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ON THE INTEGRAL SOLUTIONS OF NONLNEAR
EVOLUTION EQUATIONS IN BANACH SPACES

Kuk- Hyeon Son

1. Introduction

The main goal of the present paper is to study the existence of
integral solution to the following Cauchy problem on a finite interval
{0, T:

W(t) € Altu(t), 0<tyg<t<T,
(ep; o

u(tp) = zo, zo € D(A(ty)),

where X is a real Banach space with norm { - ||, u(-) stands for an X-
valued unknown function on the interval [0,7] and {A(¢) | ¢t € [0,T]}
is a given family of time-dependent(possibly multi-valued) nonlinear
operators acting on X with the time-dependent domain D{A(t)). This
problem has been studied intensively in recent years, especially as re-
gards the fundamental question of existence and uniqueness of solu-
tions. If no additional restrictions are imposed on X, the basic method
used to establish existence results has been to show, under various
assumptions, the convergence of solutions of approximate difference
schemes tending to (cp; o). Recently several authors have treated the
Cauchy problem (cp;z¢) from the view point of difference approxi-
mation. In the autonomous the fundamental result has been estab-
lished by Crandall and Liggett in [2]. An generalization of the results
of Crandall and Liggett is given by Kobayashi[4]. In {4], Kobayashi
introduced w-quasi-dissipative operator and DS-limit solution of the
time-indipendent{autonomous) equation

u'(t) € Au(t), 0<t<T
u(0) = zg, z9 € X.
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In [6], Pavel extended the results of Kobayashi to the time-dependent
equation {(cp;zg). Our purpose is to give a convergence theorem for
difference approximation and to improve the results in {6].

We state our assumptions imposed on A(%):

(A.1) Let w be a real number. There exists a continuous function
f :0,7] — X and a bounded (on bounded subsets) function L :
[0,00) — [0, 00) such that
(1.1)

(y1,21 — z2)i + (Y2, %2 — 21 )i
Swllzy — 22> + [1F(2) ~ FOULlz2)llz2 — 22

forall 0 < s <t < T, {z1,11] € A(t) and [z3,y2] € A(s).

(A.2) The domain D(A(t)) of A(t) depends on t € [to,T} in the
following sense: if ¢, — tin [to,T], . € D{(A(ts)) and 2, — z in X,
then x € D(A(t)).

2. Preliminaries

Let X be a real Banach space with norm || - || and let X* be the
dual space of X with {| - || also denoting the norm of X*. The value of
z* € X* at z will be denoted by (z,z*). Recall that the definition of
the duality mapping F': X — X* of X, ie, F(z) = {z* | (z,z*) =
lzj2 = l=*|i*}. Using the Hahn-Banach theorem it is clear that Fi(z)
is nonempty for any ¢ € X. In general, F is a multi-valued operator.
The properties of F' are related to the differentiability of the norm - ||
inX. Forz, y€ X and k € R, let{z,y}n = A7 (Jlz + hyl| — ||zil) be
the differencequotient of ||zf} at x in the direction y. Since the function
h — ||z + hyl} is convex, we easily deduce that h — (z,y)s is monotone
increasing for A > 0 and {z,y)» > —||yl| for all & > 0. This implies the
existence of the right derivative

(3:3 y)‘f‘ = h{‘f{)l+(x7 y}ﬁ

of flx + hy|| at k = 0. As (z,y)_» = —{z,—y)» we deduce that {z,y}s
is also monotone increasing and bounded above for A < 0. Thus the
left derivative

(@,9)- = Jim (e,9)s



On the integral solutions of nonlnear evolution equations 1n Banach spaces315

exists and we have {z,y)_ = —{z, —y)4. Finally, we obtain the follow-
ing inequality (see {1])

(z,y)—n < {2, —y)- < {z,9)4+ < (2,y)n forh > 0.

For z,y € X, we define the functionals (, }; and {, ), on X x X
by

{y,z)s = sup{{y,z*) | 2* € F(a)}
and

(y,2h = inf{{y, 2%} | ™ € F(z)}.

