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FUZZY PRE-IRRESOLUTE MAPPINGS

Jin Han Park and Bae Hun Park

L Introduction and preliminaries
Weaker forms of fuzzy continuity have been considered by many 

authors [1, 2, 6, 8, 9] using the concepts fuzzy semiopen sets [1], fuzzy 
regularly open sets [1] and fuzzy preopen sets [2]. J. H. Park et al. 
[11] showed that fuzzy precontinuity and fuzzy almost continuity, due 
to Mukherjee and Sinha [8] is equivalent concepts.

In Section 2 of this paper we define and study fuzzy pre-irresolute 
mapping which is stronger than fuzzy precontinuous, and show that 
the concepts of fuzzy continuous and fuzzy pre-irresolute mappings axe 
independent. In Section 3, we introduce and study concepts of fuzzy 
pre-separation axioms of fuzzy topological spaces.

Throughout this paper, by (X, r) (or simply X) we mean a fuzzy 
topological space in Chang's [3] sense. A fuzzy point in X with support 
x E X and value a (0 < a < 1) is denoted by xa. For a fuzzy set A 
in X, CIA, IntA, 1 — A and (A)o will respectively denote the closure, 
interior, complement and support of Ay whereas the constant fuzzy 
sets taking on the values 0 and 1 on X are denoted by Ox and lx, 
respectively. A fuzzy set A ot X is said to be q-coincident with a fuzzy 
set B, denoted by AqjJ, if there exists x E X such that A(x) + B(x) > 
1 [7]. It is known [7] that A < B if and only if A and 1 — B are 
not q-coincident, denoted by Aq(l — B). For definitions and results 
not explained in this paper, the reader is referred to [1, 2, 7] in the 
assumption they are well known. The words 'neighborhood' and 4fuzzy 
topological space5 will be abbreviated as 'nbd' and 'fts\ respectively.

Definition 1.1 [1,2]. A fuzzy set A in X is said to be
(a) fuzzy semiopen (fuzzy semiclosed) if A < ClIntA (resp. IntClA < 

4)， —
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(b) fuzzy preopen (fuzzy preclosed) if A < IntClA (resp. A > 
ClIntA).

THEOREM 1.1 [2]. (a) An arbitrary union of fuzzy preopen sets is 
a fuzzy preopen set,

(b) any intersection of fuzzy preclosed sets is a fuzzy preclosed set.

THEOREM 1.2 [2]. Let X and Y be fts's such that X is product 
related to Y. Then the product U x V of a fuzzy preopen set U in 
X and a fuzzy preopen set V in Y is a fuzzy preopen set in the fuzzy 
product spaces X xY.

DEFINITION 1.2 [11]. A fuzzy set A in a fts X is said to be fuzzy 
pre-q-nbd (fuzzy pre-nbd) of fuzzy point xa if there exists a fuzzy 
p호eopen set B such that xQqB < A (resp. xQ E B < 4).

THEOREM 1.3 [11]. A fuzzy set A is a fuzzy preopen if and only if 
fuzzy point x^qA, A is a tnzzy pre-q-nbd of xQ.

DEFINITION 1.3 [2]. Let A be any fuzzy set of a fts X. Then fuzzy 
pre-closure (pCl) and pre-interior (pint) of A are defined as follows:

pCLA = /\{B I B is fuzzy predosed and A < B}, 

plntA = \J{B \ B is fuzzy preopen and B < A).

THEOREM 1.4 [11]. Let A be a fuzzy set in X and xa be a fuzzy 
point in X. Then xQ € pCIA if and only if for each fuzzy pre-q-nbd U 
of xay UqA.

THEOREM 1.5. Let A be a fuzzy set in a fts X. Then A is fuzzy 
semiopen set if and only if pCIA = Clint A.

Proof. Let A be a fuzzy semiopen set in X. Then pCL4 is fuzzy pre
closed and so ClIntA < ClIntpCIA < pCLA. Since A is fuzzy semiopen. 
set, pCL4 < pCIClIntA = ClIntA. Hence pCIA = ClIntA.

Conversely, let A be a fuzzy set with pCIA = ClIntA. Then A < 
pCL4 = ClIntA and hence A is fuzzy semiopen.
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2. Fuzzy pre-irresolute mappings

Definition 2.1 [2]. A mapping f : X Y is said to be fuzzy 
precontinuous if is a fuzzy preopen set for each fuzzy open set
Vin K.

THEOREM 2.1. For a mapping f : X Y the following are equiv
alent:

(a) f is fuzzy precontinuous.
(b) ClIntfT(B) < fT(CLB) for each fuzzy set B in Y.
(c) f (ClintA) < Clf(A) for each fuzzy set A in X.

