Pusan Kyŏngnam Math J. 10(1994), No 2, pp 303-312

FUZZY PRE-IRRESOLUTE MAPPINGS

JIN HAN PARK AND BAE HUN PARK

1. Introduction and preliminaries

Weaker forms of fuzzy continuity have been considered by many authors [1, 2, 6, 8, 9] using the concepts fuzzy semiopen sets [1], fuzzy regularly open sets [1] and fuzzy preopen sets [2]. J. H. Park et al. [11] showed that fuzzy precontinuity and fuzzy almost continuity due to Mukherjee and Sinha [8] is equivalent concepts.

In Section 2 of this paper we define and study fuzzy pre-irresolute mapping which is stronger than fuzzy precontinuous, and show that the concepts of fuzzy continuous and fuzzy pre-irresolute mappings are independent. In Section 3, we introduce and study concepts of fuzzy pre-separation axioms of fuzzy topological spaces.

Throughout this paper, by (X, τ) (or simply X) we mean a fuzzy topological space in Chang's [3] sense. A fuzzy point in X with support $x \in X$ and value α ($0 < \alpha \leq 1$) is denoted by x_{α} . For a fuzzy set A in X, ClA, IntA, 1 - A and $(A)_0$ will respectively denote the closure, interior, complement and support of A, whereas the constant fuzzy sets taking on the values 0 and 1 on X are denoted by 0_X and 1_X , respectively. A fuzzy set A of X is said to be q-coincident with a fuzzy set B, denoted by AqB, if there exists $x \in X$ such that A(x) + B(x) >1 [7]. It is known [7] that $A \leq B$ if and only if A and 1 - B are not q-coincident, denoted by $A\bar{q}(1-B)$. For definitions and results not explained in this paper, the reader is referred to [1, 2, 7] in the assumption they are well known. The words 'neighborhood' and 'fuzzy topological space' will be abbreviated as 'nbd' and 'fts', respectively.

DEFINITION 1.1 [1,2]. A fuzzy set A in X is said to be (a) fuzzy semiopen (fuzzy semiclosed) if $A \leq \text{ClInt}A$ (resp. IntCl $A \leq A$),

Received November 3,1994

(b) fuzzy preopen (fuzzy preclosed) if $A \leq \text{IntCl}A$ (resp. $A \geq \text{ClInt}A$).

THEOREM 1.1 [2]. (a) An arbitrary union of fuzzy preopen sets is a fuzzy preopen set,

(b) any intersection of fuzzy preclosed sets is a fuzzy preclosed set.

THEOREM 1.2 [2]. Let X and Y be fts's such that X is product related to Y. Then the product $U \times V$ of a fuzzy preopen set U in X and a fuzzy preopen set V in Y is a fuzzy preopen set in the fuzzy product spaces $X \times Y$.

DEFINITION 1.2 [11]. A fuzzy set A in a fts X is said to be fuzzy pre-q-nbd (fuzzy pre-nbd) of fuzzy point x_{α} if there exists a fuzzy preopen set B such that $x_{\alpha}qB \leq A$ (resp. $x_{\alpha} \in B \leq A$).

THEOREM 1.3 [11]. A fuzzy set A is a fuzzy preopen if and only if for each fuzzy point $x_{\alpha}qA$, A is a fuzzy pre-q-nbd of x_{α} .

DEFINITION 1.3 [2]. Let A be any fuzzy set of a fts X. Then fuzzy pre-closure (pCl) and pre-interior (pInt) of A are defined as follows:

 $pClA = \bigwedge \{B \mid B \text{ is fuzzy preclosed and } A \leq B\},$ $pIntA = \bigvee \{B \mid B \text{ is fuzzy preopen and } B \leq A\}.$

THEOREM 1.4 [11]. Let A be a fuzzy set in X and x_{α} be a fuzzy point in X. Then $x_{\alpha} \in pClA$ if and only if for each fuzzy pre-q-nbd U of x_{α} , UqA.

THEOREM 1.5. Let A be a fuzzy set in a fts X. Then A is fuzzy semiopen set if and only if pClA = ClIntA.

Proof. Let A be a fuzzy semiopen set in X. Then pClA is fuzzy preclosed and so $\text{ClInt}A \leq \text{ClIntpCl}A \leq \text{pCl}A$. Since A is fuzzy semiopen set, $\text{pCl}A \leq \text{pClClInt}A = \text{ClInt}A$. Hence pClA = ClIntA.

