Pusan Kyöngnam Math. J. 10(1994), No 2, pp 295-297

ON A CONJECTURE OF GRAHAM

SHI MING WEI AND YOUNG BAE JUN

Let A be a finite sequence of n positive integers $a_1 < a_2 < ... < a_n$. Graham [2] has conjectured that $\max_{i,j} \{a_i/(a_i, a_j)\} \ge n$. The conjecture

has been verified in some special cases (see references).

In this paper we verify the conjecture in three cases.

A prime p is called a *prime factor* of A if p is a prime factor of some a_i . Denote by $P(a_i)$ (resp. P(A)) the set of all prime factors of a_i (resp. A).

THEOREM 1. If $P(a_k) = \{p_1, p_2, ..., p_s\}$ for some a_k , and $a_i \neq p_1^{d_1} p_2^{d_2} ... p_s^{d_s} a_j$ for $i \neq j, d_1, d_2, ..., d_s \ge 0$, then $\max_{i,j} \{a_i/(a_i, a_j)\} \ge n$.

Proof. Let $a_i = p_1^{i_1} p_2^{i_2} \dots p_s^{i_s} b_i$ for all a_i where $i_1, i_2, \dots, i_s \ge 0$ and $p_1, p_2, \dots, p_s \nmid b_i$. Then $b_i \ne b_j$ for $i \ne j$ and $b_k = 1$. So $\max_{i,j} \{b_i/(b_i, b_j)\} \ge n$. Since

$$\begin{aligned} a_{i}/(a_{i},a_{j}) &= (p_{1}^{i_{1}}p_{2}^{i_{2}}...p_{s}^{i_{s}}b_{i})/(p_{1}^{i_{1}}p_{2}^{i_{2}}...p_{s}^{i_{s}}b_{i},p_{1}^{j_{1}}p_{2}^{j_{2}}...p_{s}^{j_{s}}b_{j}) \\ &= (p_{1}^{i_{1}}p_{2}^{i_{2}}...p_{s}^{i_{s}}b_{i})/((p_{1}^{i_{1}}p_{2}^{i_{2}}...p_{s}^{i_{s}},p_{1}^{j_{1}}p_{2}^{j_{2}}...p_{s}^{j_{s}})(b_{i},b_{j})) \\ &\geq b_{i}/(b_{i},b_{j}) \end{aligned}$$

for all i, j, it follows that $\max_{i,j} \{a_i/(a_i, a_j)\} \ge \max_{i,j} \{b_i/(b_i, b_j)\} \ge n$.

COROLLARY 2. Suppose that A contains a prime power p^d with the property: $a_i \neq p^k a_j$ for $i \neq j$ and $k \ge 0$. Then $\max_{i,j} \{a_i/(a_i, a_j)\} \ge n$.

Following corollary 2, we have

COROLLARY 3 ([5]). Let A be p-simple for a prime $p \neq 2$ and suppose that A contains a prime power $a_k = p^d$ $(d \ge 0)$. Then $\max_{i,j} \{a_i/(a_i, a_j)\} \ge n$.

Received Ovtober 28,1994.

LEMMA 4 ([4]). If F is a finite collection of sets then the number of distinct differences of members of F is at least as large as the number of members of F.

THEOREM 5. Let $P(A) = \{p_1, p_2, ..., p_m\}$ and let $a_i = p_1^{i_1} p_2^{i_2} ... p_m^{i_m}$ for all a_i . If nonzero numbers of $\{1_j, 2_j, ..., n_j\}$ are equal for all p_j , then $\max_{i,j} \{a_i/(a_i, a_j)\} \ge n$.

Proof. Let $F_i = \{p \in P(A) : p \mid a_i\}, i = 1, 2, ..., n$. Then $a_i = a_j$ if and only if $F_i = F_j$ for all i, j. Clearly $F_1, F_2, ..., F_n$ are n different sets. It follows from Lemma 4 that the number of different members of $\{F_i \setminus F_j : i, j = 1, 2, ..., n\}$ is at least as large as n. Since $F_i \setminus F_j =$ $\{p \in P(A) : p \mid a_i/(a_i, a_j)\}$ and since $F_i \setminus F_j = F_h \setminus F_k$ if and only if $a_i/(a_i, a_j) = a_h/(a_h, a_k)$ for $1 \leq i, j, h, k \leq n$, it follows that $\{a_i/(a_i, a_j) : i, j = 1, 2, ..., n\}$ contains at least n different numbers. Thus, $\max_{i,j} \{a_i/(a_i, a_j)\} \geq n$.

COROLLARY 6 ([4]). If the members of A are squarefree integers then $\max_{i,j} \{a_i/(a_i, a_j)\} \ge n$.

THEOREM 7. If $[a_1, a_2, ..., a_n] \nmid [1, 2, ..., n]$, then

$$\max_{i,j}\{a_i/(a_i,a_j)\}>n$$

where $[a_1, a_2, ..., a_n] = lcm\{a_1, a_2, ..., a_n\}.$

Proof. Suppose $[a_1, a_2, ..., a_n] \nmid [1, 2, ..., n]$. Then there exists some a_k such that $a_k \nmid [1, 2, ..., n]$. Let $P(A) = \{p_1, p_2, ..., p_m\}$ and $a_k = p_1^{k_1} p_2^{k_2} ... p_m^{k_m}$. Then there exists $p_s^{k_s}$ such that $p_s^{k_s} \nmid [1, 2, ..., n]$. Hence $p_s^{k_s} > n$. Since $(a_1, a_2, ..., a_n) = 1$, we have $(p_s, a_t) = 1$ for some a_t , and hence $(p_s^{k_s}, a_t) = 1$. Thus $a_k/(a_k, a_t) \ge p_s^{k_s} > n$, and therefore, $\max_{i,j} \{a_i/(a_i, a_j)\} > n$.

References

- 1. R. D. Boyle, On a problem of R. L. Graham, Acta Arith. 34 (1978), 163 177.
- 2. R. L. Graham, Unsolved problem 5749, Amer. Math. Monthly 77 (1970), 775.
- 3. R. Klein, The proof of a conjecture of Graham for sequences containing primes, Proc. Amer. Math. Soc. 95 (1985), 189 - 190.

- 4. J. Marica and J. Schonheim, Differences of sets and a problem of Graham, Canad. Math. Bull. 12 (1969), 635 - 637.
- 5. J. W Sander, On a conjecture of Graham, Proc. Amer. Math. Soc. 102 (1988), 455 458.
- 6. R. J. Simpson, On a conjecture of R. L. Graham, Acta Arith. 40 (1982), 209-211.
- 7. W. Y. Vélez, Some remarks on a number theoretic problem of Graham, Acta Arith. 32 (1977), 233 238
- 8. G. Weinstein, On a conjecture of Graham concerning greatest common divisors, Proc. Amer. Math. Soc. 63 (1977), 33 - 38.

Institute of Mathematics Huaibei Coal Mining Teachers College Huaibei 235000, P. R. China

Department of Mathematics Education Gyeongsang National University Chinju 660-701, Korea