebraic closure
of Q,.

Let v, be the normalized exponential valuation of C, with |p|, =
p~ U = p~!. When one talks of g-extension, ¢ is variously considered
as an indeterminate, a complex number ¢ € C, or p~adic number ¢ €
C,. lf g€ C, weassume |¢| < 1. Ifg € C,, we assume fg—1{, < p_T-L‘,
so that ¢* = exp(zlog, ¢) for |z|, < 1. The usual Bernoulli numbers

are defined by
[ev]
t" t
2 Bog= ooy
nt et —1
n=0

which can be written symbolically as eB¢ = -+, interpolated to means

B* must be replaced by By. This relation can also be written e(F+1?
eBt = ¢, or if we equate powers of ¢,

1 k=1

Bo=1 (BH)k“Bk:{o ifk>1

In the p-adic case, the numbers can be represented by

B, zf " dpo(z)
z

4

where io(z) = po(z +pVZ,) = .
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In this paper, we will give a new relation on ¢-Bernoulli numbers
and g-Euler numbers.

1. g—Eulerian numbers

For ¢ € C (or C,), we define the number E,{p : ¢), n > 0, for a
root of unity p # 1, by

oo e
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Eef -—
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Let Y02 En(e.p: )5 = f5=5. Then En(z,p: q) = Loz () Ealp:
g)z" ', p # 1, with the usual convention of replacing E*(p : q) by
Eu(p: q).

For p* #1, 0 < a < k, we have
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Therefore we obtain the following
LEMMA 1. Fork > 1, p* #1,0 < a < k, we have

a
> Eu(p(:q)® = K70 Ea( 10" 1 ¢).

(=1
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It is easy to see that

> En(pC:q) = K" Eq(p* 1 ¢F)n 2 0,
¢r=t

for p any root of unity and integer k > 1.
For E.(p:¢),n >0, g€ C,,

{E(p.q)+1)t E‘(p'q)!’

p=qe ~ pe
or if we equate powers of ¢,

p ifn=0

E(p: " pE(p:q) =
9(E(p:q)+1)" — pEn(p: q) {0 >,

9Eo(p: ¢) — pEo(p: q) = p.
Thus we have

P
Eyp:q)= ——.
o(p: q) q—p

However,
n n
9En(p:q)+4q ; (z) En (p:9)~pEa(p:q)

=q Z (T:) En_i(p) — pE.(p)
=q(E(p:9)+1)" —pEnlp:¢) =0 for n>1,

so that
. fn
(0-P)Eulp:q)=—q) (i)En-.(p 1q) for n>1
=1

If p # 1, then (¢ — p)"*t'E(p : ¢), n > 1, are polynomials of p with
coefficients in Z,.



332 Han Soo Kim and Pil-Sang Lim, Taekyun Kim
2. g—Bernoulli numbers

For ¢ € C (or C,) with |¢| < 1 or |1 — g|, < p~#7T, we define

b zt
=P and fe
get — 1 get —1

= A=t
or we equate power of ¢,

1 ifn=1
D = B =
¢B+1)" -8 {0 o1,

with the usual convention of replacing 5"(q) by Bx.
For any positive integer m, we have

tq e(z+t)t m—1 qt mtegn{ilmt
qet_l_z memt __ :Z;qmemt_t_
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Therefore we obtain the following

THEOREM 1. For k > 0 integer, we have

B =m0 3 (D g

=0

If ¢ — 1, we have

Bi(x) = m*™' 3 By(* 1Y)

=0
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Let f be a fixed integer and let p be a fixed prime number. We set

X = lm Z/fp"Z,

n

X* = Uycoespat 2y,
{a,p)=1
a+ fp"Z, = {z € X|z = a (mod fp")}

where a € Z lies in 0 < a < fp".
Note that the natural map

Z/fp"Z — Z/p"Z

mduces
7: X — Zp.

If g is a function on Z,, we denote by the same g the function g o7 on
X. Namely we consider ¢ as a function on X.