Conversely, let A be a fuzzy set with pClA = ClIntA. Then $A \le pClA = ClIntA$ and hence A is fuzzy semiopen.

2. Fuzzy pre-irresolute mappings

DEFINITION 2.1 [2]. A mapping $f : X \to Y$ is said to be fuzzy precontinuous if $f^{-1}(V)$ is a fuzzy preopen set for each fuzzy open set V in Y.

THEOREM 2.1. For a mapping $f: X \to Y$ the following are equivalent:

(a) f is fuzzy precontinuous.

(b) $ClInt f^{-1}(B) \leq f^{-1}(ClB)$ for each fuzzy set B in Y.

(c) $f(ClIntA) \leq Clf(A)$ for each fuzzy set A in X.

Proof. (a) \Rightarrow (b): Let *B* be a fuzzy set in *Y*. Then by Theorem 3.7 of [11], $f^{-1}(\operatorname{Cl} B)$ is fuzzy preclosed set in *X*. Since $\operatorname{ClInt} A \leq A$ for each fuzzy preclosed set *A* in *X*, $\operatorname{ClInt} f^{-1}(B) \leq \operatorname{ClInt} f^{-1}(\operatorname{Cl} B) \leq f^{-1}(\operatorname{Cl} B)$.

(b) \Rightarrow (c): Straightforward.

 $(c) \Rightarrow (a)$: Let V be a fuzzy closed set in Y. By hypothesis, we have

$$f(\operatorname{ClInt} f^{-1}(V)) \leq \operatorname{Cl} f(f^{-1}(V)) \leq \operatorname{Cl} V = V,$$

 $\operatorname{ClInt} f^{-1}(V) \leq f^{-1}(f(\operatorname{ClInt} f^{-1}(V))) \leq f^{-1}(V).$

Then $f^{-1}(V)$ is a fuzzy preclosed set and hence by Theorem 3.7 of [11], f is fuzzy precontinuous.

DEFINITION 2.2. A mapping $f : X \to Y$ is said to be fuzzy preirresolute if $f^{-1}(V)$ is a fuzzy preopen set in X for each fuzzy preopen set V in Y.

Clearly a fuzzy pre-irresolute mapping is fuzzy precontinuous, but the converse is not true by the following example.

EXAMPLE 2.1. Let U_1 , U_2 , U_3 and U_4 be fuzzy sets in unit interval I defined as follows:

$$U_1(x) = \left\{egin{array}{ccc} 0 & 0 \leq x \leq rac{1}{2} \ 2x-1 & rac{1}{2} \leq x \leq 1; \end{array}
ight. U_3(x) = \left\{egin{array}{ccc} 0 & 0 \leq x \leq rac{1}{4} \ rac{1}{3}(4x-1) & rac{1}{4} \leq x \leq 1; \end{array}
ight.$$

Jin Han Park and Bae Hun Park

$$U_2(x) = \begin{cases} 1 & 0 \le x \le \frac{1}{4} \\ -4x + 2 & \frac{1}{4} \le x \le \frac{1}{2} \\ 0 & \frac{1}{2} \le x \le 1; \end{cases} \qquad U_4(x) = \begin{cases} 8x & 0 \le x \le \frac{1}{8} \\ -\frac{1}{3}(8x - 4) & \frac{1}{8} \le x \le \frac{1}{2} \\ 0 & \frac{1}{2} \le x \le 1. \end{cases}$$

Consider fuzzy topologies $\tau_1 = \{0_I, U_3, 1_I\}$ and $\tau_2 = \{0_I, U_1, U_2, U_1 \lor U_2, 1_I\}$. Define $f: (I, \tau_1) \to (I, \tau_2)$ by $f(x) = \frac{1}{2}x$ for each $x \in I$. Then f is a fuzzy precontinuous but not fuzzy pre-irresolute.

THEOREM 2.2. For a mapping $f: X \to Y$ the following are equivalent:

- (a) f is fuzzy pre-irresolute.
- (b) $f^{-1}(B)$ is fuzzy preclosed in X for each fuzzy preclosed set B in Y.
- (c) $pClf^{-1}(B) \leq f^{-1}(pClB)$ for each fuzzy set B in Y.
- (d) $f(pClA) \leq pClf(A)$ for each fuzzy set A in X.
- (e) $f^{-1}(pIntB) \leq pIntf^{-1}(B)$ for each fuzzy set B in Y.