Clearly {y,2), = —(—y,2z), = —{y,—2), forall z, y € X.

The following lemma is useful for later argument.

Lemma 2.1. Let F = {A(t) |t € [0,T]} be a family of nonbnear
multiwwalued operators acting on X end w be a real number. Then the
following statements are equivalent:

(i) F satisfies the condition (A.1).

("') For any 0 <s<t< T} [317!/1] € A(t)) {":2392] € A(S), A>0
and p > 0,

(2.1)
(A = Mlas — 2] < Mz = 21 ~ el + llas — 22— M

+ Apll () = F(IL(l|z= ).

(153) For any 0 < s < t < T, [z1,11] € A(t), [z2,y2) € A(s) and
A>0,

(2 = M)z — z2f £ Jlzg — 22 — Ay} + [lzz — 21 — Ayl
+ A F (1) — F(S)IIL(flzl)-

Each of the above statements implies
{iv) For each [z,y] € A(t), u € D(A(8)),0<s <t <T and XA >0,

(2.3) A=2w)llz—ull < llz—u—Ayli+AA(s)ul+MF(£)— F()IL(ul),

where |A(s)u| = inf{||y]| | v € A=z}.
Proof. Let us assume that (i) holds. Then (1.1) implies that there
exist z* € F(z, — #2) and y* € F(z; — z,) such that

(2:4) (y1,2*)+H{y2,37) S wllzs—z2 [ HIF )~ FONL|z2)) |21 — 22

(2.2)



316 Kuk- Hyeon Son

From this, we have

(A + p)llz1 — 22[* < Azy — 22 — py1, 2°)
+ p{ze — Ty — pya, ¥7) + Apwllzy — zaf°
+ Al f(£) — F(NL(f|z2illzr —~ 22,

which easily gives (it). For A = g, (ii) implies (iii}. If (iii} holds then
we have

(=) (e — 2 — Ayl — llz1 ~ 22
+ (=27 ez — 21— M|l = flz2 — 7))
Swllzy — 2ol + {IF(#) — F(NL|=21})-

Letting A | 0 we get
(y1,21 — 22} + (Y2, 72 — 21}~ Swllzy — 22l + || £(2) — F(S)|L([|22])-

Obviously (iii) implies (iv), and the proof is complete.
In (4], Kobayashi defined DS-approximate solutions of the problem
u'(t) € Au(t), t€(0,7),
u(O) = Ty, ZTo € X!
where A : D(A) C X — X is a time-independent operators acting on
X with the time-independent domain D(A). It is straightforward to
extend this notion to the time dependent case (cp; o).
Let ¢y, T € R with 0 < t; < T and 2o € D(A(ty)). Suppose
that there is a system ({A,}, {(zF,y7)}, {p}}) of sequences with the

following properties:
(1) {An} is a sequence of partitions of [y, T] of the form

25)  Ae={to=tp < <<ty =T} (n21)

and
lim [A,| = lim max{{} —¢f |1 <k <N,}=0.
n—00 n—o
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(ii) For each k = 1,2,--- | N,,, 2} € D(A(t})) and p} € X satisfy the
difference equation
TE —ZTp_y

(2.6) T
Tt

—Px € D(A(t;)), 1<k < Na

as well as the following condition

Nn
@7) 2§ >z and by= Y (tF — £ )llpf - 0 as n - oo.
k=1

We say that the above system ({A,}, {(z%,yF)}, {pF}) is a discrete
scheme for (cp; zg).