Proof. (a)=〉(b): Let B be a fuzzy set in Y. Then by Theorem 3.7 
of [11], /-1(C1B) is fuzzy preclosed set in X. Since Clint A < A for 
each fuzzy preclosed set A in X〉Clint/"1 (B) < Clint/"1 (C1B) < 
JT(CIB).

(b) =*(c): Straightforward.
(c) =>(a): Let V be a fuzzy closed set in Y. By hypothesis, we have

/(Cllnty-^V)) < CIV = V,
Cllnty-^V) < ■厂W(CHntjT(V))) < 厂p，).

Then /-1(V) is a fuzzy pre시osed set and hence by Theorem 3.7 of [11], 
f is fuzzy precontinuous.

DEFINITION 2.2. A mapping f : X t Y is said to be fuzzy pre- 
irresolute iff—'(U) is a fuzzy preopen set in X for each fuzzy preopen 
set V in F.

Clearly a fuzzy pre-irresolute mapping is fuzzy precontinuous, but 
the converse is not true by the following example.

Example 2.1. Let U、U為 U오 and I" be fuzzy sets in unit interval 
I defined as follows:

,、(0 0 <x <I
住)= < 技

I 2a: — 1 I < a: < 1;
r o o<x<| 

心= {§(4f 捉
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r 1 0<T<| 8x 0 < X < I
< —4x + 2 J < x < I U^(x) = < — |(8x — 4) I < a: < I
.0 |<x<l; 0 l<x<l.

Consider fuzzy topologies T\ = {0j, 1/脆 1/} and r2 = {0/, I，"2)V 
02,1/}. Define / : (/, T!) —► (I, r2) by /(x) = |a: for each x E I. Then 
/ is a fuzzy precontinuous but not fuzzy pre-irresolute.

THEOREM 2.2. Jbr a mapping f : X Y the following are equiv
alent:

(a) f is fuzzy pre-irresolute.
(b) f~l (B) is fuzzy preclosed in X 血 each fuzzy preclosed set B 

inY.
(c) pC，厂'(B) < fT(pClB) for each fuzzy set B in Y,
(d) f(pClA) < pClf(A) for each fuzzy set A in X.
(e) < plht/-i(Br) for each fuzzy set B in Y.

Proof, (a)o(b): Clear.
(b) =>(c): Let B be a fuzzy set in Y. By (b), /-1(pClB) is fuzzy 

preclosed and so pCl/-1(B) < 厂'(pCLB).
(c) =>(d) and (d)=>(c) can be easily seen.
(c)=>(e):  Let B be any fuzzy set in Y. By (c)? we have 

l-plnt/-1^) = pClJ-^l-B) < f-^pClCl-B)) = ]-厂고(plntB).

Thus y-1(pIntB) < pInty-1(B).
(e)=>(a): Let B be any fuzzy preopen set in Y. Then B = plntB. 

By (e), we have f~\B) = /-^plntB) < Then
is a fuzzy preopen set and hence f is fuzzy pre-irresolute.

THEOREM 2.3. A mapping / : X —* y” is frizzy pre-irresolute if and 
only if for each fuzzy point xa in X and each fuzzy pre-nbd V of f(xQ)y 
there exists a fuzzy pre-nbd U of xQ such that f(U) 으 V,

Proof. The proof is easy and hence omitted.

THEOREM 2.4. A mapping f : X is fuzzy pre-irresolute if and 
only if for each fuzzy point xa in X and each fuzzy preopen pre~q~nbd 
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V of there exists a fuzzy preopen pre-q-nbd U of xa such that 
f(u)< V.

Proof. Let be a fuzzy point in X and V be a fuzzy preope교 

pre-q-nbd of f(工°) = J(r)a. Since V(/(x)) + a > 1, there exists a 
positive real number 0 such that V(/(x)) > ^3 > 1 — a, so that V is a 
fuzzy preopen pre-nbd of f(x)阡 By Theorem 2.3, there exists a fuzzy 
preopen set U containing xp such that f(U) < V. Now, ?7(x) > g 
implies U{x) > 1 — a and thus L7 is a fuzzy preopen pre-q-nbd of xa-

Conversely, let V be a fuzzy preopen set and xa E Let m
be a positive integer such that 1/m < /-1(V)(x). For any positive 
integer n > m, we put an = 1 + 1/n — Then 0 < an < 1
for all n > m. Now, we have

V(/(X)) + % = V(/(X)) + 1 + -- fT W)(Z) 
n

=1 + - >1 n

Thus V is a fuzzy preopen pre-q-nbd of /(x)an for all n > m. By hy
pothesis, there exists a fuzzy preopen set Un in X such that xQnqUn and 
f(Un) < V for all n > m. We put U = Vn〉m Un・ Then by Theorem 
1.1, Z7 is a fuzzy preopen set in X such that f(U) = Vn>m /(^n) U 矿 

Next we will show that xa C U. Since Un{x) + an > 1 for all 
n > m, we have U(x) > /_1(V)(x) — 1/n for all n > m which im
plies U(x) > y-1(V)(x) > a. Thus xa € U.

