A NOTE ON HILBERT ALGEBRAS

Y. B. Jun, J. W. Nam and S. M. Hong

The concept of Hilbert algebras was introduced by Diego [5]. Busneag [2-4] developed the theory of Hilbert algebras and deductive systems. The aims of this paper are

1. To prove that if $x_{1}, x_{2}, \ldots, x_{n}(n \geq 2)$ are distinct elements of a Hilbert algebra, then there exists x_{i} in Hilbert algebra such that $x, \rightarrow x_{\mathrm{z}} \neq 1$ for all $j \neq z$;
2. To show that any bounded Hilbert algebra of order $n+1$ must contain a Hilbert subalgebra of order $n \geq 2$;
3. To verify that the set of all involutions of a bounded Hilbert algebra is a Hilbert subalgebra; and
4. To define the concept of stabilizers and prove some propositions.

Definition $1([3,5])$. A Hilbert algebra is a triple ($H, \rightarrow, 1$), where H is a nonempty set, \rightarrow is a binary operation on $H, 1 \in H$ is an element (called a unit element) such that the following three axioms are satisfied for every $x, y, z \in H$:
$\left(a_{1}\right) x \rightarrow(y \rightarrow x)=1$,
$\left(a_{2}\right)(x \rightarrow(y \rightarrow z)) \rightarrow((x \rightarrow y) \rightarrow(x \rightarrow z))=1$,
(a_{3}) If $x \rightarrow y=y \rightarrow x=1$ then $x=y$.
If H is a Hilbert algebra, then the relation $x \leq y$ iff $x \rightarrow y=1$ is a partial order on H, which will be called the natural ordering on H; with respect to this order relation, 1 is the largest element of H.

A bounded Hilbert algebra is a Hilbert algebra with a smallest element 0 relative to natural ordering.

A subset S of a bounded Hilbert algebra H is called a Hilbert subalgebra of H if $0 \in S$ and $x, y \in S \Rightarrow x \rightarrow y \in S$.

Examples ([3]). 1. If (H, \leq) is a poset, then $(H, \rightarrow, 1)$ is a Hilbert algebra, where 1 is the largest element of H and

$$
x \rightarrow y= \begin{cases}1 & \text { if } x \leq y \\ y & \text { otherwise },\end{cases}
$$

Received October 5,1994.
for $x, y \in H$.
2. If $(H, \vee, \wedge, \neg, 0,1)$ is a Boolean lattice, then $(H, \rightarrow, 1)$ is a bounded Hilbert algebra, where \rightarrow is defined by $x \rightarrow y=(\neg x) \vee y$ for $x, y \in H$.

Proposition 2 ([3,5]). If H is a Hilbert algebra and $x, y, z \in H$, then the following hold:
$\left(b_{1}\right) x \leq y \rightarrow x$.
$\left(b_{2}\right) x \rightarrow 1=1$.
$\left(b_{3}\right) x \rightarrow(y \rightarrow z)=(x \rightarrow y) \rightarrow(x \rightarrow z)$.
$\left(b_{4}\right)(x \rightarrow y) \rightarrow((y \rightarrow x) \rightarrow x)=(y \rightarrow x) \rightarrow((x \rightarrow y) \rightarrow y)$.
$\left(b_{5}\right) x \rightarrow(y \rightarrow z)=y \rightarrow(x \rightarrow z)$.
$\left(b_{6}\right) x \leq(x \rightarrow y) \rightarrow y,((x \rightarrow y) \rightarrow y) \rightarrow y=x \rightarrow y$.
$\left(b_{7}\right) 1 \rightarrow x=x$.
$\left(b_{8}\right) x \rightarrow y \leq(y \rightarrow z) \rightarrow(x \rightarrow z)$.
(b_{9}) If $x \leq y$, then $z \rightarrow x \leq z \rightarrow y$ and $y \rightarrow z \leq x \rightarrow z$.
Proposition 3. In a Hilbert algebra H, we have the following properties:
(c_{1}) If $x \neq y$, then $y \rightarrow x \neq 1$ whenever $x \rightarrow y=1$.
(c_{2}) If $x \leq y$ and $y \leq z$ then $x \leq z$.
Proof. $\left(c_{1}\right)$ Assume that $x \neq y$ and $x \rightarrow y=1$. If $y \rightarrow x=1$ then by $\left(a_{3}\right)$ we have $x=y$. This is impossible.
(c_{2}) Suppose $x \leq y$ and $y \leq z$. Applying (b_{9}), we obtain $1=x \rightarrow$ $y \leq x \rightarrow z$, and so $x \rightarrow z=1$ or $x \leq z$. The proof is complete.