Proof. (a) \Leftrightarrow (b): Clear.

(b) \Rightarrow (c): Let *B* be a fuzzy set in *Y*. By (b), $f^{-1}(pClB)$ is fuzzy preclosed and so $pClf^{-1}(B) \leq f^{-1}(pClB)$.

 $(c) \Rightarrow (d) \text{ and } (d) \Rightarrow (c) \text{ can be easily seen.}$

(c) \Rightarrow (e): Let B be any fuzzy set in Y. By (c), we have

$$1 - p \operatorname{Int} f^{-1}(B) = p \operatorname{Cl} f^{-1}(1 - B) \le f^{-1}(p \operatorname{Cl}(1 - B)) = 1 - f^{-1}(p \operatorname{Int} B).$$

Thus $f^{-1}(\operatorname{pInt} B) \leq \operatorname{pInt} f^{-1}(B)$.

(e) \Rightarrow (a): Let B be any fuzzy preopen set in Y. Then B = pIntB. By (e), we have $f^{-1}(B) = f^{-1}(\text{pInt}B) \leq \text{pInt}f^{-1}(B)$. Then $f^{-1}(B)$ is a fuzzy preopen set and hence f is fuzzy pre-irresolute.

THEOREM 2.3. A mapping $f: X \to Y$ is fuzzy pre-irresolute if and only if for each fuzzy point x_{α} in X and each fuzzy pre-nbd V of $f(x_{\alpha})$, there exists a fuzzy pre-nbd U of x_{α} such that $f(U) \leq V$.

Proof. The proof is easy and hence omitted.

THEOREM 2.4. A mapping $f: X \to Y$ is fuzzy pre-irresolute if and only if for each fuzzy point x_{α} in X and each fuzzy preopen pre-q-nbd

V of $f(x_{\alpha})$, there exists a fuzzy preopen pre-q-nbd U of x_{α} such that $f(U) \leq V$.

Proof. Let x_{α} be a fuzzy point in X and V be a fuzzy preopen pre-q-nbd of $f(x_{\alpha}) = f(x)_{\alpha}$. Since $V(f(x)) + \alpha > 1$, there exists a positive real number β such that $V(f(x)) > \beta > 1 - \alpha$, so that V is a fuzzy preopen pre-nbd of $f(x)_{\beta}$. By Theorem 2.3, there exists a fuzzy preopen set U containing x_{β} such that $f(U) \leq V$. Now, $U(x) \geq \beta$ implies $U(x) > 1 - \alpha$ and thus U is a fuzzy preopen pre-q-nbd of x_{α} .

Conversely, let V be a fuzzy preopen set and $x_{\alpha} \in f^{-1}(V)$. Let m be a positive integer such that $1/m \leq f^{-1}(V)(x)$. For any positive integer $n \geq m$, we put $\alpha_n = 1 + 1/n - f^{-1}(V)(x)$. Then $0 < \alpha_n \leq 1$ for all $n \geq m$. Now, we have

$$V(f(x)) + \alpha_n = V(f(x)) + 1 + \frac{1}{n} - f^{-1}(V)(x)$$
$$= 1 + \frac{1}{n} > 1$$

Thus V is a fuzzy preopen pre-q-nbd of $f(x)_{\alpha_n}$ for all $n \ge m$. By hypothesis, there exists a fuzzy preopen set U_n in X such that $x_{\alpha_n} q U_n$ and $f(U_n) \le V$ for all $n \ge m$. We put $U = \bigvee_{n\ge m} U_n$. Then by Theorem 1.1, U is a fuzzy preopen set in X such that $f(U) = \bigvee_{n\ge m} f(U_n) \le V$. Next we will show that $x_{\alpha} \in U$. Since $U_n(x) + \alpha_n > 1$ for all $n \ge m$, we have $U(x) > f^{-1}(V)(x) - 1/n$ for all $n \ge m$ which implies $U(x) \ge f^{-1}(V)(x) \ge \alpha$. Thus $x_{\alpha} \in U$.

THEOREM 2.5. Let $f : X \to Y$ one-to-one and onto. f is fuzzy pre-irresolute if and only if $pIntf(A) \leq f(pIntA)$ for each fuzzy set A in X.