THEOREM 2.5. Let f : X Y one-to-one and onto. / is fuzzy 
pre-irresolute if and only if pint f( A) < f(pIntA) for each fuzzy set A 
inX.

Proof. Let A be any fuzzy set in X. Then clearly /-1(pInt/(A)) is 
a fuzzy preopen set. By Theorem 2.2, we have

/-1(pInt/(A)) <pInty-1(/(A)) = plntA, 

/(/-1(pInt/(A))) < /(plntA).

Since f is onto, plntf(A) = /(/-1(pInt/(A))) < /(pintA).
Conversely, let B be any fuzzy preopen set in Y, Then B = plntB. 

By hypothesis, /(pInt/-1(B)) > pInt/(/-1(B)) = plntB = B. This 
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implies that /~1(y(pInt/-1(B))) > /-1(J3). Since f is one-to-one, 
plnty^B) > 广MB). Hence 厂@) = plnt/'^B).

THEOREM 2.6. Let X> X2, Y\ and Y2 be fts's such that X、is 
product related to X% and : X1 ―> /2 : X》t * be mappings. 
If /1 and 了2 are fuzzy pre-irresolute, then so is fi x J2.

Proof. Let V = V、j(Gg x H) where G* and H/s are fuzzy pre
open sets in 匕 and Y2 respectively, be a fuzzy preopen set in Y\ x 
Using Lemmas 2.1 and 2.3 of [1], we have

(fl X f2)-^V) = V(/1 X f沪G X %) = Vl/r1^) X •«'(%)]•

Since and E are fuzzy pre-irresolute, and are
fuzzy preopen sets, and because of Theorems 1.1 and 1.2, it follows 
that (/i x /j)-1(V) is a^fazzyTprajpen set, whi서 1 irnpfestiiEct^i x f2 
is fuzzy pre-irresolute.

THEOREM 2.7. Let f : X Y be a mapping 히idg : X XxY be 
the graph of f. Ifg is fuzzy pre-irresolute, then f is fuzzy pre-irresolute.

Proof. It follows from Lemma 2.4 of [1].

THEOREM 2.8. Let f : X Y and g :Y Z be mappings.
(a) If f and g are fuzzy pre-irresolute, then g o f is fuzzy pre- 

irresolute.
(b) If f is fuzzy pre-irresolute and g is fuzzy precontinuous, then 

g o f is fuzzy precontinuous.

Proof. Straightforward.

The following Example 2.2 shows that fuzzy continuous and fuzzy 
pre-irresolute mappings are independent.

EXAMPLE 2.2. Let U、U2 and U3 be fuzzy sets in X = (a, 5, c} 
defined as follows:

Ui(a) = 0.4, Ui(b)二二 0, (7i(c) = 0;
U2(a) = 0, U2(b) — 0.4, %(c) = 0；

U3(a) = 0.4, U3(b) = 0.4, U3(c) = 0.
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Consider the fuzzy topologies = {0x，U?) and 丁2 = 
{OX」""3}.

(a) If a mapping f : (X/2) —> (X, 丁1) defined by /(a) = &, /(6)= 
a, /(c) = c, then / is fuzzy continuous but not fuzzy pre-irresolute.

(b) If a mapping f : (X,Ti) t (X, r2) defined by /(a) = &,/(&)= 
a, /(c) = c, then / is fuzzy pre-irresolute but not fuzzy continuous.

THEOREM 2.9. Iff : X Y is fuzzy precontinuous and fuzzy open,
then f is fuzzy pre-irresolute.

Proof. It follows from Theorem 4.3 of [12].

3. Separation axioms

DEFINITION 3.1. A fts X is said to be fuzzy pre-T0 if for every dis
tinct two fuzzy points xQ and 幽，the foilowing conditions sre satisfied:

(a) When w 供 g, either xa has a fuzzy pre-nbd which is not q- 
coincident with or yp has a fuzzy pre-nbd which is not q-coincident 
with xa.

(b) When x — y and a < (say), there is a fuzzy pre-q-nbd of yp 
which is not q-coincident with xa.