Definition 2.1. The step functions u, on [0, T] defined by

-

zz, for t € (13_y,t5), k=1,2,--- ,N,

are called DS-approzimate solutions of {cp; zo).
3. Convergence of difference approximations

In this section we treat the convergence of difference approximation
of the Cauchy problem (cp;zy). Let w be a real number. Let ¢y, £y €
[0,T), z0 € D(A(tg)), 2o € D(A(fo)), and suppose that there are two

discrete schemes ({An}, {(e}, ¥)h 1PE)), ({Am), {(EF, 970} BED)
corresponding to (cp; zo) and (cp; &p), respectively. Namely,

(i)
Ap={to=t"<t," < —tn."=T} (n>1)
and )
Ap={lo =i <" <--- {7 =T} (m>1)

(ii) the sequences {z}}, {y7}, {p}}, {2]"}, {#]"} and {p7*} satisfy
the difference equations

Ty — 2%
@1 yp= PR EDIAR)), 1Sk N,
PR . |
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m _ Ty —E -
31—

for m, n > 1, as well as the following conditions
n N!l n n n
o™ — zg, by = 3 joy(tx™ —tay")lpE|| — 0 and

(3.3) |AL) = max{t;® — " |1 <k <N} 20 asn — cc.

zy — %o, b = E,—l(‘i'm 7 UBT —~ 0 and

(34) [An|=max{E] -], |[1<j<Nn} =0 asm— 0.
The DS-approximate solution #,, corresponding to the discrete scheme

{Bm} G 3L 7D
is defined as is for u, (see Definition 2.1), that is,

#®, fort=1
(3.5) im(t) = { o f °
forte (t, 1.t J

For simplicity of the notation, set h} =t} —¢7_,, fz}" =3l —F
fork=1,2,--- ,Nyandj=1,2,--- ,Np.
Then we have

(36) 24" ~ he"ye™ = iy + he"pe”, E1 — APGT = £, + AT

with yp € A(t3)z}, §7° € A(fP)iT for k = 1,2,--- ,N, and j =
1,2,---, Np.

F‘rom now on, we drop the superscripts m and n for simphcity if
there is no danger of confusion, i.e., we write t; for t?, {; for f;", and
so on. It 18 also convenient {o set

(3.7) ag,; = ||lzx — Z;5}]
and

(3.8) an,j = h,/(ha+hy), Bi; = hu/(hu+hy), 1, = huh;/(he+h,).
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We now wish to estimate the difference between z; and £,. We state
a simple lemma which will be used later.
Lemma 3.1, [6] Set, for 0<n < T,

(39) Cr,y(m =1(tx =15 = n)* + |Anl(te — to) + [Aml(E, = E)I'7%,

Then the the inequality

(3.10) ok, ;Cr-1,(7) + Br,,Cr,;—1(n) < Ck i(n)

holds for k=1,2,--- N, and § =1,2,--- ,Np.

Before proceeding to the main estimate, we need also the following
lemma.

Lemma 3.2.[6] Let A(t) satisfy the condition (A.1) and let u, be the
DS-approzi-mate solution to the problem (cp;xg). Then for every r €
[0,T] and = € D(A(r)), there exists a constant My = My(t,r, Z0, %),
independent of t € [0,T] and n € N such that

(3.11) llua(t)ll < Mo

for allt € [0,T} and n€ N.

Now, we give some remarks on the modulus of continuity of f. Set
p(r) = sup{|lf(t) - f(s)ll | 2,5 € [0, T}, |[t—s| < r} for r € [0, T]. Obvi-
ously, p: {0, T] — [0, 00) is bounded, nondecreasing and 1:{101 p(r)=0.
Moreover, p is upper semicontinuous on {0, T} and right semicontinuous
on {0,T). The simple inequality below is useful for our later proposes:

(3.12) p(r) < &7 (T)lr — v’ + p(6), r €[0,T]

where 0 < £ < 8§ < T,0 < r' < § — k. Let us check it: if r < §, then
p(r) < p(8), so (3.12) is trivially satisfied. If r > § and r' < § — &, we
-
have x < §—r' < r—r', and hence p(r) < p(T) < r-—f—p(T), thereby
I
completing the proof of (3.12).
Using the estimates (3.10) and (3.12), we obtain the following lemma
Lemma 3.3.[6] Let to, {0 (S [tg,T), To € D(A(to)), Zg € .D(A(fo)),

and let ({An}, (7, 4P)}, (D) and ({An}, (30, 50, 187)) be two
discrete schemes (in the sense of (8.1)-(8.4)) corresponding to (cp; zo)
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and (cp; £o), respectively. Let also the condrition (A.1) be satisfied and
0<In<6<T, 0<k<b—|y|, and wy = maz(0,w). Assume that
|Anl, {Am] < min{é — 9| — x,1/(2w0)}. Then, for each r € [0,T] and
every [z,y] € A(r), the following inequality holds.