For an n sequence $x_{1}, x_{2}, \ldots, x_{n}$ of a Hilbert algebra H, consider the $(n-1) \times n$ matrix

$$
A=\left(\begin{array}{cccc}
x_{2} \rightarrow x_{1} & x_{1} \rightarrow x_{2} & \ldots & x_{1} \rightarrow x_{n} \\
x_{3} \rightarrow x_{1} & x_{3} \rightarrow x_{2} & \ldots & x_{2} \rightarrow x_{n} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n} \rightarrow x_{1} & x_{n} \rightarrow x_{2} & \ldots & x_{n-1} \rightarrow x_{n}
\end{array}\right)
$$

For convenience in this paper, we call A the H-matrix relative to the n sequence $x_{1}, x_{2}, \ldots, x_{n}$.

Theorem 4. Let $x_{1}, x_{2}, \ldots, x_{n}(n \geq 2)$ be a n sequence of a Hilbert algebra H. If $x_{1} \neq x$, whenever $\imath \neq j(1 \leq i, j \leq n)$ then there exists a column in the H-matrix A which consists of nonunit elements.

Proof. The proof will be by induction on n. If $n=2$ then the H-matrix is

$$
A=\left(x_{2} \rightarrow x_{1}, x_{1} \rightarrow x_{2}\right) .
$$

Assume that $x_{2} \rightarrow x_{1}=x_{1} \rightarrow x_{2}=1$. Then, by (a_{3}), we have $x_{1}=x_{2}$, which is a contradiction. Hence the assertion holds for $n=2$. Suppose that the theorem is true for $n=k$. For a $k+1$ sequence $x_{1}, x_{2}, \ldots, x_{k}, x_{k+1}$ of H, let $x_{1} \neq x_{3}$ whenever $i \neq j(1 \leq i, j \leq k+1)$ and let
$A_{k+1}=\left(\begin{array}{ccccc}x_{2} \rightarrow x_{1} & x_{1} \rightarrow x_{2} & \ldots & x_{1} \rightarrow x_{k} & x_{1} \rightarrow x_{k+1} \\ x_{3} \rightarrow x_{1} & x_{3} \rightarrow x_{2} & \ldots & x_{2} \rightarrow x_{k} & x_{2} \rightarrow x_{k+1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ x_{k} \rightarrow x_{1} & x_{k} \rightarrow x_{2} & \ldots & x_{k-1} \rightarrow x_{k} & x_{k-1} \rightarrow x_{k+1} \\ x_{k+1} \rightarrow x_{1} & x_{k+1} \rightarrow x_{2} & \ldots & x_{k+1} \rightarrow x_{k} & x_{k} \rightarrow x_{k+1}\end{array}\right)$
be its H-matrix. Denote

$$
A_{k}=\left(\begin{array}{cccc}
x_{2} \rightarrow x_{1} & x_{1} \rightarrow x_{2} & \ldots & x_{1} \rightarrow x_{k} \\
x_{3} \rightarrow x_{1} & x_{3} \rightarrow x_{2} & \ldots & x_{2} \rightarrow x_{k} \\
\vdots & \vdots & \ddots & \vdots \\
x_{k} \rightarrow x_{1} & x_{k} \rightarrow x_{2} & \ldots & x_{k-1} \rightarrow x_{k}
\end{array}\right) .
$$

Then A_{k} is the H-matrix relative to the k sequence $x_{1}, x_{2}, \ldots, x_{k}$. By inductive hypothesis, there exists a column in A_{k}, which consists of nonunit elements. Without loss of generality we may assume that

$$
\left\{\begin{array}{c}
x_{2} \rightarrow x_{1} \neq 1 \\
x_{3} \rightarrow x_{1} \neq 1 \\
\vdots \\
x_{k} \rightarrow x_{1} \neq 1
\end{array}\right.
$$

Now it suffices to discuss the following cases:
If $x_{k+1} \rightarrow x_{1} \neq 1$ then each element in the first column of A_{k+1} is not equal to 1 , and we obtain the results.