DEFINITION 3.2. A fts X is said to be fuzzy pre-Ti if for every dis
tinct two fuzzy points xa and the following conditions are satisfied:

(a) When x xa has a fuzzy pre-nbd U and has a fuzzy 
pre-nbd V such that xQqV and 卯힌U.

(b) When x = y and a < (3 (say), then there exists a fuzzy pre-q-nbd 
V of such that x^qV.

DEFINITION 3.3. A fts X is said to be fuzzy pre-T2 if for every dis
tinct two fuzzy points xQ and gg, the following conditions are satisfied:

(a) When x xa and yp have fuzzy pre-nbds which are not 
q-coincident.

(b) When 工=g and a < /3 (say), then xQ has a fuzzy pre-nbd U 
and yp has a fuzzy pre-q-nbd V such that UqV.

Obviously, fuzzy pre-T2 => fuzzy pre-Ti => fuzzy pre-To. Also, 
fuzzy T: axiom [6]=> fuzzy pre-T: axiom, for t = 0,1,2.
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THEOREM 3.1. A fts X is fuzzy pre-To if and only if for every pair 
of distinct xQ and %, either xa 丰 pCI(gg) or yp 丰 pC/(xa).

Proof. The proof is easy and hence omitted.

THEOREM 3.2. A fts X is fuzzy pre-T^ if and only if for every fuzzy 
point xa is fuzzy preclosed in X.

Proof. The proof is easy and hence omitted.

THEOREM 3.3. A fts X is fuzzy pre-T2 if and only if for every 
fuzzy point xa in X, xQ = /\{pCIV | V is fuzzy pre-nbd of xQ] and 
for every € X with x there is a fuzzy pre-nbd U of such 
that y 丰(pCIU)Q, where (pClU)o is support of pCIU.

Proof. Let xQ and gg be fuzzy points in X such that yp @ {xa). If 
x 丰 5 then there are fuzzy preopen sets U and V containing y초 and 
xQ respectively such that UqV. Then V is a fuzzy pre드어of and 
U is a fuzzy pre-q-nbd of yp such that UqV. Hence yp @ pCIV. If 
x ~ then q V 0, and hence there are a fuzzy pre-q-nbd U of and 
a fuzzy pre-nbd V of xQ such that UqV. Hence 车 pCIV.

Finally, for distinct two point x, y of X, since X is fuzzy pre-T2, 
there exist fuzzy preopen 용ets U and V such that EU^yi E V and

Since 1 — V is fuzzy preclosed set containing U、pC\U < 1 — V. 
Hence y 牛(pCIU)。.

Conversely, let xa and "be distinct fuzzy points in X.
When x y, we first suppose that at least one of a and g is less 

than 1, say 0 < a < 1. Then there exists a positive real number A 
with 0 < a + A < 1. By hypothesis, there exists a fuzzy pre-nbd U of 
y° such that x\ £ pCllZ. Then there exists a fuzzy pre-q-nbd V of x\ 
such that V^U. Since a < 1 —A < V(z), V is fuzzy pre-nbd of xa such 
that Z7qV.

Next if a = 8 = 1, by hypothesis there exists a fuzzy pre-nbd U of 
Xi such that pClU(g) = 0. Then V = 1 — pCIU is a fuzzy pre-nbd of 
yi such that UqV.

When x = y and a < P (say), then there exists a fuzzy pre-nbd U 
of xa such that yp £ pC\U. Hence there exists a fuzzy pre-q-nbd V of 
yp such that UqV. Therefore, X is fuzzy pre-T2-
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THEOREM 3.4. Let f : X Y be one-to-one mapping.
(a) If f is fuzzy precontinuous and Y is fuzzy 꼬then X is fuzzy 

pre-Ti for z = 0,1,2.
(b) If f is fuzzy pre-irresolute and Y is fuzzy pre-Tn then X is fuzzy 

pre-Ti for z = 0,1,2.

Proof. We 卤ve a proof for 4 = 1 only; the other cases being similar, 
are omitted. Let xa and be distinct two fuzzy points in X.

When x / we have /(x)丰 /(y), and by the fuzzy Tx property of 
y, there exist fuzzy nbds U and V of /(x)a and respectively such 
that /(x)aqV and J(y)^qt7. Since J is fuzzy precontinuous, /-1({7) 
and /-1(V) are fuzzy pre~nbds of and 部 respectively such that 
郭矿'(U) and Xaq/-1(V).

When x = y and a < (say), then /(x) = /(y). Since Y is fuzzy 
Tj, there exists a fuzzy q-nbd V of f(y)^ such that f(x)aqV. Then 
广T(v)is fuzzy pre^c^ubd of yg such that xaqf-1(V). Hence X is 
fuzzy pre-Ti.

(b): The proof is similar to (a).
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