## ON A CONJECTURE OF GRAHAM

## Shi Ming Wei and Young Bae Jun

Let $A$ be a finite sequence of $n$ positive integers $a_{1}<a_{2}<\ldots<a_{n}$. Graham [2] has conjectured that $\max _{i, j}\left\{a_{i} /\left(a_{i}, a_{j}\right)\right\} \geq n$. The conjecture has been verified in some special cases (see references).

In this paper we verify the conjecture in three cases.
A prime $p$ is called a prime factor of $A$ if $p$ is a prime factor of some $a_{1}$. Denote by $P\left(a_{4}\right)$ (resp. $P(A)$ ) the set of all prime factors of $a_{1}$ (resp. A).

Theorem 1. If $P\left(a_{k}\right)=\left\{p_{1}, p_{2}, \ldots, p_{s}\right\}$ for some $a_{k}$, and $a_{2} \neq$ $p_{1}^{d_{1}} p_{2}^{d_{2}} \ldots p_{s}^{d_{s}} a_{j}$ for $i \neq j, d_{1}, d_{2}, \ldots, d_{s} \geq 0$, then $\max _{i, j}\left\{a_{i} /\left(a_{i}, a_{1}\right)\right\} \geq n$.

Proof. Let $a_{1}=p_{1}^{i_{1}} p_{2}^{i_{2}} \ldots p_{s}^{z_{s}} b_{2}$ for all $a_{1}$ where $i_{1}, i_{2}, \ldots, i_{s} \geq 0$ and $p_{1}$, $p_{2}, \ldots, p_{s} \nmid b_{1}$. Then $b_{i} \neq b$, for $i \neq \jmath$ and $b_{k}=1$. So $\max _{1, j}\left\{b_{i} /\left(b_{1}, b_{3}\right)\right\} \geq$ $n$. Since

$$
\begin{aligned}
a_{i} /\left(a_{2}, a_{j}\right) & =\left(p_{1}^{i_{1}} p_{2}^{1_{2}} \ldots p_{s}^{\mathbf{t}_{s}} b_{i}\right) /\left(p_{1}^{i_{1}} p_{2}^{i_{2}} \ldots p_{s}^{i_{s}} b_{i}, p_{1}^{j_{1}} p_{2}^{3_{2}} \ldots p_{s}^{j_{s}} b_{j}\right) \\
& =\left(p_{1}^{i_{1}} p_{2}^{i_{2}} \ldots p_{s}^{i_{s}} b_{i}\right) /\left(\left(p_{1}^{i_{1}} p_{2}^{i_{2}} \ldots p_{s}^{i_{s}}, p_{1}^{j_{1}} p_{2}^{j_{2}} \ldots p_{s}^{3_{s}}\right)\left(b_{3}, b_{j}\right)\right) \\
& \geq b_{i} /\left(b_{i}, b_{j}\right)
\end{aligned}
$$

for all $i, j$, it follows that $\max _{i, j}\left\{a_{i} /\left(a_{i}, a_{3}\right)\right\} \geq \max _{t, j}\left\{b_{1} /\left(b_{i}, b_{j}\right)\right\} \geq n$.
Corollary 2. Suppose that A contains a prime power $p^{d}$ with the property: $a_{i} \neq p^{k} a_{j}$ for $i \neq j$ and $k \geq 0$. Then $\max _{i, j}\left\{a_{i} /\left(a_{i}, a_{j}\right)\right\} \geq n$.

Following corollary 2, we have
Corollary 3 ([5]). Let $A$ be $p$-simple for a prime $p \neq 2$ and suppose that $A$ contains a prime power $a_{k}=p^{d}(d \geq 0)$. Then $\max _{i, j}\left\{a_{i} /\left(a_{i}, a_{j}\right)\right\} \geq n$.

Lemma 4 ([4]). If $F$ is a finite collection of sets then the number of distinct differences of members of $F$ is at least as large as the number of members of $F$.

Theorem 5. Let $P(A)=\left\{p_{1}, p_{2}, \ldots, p_{m}\right\}$ and let $a_{1}=p_{1}^{z_{1}} p_{2}^{i_{2} \ldots p_{m}^{z_{m}}}$ for all $a_{i}$. If nonzero numbers of $\left\{1_{j}, 2_{j}, \ldots, n,\right\}$ are equal for all $p_{p}$, then $\max _{i, j}\left\{a_{i} /\left(a_{i}, a_{j}\right)\right\} \geq n$.