Proof. Let A be any fuzzy set in X. Then clearly $f^{-1}(pIntf(A))$ is a fuzzy preopen set. By Theorem 2.2, we have

$$f^{-1}(\operatorname{pInt} f(A)) \leq \operatorname{pInt} f^{-1}(f(A)) = \operatorname{pInt} A,$$

 $f(f^{-1}(\operatorname{pInt} f(A))) \leq f(\operatorname{pInt} A).$

Since f is onto, $\operatorname{pInt} f(A) = f(f^{-1}(\operatorname{pInt} f(A))) \le f(\operatorname{pInt} A)$.

Conversely, let B be any fuzzy preopen set in Y. Then B = pIntB. By hypothesis, $f(pIntf^{-1}(B)) \ge pIntf(f^{-1}(B)) = pIntB = B$. This implies that $f^{-1}(f(pIntf^{-1}(B))) \ge f^{-1}(B)$. Since f is one-to-one, $pIntf^{-1}(B) \ge f^{-1}(B)$. Hence $f^{-1}(B) = pIntf^{-1}(B)$.

THEOREM 2.6. Let X_1 , X_2 , Y_1 and Y_2 be fts's such that X_1 is product related to X_2 , and $f_1 : X_1 \to Y_1$, $f_2 : X_2 \to Y_2$ be mappings. If f_1 and f_2 are fuzzy pre-irresolute, then so is $f_1 \times f_2$.

Proof. Let $V = \bigvee_{i,j} (G_i \times H_j)$, where G_i 's and H_j 's are fuzzy preopen sets in Y_1 and Y_2 respectively, be a fuzzy preopen set in $Y_1 \times Y_2$. Using Lemmas 2.1 and 2.3 of [1], we have

$$(f_1 \times f_2)^{-1}(V) = \bigvee_{i,j} (f_1 \times f_2)^{-1}(G_i \times H_j) = \bigvee_{i,j} [f_1^{-1}(G_i) \times f_2^{-1}(H_j)].$$

Since f_1 and f_2 are fuzzy pre-irresolute, $f_1^{-1}(G_i)$ and $f_2^{-1}(H_f)$ are fuzzy preopen sets, and because of Theorems 1.1 and 1.2, it follows that $(f_1 \times f_2)^{-1}(V)$ is a fuzzy preopen set, which implies that $f_1 \times f_2$ is fuzzy pre-irresolute.

THEOREM 2.7. Let $f: X \to Y$ be a mapping and $g: X \to X \times Y$ be the graph of f. If g is fuzzy pre-irresolute, then f is fuzzy pre-irresolute.

Proof. It follows from Lemma 2.4 of [1].

THEOREM 2.8. Let $f: X \to Y$ and $g: Y \to Z$ be mappings.

(a) If f and g are fuzzy pre-irresolute, then $g \circ f$ is fuzzy pre-irresolute.

(b) If f is fuzzy pre-irresolute and g is fuzzy precontinuous, then $g \circ f$ is fuzzy precontinuous.

Proof. Straightforward.

The following Example 2.2 shows that fuzzy continuous and fuzzy pre-irresolute mappings are independent.

EXAMPLE 2.2. Let U_1 , U_2 and U_3 be fuzzy sets in $X = \{a, b, c\}$ defined as follows:

$$U_1(a) = 0.4, \quad U_1(b) = 0, \quad U_1(c) = 0;$$

 $U_2(a) = 0, \quad U_2(b) = 0.4, \quad U_2(c) = 0;$
 $U_3(a) = 0.4, \quad U_3(b) = 0.4, \quad U_3(c) = 0.$

Consider the fuzzy topologies $\tau_1 = \{0_X, 1_X, U_1, U_2, U_1 \lor U_2\}$ and $\tau_2 = \{0_X, 1_X, U_1, U_3\}$.

(a) If a mapping $f: (X, \tau_2) \to (X, \tau_1)$ defined by f(a) = b, f(b) = a, f(c) = c, then f is fuzzy continuous but not fuzzy pre-irresolute.

(b) If a mapping $f: (X, \tau_1) \to (X, \tau_2)$ defined by f(a) = b, f(b) = a, f(c) = c, then f is fuzzy pre-irresolute but not fuzzy continuous.

THEOREM 2.9. If $f: X \to Y$ is fuzzy precontinuous and fuzzy open, then f is fuzzy pre-irresolute.

Proof. It follows from Theorem 4.3 of [12].