(3. 13)

H(1 —woh, )H(l — wohg)llzx — &l

s Iiwo —zll + 125" — <ll + Cr,(to — Lo)lllvl + Mp(T)]

+ Z halpal + Z hallBql

=1

+ Mt — to)[ﬂ"’P(T)Ck,J(ﬂ) + p(8)]
for0<k <N, and 0< j < N,, where
M = max{L(Mo(to, r, Zo, 7)), L(Mo(to, T, %0, 7)), L([iz ()}
with My as in (3.19),

L(Mo) = sup{L(lill) | llyll < Mo}

and

H(l —weh ) = H(l woh =L

i=1

We are now in a position to establish the convergence of DS-limit
solitions.

Theorem 3.1. Let T > 0, to € {0,T), and zo € D(A(to)). If the
Jamily F = {A(2) | t € [0,T]} satisfies the conditions (A.1) and (A.2),
then the following properties holds:

(3) There exists a continuous function u : [0,T] — X such that any
sequence uy of DS-approzymate solutions of (cp;xq) 15 convergent to u
as n — oo, uniformly on [to, T];

(i) u(t) € D(A(t)) for each t € [0, T] and u(to) = o.

Proof We shall use Lemma 3.3 with ¢y = £y, 20 = o, z, = &,
t; =1, h, = h and p, = p,. Let t € [t,T) and let k = k, and
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J = Jm be such that ¢ € (tx 1,2, | N (¢, -1,t,.]. By (3.10) we see
that Cy,, ;,.(0) — 0 as m, n — oo, because t;, — ¢t and £, -+t as
m, n — 0o. On the other hand,

(3.14) w, < expldwo (T — ty)] = C.

By the definition of u, it follows that u,(t) = zy, and u.(t) = z,,,
(hence u,(t) € D(A(t,))). Consequently, with n = 0, (3.13) yields,
fortg =f{g=rand z € D(A(te)),
(3.15)

lua(t) = um(Bll < Cf leg — ul + [|25" — «]|

k
+ Cho i OVNA@) + Mp(T) + 3 hallpd]

=1

+ M, ~ o) o(T)Ch 3. (0) + p(8))M |
for 0 < ky, < Ny and 0 < j, < Ny, and hence

(3.16)  lim [lua(t) - um(t)l} < Cf2lee — 2ff + M(T —t0)p(T)]

for all z € D(A(t)) and § > 0. Since 13?3”(‘5) =0 and z can be

taken in D{A(tg)) so that [lzg — z|| is sufficiently small, we infer that

mlim {(un(t)— um(t)) = O uniformly with respect to ¢ € [to,T]. Note

also that u,(t) € D(A(t,)) and

(3.17)

u(t;tg,x0) = lim un(t) jointly tx, — ¢t implies u(%;te, o) € D(A(2))
N0

by condition (A.2). Arguing as above (in view of (3.13)) it is clear
that any other DS-approximate to i, corresponding to to € [0,T)
and zy € D(A(%p)) is also convergent to u. It remains to prove the
continuity of u on [¢5,T]. To this end, take ¢, ¢' € [tg,T] and n € N.
Let kn and j, be such that &, _; <t <t ,t, _1 <t <t,. Then
tk, > tand i, — t'as n — o0 and zx, = un(t), z,, = u,(t). In
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this case Cy,_ ;,(0) — |t — t'| as n — oo. Consequently, with ¢, = o,
t,y= fj, z; =%, m=nand n=0, (3.13) yields

() — w()] = lim Jjua(t) — ua(t)]
(3.18) < C2llwo — 2] + Jt — ¢'|{{]A(to)=l| + Mp(T)}
+ M — to){&" (Tt ~ '] + p(6)}]

for every z € D{A(t)), 0 < § < T and 0 < & < §. Since laiﬁ]lp(ﬁ) =0

and z can be chosen so that ||zg —z|| is arbitrarily small, (3.43) implies
that u is strongly uniformly continuous on {to, T]. This completes the
proof.