Proof. Let $F_{t}=\left\{p \in P(A): p \mid a_{i}\right\}, i=1,2, \ldots, n$. Then $a_{i}=a_{j}$ if and only if $F_{i}=F$, for all $i, j$. Clearly $F_{1}, F_{2}, \ldots, F_{n}$ are $n$ different sets. It follows from Lemma 4 that the number of different members of $\left\{F_{z} \backslash F_{j}: \imath, j=1,2, \ldots, n\right\}$ is at least as large as $n$. Since $F_{z} \backslash F_{j}=$ $\left\{p \in P(A): p \mid a_{2} /\left(a_{2}, a_{j}\right)\right\}$ and since $F_{z} \backslash F_{j}=F_{k} \backslash F_{k}$ if and only if $a_{2} /\left(a_{i}, a_{j}\right)=a_{h} /\left(a_{h}, a_{k}\right)$ for $1 \leq i, j, h, k \leq n$, it follows that $\left\{a_{i} /\left(a_{i}, a_{j}\right): i, j=1,2, \ldots, n\right\}$ contains at least $n$ different numbers. Thus, $\max _{i, j}\left\{a_{1} /\left(a_{1}, a_{2}\right)\right\} \geq n$.

Corollary 6 ([4]). If the members of $A$ are squarefree integers then $\max _{1, \mathrm{~d}}\left\{a_{i} /\left(a_{2}, a_{j}\right)\right\} \geq n$.

Theorem 7. If $\left.\left[a_{1}, a_{2}, \ldots, a_{n}\right]\right\}[1,2, \ldots, n]$, then

$$
\max _{i, j}\left\{a_{i} /\left(a_{i}, a_{j}\right)\right\}>n
$$

where $\left[a_{1}, a_{2}, \ldots, a_{n}\right]=\operatorname{Icm}\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$.
Proof. Suppose $\left[a_{1}, a_{2}, \ldots, a_{n}\right] \nmid[1,2, \ldots, n]$. Then there exists some $a_{k}$ such that $a_{k} \nmid[1,2, \ldots, n]$. Let $P(A)=\left\{p_{1}, p_{2}, \ldots, p_{m}\right\}$ and $a_{k}=$ $p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots p_{m}^{k_{m}}$. Then there exists $p_{s}^{k_{s}}$ such that $p_{s}^{k_{s}} \nmid[1,2, \ldots, n]$. Hence $p_{s}^{k_{s}}>n$. Since $\left(a_{1}, a_{2}, \ldots, a_{n}\right)=1$, we have $\left(p_{s}, a_{t}\right)=1$ for some $a_{t}$, and hence $\left(p_{s}^{k_{s}}, a_{t}\right)=1$. Thus $a_{k} /\left(a_{k}, a_{t}\right) \geq p_{s}^{k_{s}}>n$, and therefore, $\max _{i, j}\left\{a_{i} /\left(a_{t}, a_{j}\right)\right\}>n$.

## References

1. R. D. Boyle, On a problem of R. L. Graham, Acta Arith. 34 (1978), 163-177.
2. R. L. Graham, Unsolved problem 5749, Amer. Math. Monthly 77 (1970), 775.
3. R. Klein, The proof of a conjecture of Graham for sequences containing primes, Proc. Amer. Math. Soc. 95 (1985), 189 - 190.
4. J. Marica and J Schonherm, Dufferences of sets and a problem of Graham, Canad. Math. Bull. 12 (1969), 635-637.
5. J. W Sander, On a conjecture of Graham, Proc. Amer. Math. Soc. 102 (1988), 455-458.
6. R. J Simpson, On a conjecture of R. L Graham, Acta Arith. 40 (1982), 209211.
7. W. Y. Vélez, Some remarks on a number theoretic problem of Graham, Acta Arith. 32 (1977), 233-238
8. G. Weinstem, On a conjecture of Graham concernang greatest common divnsors, Proc Amer. Math. Soc. 63 (1977), 33-38.

Institute of Mathematics
Huaibei Coal Mining Teachers College
Huaibei 235000, P. R. China
Department of Mathematics Education
Gyeongsang National University
Chinju 660-701, Korea