3. Separation axioms

DEFINITION 3.1. A fts X is said to be fuzzy pre-T₀ if for every distinct two fuzzy points x_{α} and y_{β} , the following conditions are satisfied:

(a) When $x \neq y$, either x_{α} has a fuzzy pre-nbd which is not q-coincident with y_{β} , or y_{β} has a fuzzy pre-nbd which is not q-coincident with x_{α} .

(b) When x = y and $\alpha < \beta$ (say), there is a fuzzy pre-q-nbd of y_{β} which is not q-coincident with x_{α} .

DEFINITION 3.2. A fts X is said to be fuzzy pre-T₁ if for every distinct two fuzzy points x_{α} and y_{β} , the following conditions are satisfied:

(a) When $x \neq y$, x_{α} has a fuzzy pre-nbd U and y_{β} has a fuzzy pre-nbd V such that $x_{\alpha}\bar{q}V$ and $y_{\beta}\bar{q}U$.

(b) When x = y and $\alpha < \beta$ (say), then there exists a fuzzy pre-q-nbd V of y_{β} such that $x_{\alpha}\bar{q}V$.

DEFINITION 3.3. A fts X is said to be fuzzy pre-T₂ if for every distinct two fuzzy points x_{α} and y_{β} , the following conditions are satisfied:

(a) When $x \neq y$, x_{α} and y_{β} have fuzzy pre-nbds which are not q-coincident.

(b) When x = y and $\alpha < \beta$ (say), then x_{α} has a fuzzy pre-nbd U and y_{β} has a fuzzy pre-q-nbd V such that $U\bar{q}V$.

Obviously, fuzzy pre-T₂ \Rightarrow fuzzy pre-T₁ \Rightarrow fuzzy pre-T₀. Also, fuzzy T_i axiom [6] \Rightarrow fuzzy pre-T_i axiom, for i = 0, 1, 2.

THEOREM 3.1. A fts X is fuzzy pre- T_0 if and only if for every pair of distinct x_{α} and y_{β} , either $x_{\alpha} \notin pCl(y_{\beta})$ or $y_{\beta} \notin pCl(x_{\alpha})$.

Proof. The proof is easy and hence omitted.

THEOREM 3.2. A fts X is fuzzy pre- T_1 if and only if for every fuzzy point x_{α} is fuzzy preclosed in X.

Proof. The proof is easy and hence omitted.

THEOREM 3.3. A fts X is fuzzy pre- T_2 if and only if for every fuzzy point x_{α} in X, $x_{\alpha} = \bigwedge \{ pCIV \mid V \text{ is fuzzy pre-nbd of } x_{\alpha} \}$ and for every $x, y \in X$ with $x \neq y$, there is a fuzzy pre-nbd U of x_1 such that $y \notin (pCIU)_0$, where $(pCIU)_0$ is support of pCIU.

Proof. Let x_{α} and y_{β} be fuzzy points in X such that $y_{\beta} \notin \{x_{\alpha}\}$. If $x \neq y$, then there are fuzzy preopen sets U and V containing y_1 and x_{α} respectively such that $U\bar{q}V$. Then V is a fuzzy pre-mbd of x_{α} and U is a fuzzy pre-q-mbd of y_{β} such that $U\bar{q}V$. Hence $y_{\beta} \notin pClV$. If x = y, then $\alpha < \beta$, and hence there are a fuzzy pre-q-mbd U of y_{β} and a fuzzy pre-mbd V of x_{α} such that $U\bar{q}V$. Hence $y_{\beta} \notin pClV$.

Finally, for distinct two point x, y of X, since X is fuzzy pre-T₂, there exist fuzzy preopen sets U and V such that $x_1 \in U$, $y_1 \in V$ and $U\bar{q}V$. Since 1 - V is fuzzy preclosed set containing U, $pClU \leq 1 - V$. Hence $y \notin (pClU)_0$.

Conversely, let x_{α} and y_{β} be distinct fuzzy points in X.

When $x \neq y$, we first suppose that at least one of α and β is less than 1, say $0 < \alpha < 1$. Then there exists a positive real number λ with $0 < \alpha + \lambda < 1$. By hypothesis, there exists a fuzzy pre-nbd U of y_{β} such that $x_{\lambda} \notin pClU$. Then there exists a fuzzy pre-nbd V of x_{λ} such that $V\bar{q}U$. Since $\alpha < 1 - \lambda < V(x)$, V is fuzzy pre-nbd of x_{α} such that $U\bar{q}V$.