The above theorem 1 is important for the construction of the p-adic
g¢-Bernoulli distribution.

THEOREM 2. Let g be element in C,. For any positive N, k and d,
let pgx = pp k4 be defined by

N

Lan, @
par(atdp"Zy) = (dp™) e Bl g 0™ ).
Then pg j extends uniquely to distribution on X.

Proof. It suffice to check that

p—1

Z ppala+idp"N +dpNT Z,) = pgrla+ dpVZ,).
1=0
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By the definition of ug i, we have

r—1

> upila+adp® +dp"HZy)
=0

. a-!-zd dpN +1
= (dp™)*~ ’Zq“ B (i 1 g )
=0
S+t

("))

k IZ wdp™ ﬂk(dp

1=0
N
— qa(de)k—lﬂk(dp_N . qd}’ )
= ppr(a+ dp™ Zy).

Thus we have proved theorem 2.
Note that
f 1dpg i(z) = pai{Z,) = Bi(q).

4

Do ¢-Bernoulli numbers Bx(g) occur in Witt’s formula type?
Let a € X*, a # 1, k > 1. For compact-open U C X, define by

pa;k(U) = P‘ﬁ,k:q(U) e a—kﬁlﬂ,k;qua (OIU)

Then fia;x — fiMazar,o;k 88 ¢ — 1, where fiMazur ok 1s Mazur’s measure.

3. Remark

Let C(Z,,C,) and UD(Z,,C,) denote the space of all continuous
functions and the space of all uniformly differentiable functions on Z,
with values in C,.

Let Cpn be the cyclic group consisting of all p"—th roots of unity in
C,» for all » > 0 and T, be the direct limit of C,~ with respect to
the natural morphisms, hence T, is the union of all Cp» with discrete
topology.
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For f € UD(Z,,C,), we have an integral Io(f) with respect to use
so called invariant measure pg;

pt -1

h(f) = ] F@)dpo(z) = lim — }: f

and the Fourier transform fq = Iy(fdy), where ¢, denotes a uniformly
differentiable function on Z, belonging to ¢ € C, defined by ¢,(z) =
q*.

Here, we have ¢g-analogue of Witt’s formula

I(z"$4(z)) = Bala) for ¢ € Tpn > 0.

By definition, we see that

t o~ 1 (m+DH™MgY) i
s el DR ey s Ay P TR

where H™(¢™!) means the m-th Euler numbers.
Hm >1 and q # 1, then we have

fm = Io(z"y(2)) = ——<H" (¢ 7).

THEOREM 3. Form > 1, ¢ € T,, we have
(1) Jo(¢g(z)z™) = Bm(g)
(2) P20 = pH™ Mg if g # 1
(3)

o=+ Y Bl o

g€T,
g#1

Now, we define the convolution for any f, ¢ € UD(Z,,C,) due to
Woodcock as follows;

Fra(@) =Y foade-1(2).
q
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Then we have fx g € UD(Z,,C,) and (f ;g)q . fqg},. Another
convolution ® is induced by * above f' ® ¢’ = ~(f x ¢)’ for f,¢ €
UD(Z,,Cp).
1t is known in [3)] that
(f@9) =f®d+ [ ®g+fxg
f® ()= L7 (f(2)g(z~ =) - f*4'(2)
where I(EI) means the integrable with respect to the variable z.
We take f = 2™@,(z) and g = z"¢,(2).
To(2™ ¢q(2))o(2" 4(2))
= [L7(@"g (2 = 2)"g7 ") - nIp ($(2)2™ © 4y(2)2" 7).

Let AL = Lo{e{2)2™ @ ¢4(2)z""!). Then

?

At =1y (?)(—l)me+jﬂn-,(q) — Bn(0)a()

3=0

since A%, . = A} ) i1
In particular, in the case of m =0, Af ,, = 47 _, .
Thus we have the Euler identity, indeed, if g=1, then we have

n—2

1
n+lkz=;

(:)Ban.,k =B, for n>1.
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