By virtue of Theorem 3.1, we define the following.

Definition 3.2. Let tq € [0,T) and x5 € D(A(%9)). A continuous
function u on [tp, T is said to be a DS-limit solution of the problem
(ep; zo) if there exist DS-approximate solutions u, of this problem on
[to, T}, uniformly convergent to u (on [¢, 7).

4. Main result

In this section, we investigate some basic properties of DS-limit
solutions of the Cauchy problem (¢p; zy). Let w be a real number and
T > 0 be fixed.

Definition 4.1. Let t5 € [0,T} and 7o € D(A(ts)). An X-valued
function u(2) on [tg, T} is said to be a strong solution of {cp;z¢) on
{to, T] if the following conditions are satisfied:

(i) u(to) = <o,

(i1) u{t) is absolutely continuous on {¢g, 77,

(iii) u(t) is differentiable a.e. on (t5,T), u(t) € D(A(t)) and satisfies
the problem (cp; z) a.e. on (¢, T)-

To get into the notion of integral solution, suppose that u(t) is a
strong solution of (¢p; z9) under hypothesis (A.1). Take arbitrary r €
{to, T} and [z, y] € A(r). Since v/(t) € A(¢)u(t) for almost everywhere
t € [to, T, an application of Lemma 1.3 of Kato [2] and condition (A.1)
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yield
(4.1)
(d/dt)jult) — =] = (u(t) — z,u'(t))-
< {u(t) — z,y)+ +wllu(t) — zfi
+ [l£() = FONL(l=lD
< wlu(t) — zff + (u(t) — 2, v} + KILf(2) — F()ll,

where
(4.2) K =max{L(C1) and L(||z[}}}, C1 2 sup{|lu(t)]l {0 <t < T}

Integrating (4.1) over [t,t'] one obtain
(4.3)

fu(t) — 2l - fu(t) — 2|

,t'
< [ lutr) - 2l + (u(r) — 2,904 + KU ()~ Sl
4
forall ¢ <t <t' < T, r €ty,T] and [z,y] € A(r).

Definition 4.2. By an integral solution of the Cauchy problem
(ep; 2¢) on [to, T}, we mean a continuous function u(t) on [y, T} sat-
isfying the inequality (4.3) with K as in (4.2), u(ts)} = z¢ and u(t) €
D(A(t)) for ¢ € [t, T

Theorem 4.1. Suppose that the family F = {A(t) | t € [0,T]}
satisfies the conditions (A.1) and (A.2). If u 13 & DS-hmit solution
of the problem (cp;zy), then u is the unique iniegral solution of this
problem.

Proof. We first prove that the DS-limit solution u is an integral
solution. To accomplish this assertion, let [z,y| € A(r), r € [to,T] and
t, t' € [tg,T]. Since {z}} is bounded (by (3.11)) there exists a constant
K > max{L(sup ||z{|), L{liz||)} such that

(4.4)
(ﬁ:;fﬂ —pr, 2 —2) s +{y, 2 —21)s S w||zi—z|* + K| f(te) - F(r)l}-
Since y; = xk_%l ~pr and (z} ~ ) ~ (z4—1 — ) = h(ye + 1),

we have

(4.5) lzx — zfl = llzk—1 — z|| < ha{ze — 2,9} - + hx|lpx|
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for 1< k< N,. Let 0 <5 <k <N,. Since