Next if $\alpha = \beta = 1$, by hypothesis there exists a fuzzy pre-nbd U of x_1 such that pClU(y) = 0. Then V = 1 - pClU is a fuzzy pre-nbd of y_1 such that $U\bar{q}V$.

When x = y and $\alpha < \beta$ (say), then there exists a fuzzy pre-nbd U of x_{α} such that $y_{\beta} \notin pClU$. Hence there exists a fuzzy pre-q-nbd V of y_{β} such that $U\bar{q}V$. Therefore, X is fuzzy pre-T₂.

THEOREM 3.4. Let $f: X \to Y$ be one-to-one mapping.

(a) If f is fuzzy precontinuous and Y is fuzzy T_i , then X is fuzzy pre- T_i for i = 0, 1, 2.

(b) If f is fuzzy pre-irresolute and Y is fuzzy pre- T_i , then X is fuzzy pre- T_i for i = 0, 1, 2.

Proof. We give a proof for i = 1 only; the other cases being similar, are omitted. Let x_{α} and y_{β} be distinct two fuzzy points in X.

When $x \neq y$, we have $f(x) \neq f(y)$, and by the fuzzy T_1 property of Y, there exist fuzzy nbds U and V of $f(x)_{\alpha}$ and $f(y)_{\beta}$ respectively such that $f(x)_{\alpha}\bar{q}V$ and $f(y)_{\beta}\bar{q}U$. Since f is fuzzy precontinuous, $f^{-1}(U)$ and $f^{-1}(V)$ are fuzzy pre-nbds of x_{α} and y_{β} respectively such that $y_{\beta}\bar{q}f^{-1}(U)$ and $x_{\alpha}\bar{q}f^{-1}(V)$.

When x = y and $\alpha < \beta$ (say), then f(x) = f(y). Since Y is fuzzy T₁, there exists a fuzzy q-nbd V of $f(y)_{\beta}$ such that $f(x)_{\alpha}\bar{q}V$. Then $f^{-1}(V)$ is fuzzy pre-q-nbd of y_{β} such that $x_{\alpha}\bar{q}f^{-1}(V)$. Hence X is fuzzy pre-T₁.

(b): The proof is similar to (a).

References

- 1. K. K. Azad, On fuzzy semi-continuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl. 82(1981) 14-32.
- 2. A. S. Bin Shanha, On fuzzy strong semicontinuity and fuzzy precontinuity, Fuzzy Sets and Systems 44(1991) 303-308.
- C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968) 182-190.
- J. R. Choi, B. Y. Lee and J. H. Park, On fuzzy θ-continuous mappings, Fuzzy Sets and Systems 54 (1993) 107-113.
- 5. S. Ganguly and S Saha, On separation axioms and T_i -fuzzy continuity, Fuzzy Sets and Systems 16(1985) 265-275.
- 6. B. Ghosh, Semi-continuous and semi-closed mappings and semiconnected-ness in fuzzy setting, Fuzzy Sets and Systems 35 (1990) 345-355.
- P. P. Ming and L. Y. Ming, Fuzzy topology I. Neighborhood structure of fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl. 76 (1980) 571-599.

- 8. M. N. Mukherjee and S. P. Sinha, On some weaker forms of fuzzy continuous and fuzzy open mappings on fuzzy topological spaces, Fuzzy Sets and Systems 32 (1989) 102-114.
- 9. M. N. Mukherjee and S. P. Sinha, On some near-fuzzy continuous functions between fuzzy topological spaces, Fuzzy Sets and Systems 34 (1990) 245-254.
- J. H. Park, B. Y. Lee and J. R. Choi, Fuzzy θ-connectedness, Fuzzy Sets and Systems 59(1993) 237-244.
- 11. J. H. Park, B. Y. Lee and J. R. Choi, On fuzzy strong semi-continuity, fuzzy precontinuity and fuzzy weakly semi-continuity, submitted.
- 12. H. T. Yalvac, Fuzzy sets and functions on fuzzy spaces, J. Math. Anal. Appl. 126 (1987) 409-423.

Department of Natural Sciences, Pusan National University of Technology, Pusan, 608–739, Korea

Department of Mathematics Education, Korea National University of Education, Choongpook, 363–791, Korea.