(@x — 2, u8) - + (2 — 2, —y)- S wllze — 2l + K[ f(t) - F(D)

for 1 < k < N, we obtain the estimate

k
llox — ofl — =5~ 2l < ) Al{z, — z,4)4 +wlle, — 2]
i=j+1

+ KI[[f(t) — F(l + llp.dl]

Let k = ky, and j = j, besuch that ¢t € (¢,,-1,¢,,.] and ' € (&, -1,%%,)-
Also set a,(7) = tg, for 7 € (¢, —1,tk,]. According to the definition
of u, (4.6) becomes

llua () = 2l = flua(t) — =
(4.7) < / " ellun(an(r)) - 2l + nlan(r)) — 2, ye)+

t) n

+ b + K| f(an(7)) — f(r)ll]dr.

Clearly an(7) — 7 as n — oo (uniformly with respect to 7), and hence
un(an(7)) — u(r) as n — oo, uniformly with respect to r € [to,T].
Passing through the limit for n — oo in {4.7), one obtain (4.3). Hence
v is an integral solution of the problem (cp; z¢).

To prove the uniqueness, let & be arbitrary integral solution of the
problem (cp; zo) and u be the DS-limit solution to this problem. We
will prove that & = v on [y, T]. Let 0 < s < 8’ < T. Then, substituting
i, s, &', and [z, yi] for u, ¢, t, and [z, y], respectively, in the inequality
(4.3), we have

la(s") — zell — i(s) - =
(4.8) < / " llla(r) — 2l + (5(7) ~ ey 4
+K|IF(7) - ft)ldr.

(4.6)

Since

hi(a(r) - 2 yrds < (1) — 2ol = fle(r) — 2ell + hellpel,
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we obtains
(4.9)
hi(lla(s’) — 2kl — fa(s) — z&l)

< / whl|@(r) — z«[ldr
+ f (Ja(r) — ze—y|| ~ a(r) — zi|)dr

+ K [ Bl = f0ldr + hals' = sl

Integrating (4.9) fort = j + 1,--- ,k, we get

t (155" = wa(mll — [[(s) — un(n)l))dn
< [ )~ ualt)ll - latr) = un(te)lar
v [ ") = wn() + KIF) = flan(m)llldrdn

k
+ (s =) Y Al

=3+1

holds for 0 < 7 < k < N,.. Letting tx —» ¢’ and ¢, —» t as n = o0, we
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have

/ " (") — o)l - aCs) — w(ldn
+ | " () — w(e )~ ) — w(Dldr
<w ’ / " ar) — u(n)ldrdn
+x [ ‘ / " 1) — Fenpara

<o [ ' / " atr) — uimhdrdn

R A L
+ A e ard
ft / A7) — F(m))lidrdn

where wq = max(0,w). We now apply Proposition B of {5} (Proposition
4.1 below). Putting [a,d] = [0, T], ¢(t',t) = Jua(¢') — u(2)||, ¢ = wo,
d = K and ¢(t',t) = || f(¢') — f(t)|| in the proposition below, we have

™ la(t') — u(t)f < ™ la(t) — u(?)|

for 19 < t < t' < T, which implies u is the only integral solution of
(ep; zo)-

Proposition 4.1 [5]. Let a < b and ¢, ¢ be nonnegative functions
defined on all of [a,d] x [a,b] satisfying the following conditions:

(i) ¢ is continuous on [a,b] X [a,b],

(i) ¥ is upper semicontinvous on [a,b] X [a, b,

(ii1) there ezist constants ¢, d > 0 such that fora < s <t < b and
a<o<r1<bwe have

[ 1860 - e 9de + [ 16,1 - o,

<e / t / " (€, m)dedn +d / t / (€, m)dedn.
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Then, we have

¢
et ) — e~ (s, ) < de™? / b€, E)dE
for a < s <t < b If, in particular, Y(s,s) =0 for all s € [a,b], then
eT Pt 1) < eT (s, )
fora<s<it<b
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