Assume $x_{k+1} \rightarrow x_{1}=1$. Since $x_{1} \neq x_{k+1}$, it follows from (c_{1}) that $x_{1} \rightarrow x_{k+1} \neq 1$. We then claim that $x_{i} \rightarrow x_{k+1} \neq 1$ for all $2 \leq i \leq k$. In fact, if not, then there exists $i_{0}\left(2 \leq i_{0} \leq k\right)$ such that
$x_{i_{0}} \rightarrow x_{k+1}=1$. Using $\left(c_{2}\right)$, we get $x_{i_{0}} \rightarrow x_{1}=1$. This is impossible, and so $x_{z} \rightarrow x_{k+1} \neq 1$ for all $1 \leq i \leq k$. Hence the assertion holds for $n=k+1$. This finishes the proof of the theorem.

For a set S denote the cardinal of S by $|S|$. For a Hilbert algebra $(H ; \rightarrow, 1),|H|$ is called to be the order of this algebra. If $|H|<\infty$, then $(H ; \rightarrow, 1)$ is called to be of finite order; if $|H|=n$, then it is said to be of order n; if $|H|=\infty$, then it is said to be of infinite order.

Theorem 5. Let H be a bounded Hilbert algebra. If S is a Hilbert subalgebra of H, then $|S| \geq 2$.

Proof. We note that $0 \in S$, so that $0 \rightarrow 0=1 \in S$. Hence $|S| \geq 2$.
Theorem 6. Any bounded Hilbert algebra of order $n+1$ must contain a Hilbert subalgebra of order $n \geq 2$.

Proof. Let $H=\left\{0, x_{1}, x_{2}, \ldots, x_{n-1}, 1\right\}$ be a bounded Hilbert algebra of order $n+1$, in which $x_{i} \neq x$, whenever $\imath \neq j$ and let

$$
B=\left(\begin{array}{cccc}
x_{2} \rightarrow x_{1} & x_{1} \rightarrow x_{2} & \ldots & x_{1} \rightarrow x_{n-1} \\
x_{3} \rightarrow x_{1} & x_{3} \rightarrow x_{2} & \ldots & x_{2} \rightarrow x_{n-1} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n-1} \rightarrow x_{1} & x_{n-1} \rightarrow x_{2} & \ldots & x_{n-2} \rightarrow x_{n-1}
\end{array}\right)
$$

be the H-matrix relative to the $n-1$ sequence $x_{1}, x_{2}, \ldots, x_{n-1}$. By Theorem 4, there exists a column in B which consists of nonunit elements. Without loss of generality, we can suppose it is the last column of B, that is,

$$
x_{i} \rightarrow x_{n-1} \neq 1, \text { for all } i=1,2, \ldots, n-2
$$

We now show that $H^{\prime}=\left\{0, x_{1}, \ldots, x_{n-2}, 1\right\}$ is a Hilbert subalgebra of H. If H^{\prime} is not a Hilbert subalgebra of H, then there exist distinct subscripts i and $j(1 \leq i, j \leq n-2)$ such that $x_{i} \rightarrow x_{j}=x_{n-1}$. It follows from (a_{1}) that

$$
x_{j} \rightarrow x_{n-1}=x_{j} \rightarrow\left(x_{i} \rightarrow x_{j}\right)=1
$$

which contradicts to $x_{i} \rightarrow x_{n-1} \neq 1$ for all $i=1,2, \ldots, n-2$. This completes the proof.

Theorem 7. Let H be a bounded Hilbert algebra of order $n(\geq 2)$ and let $N(k)$ denote the number of Hilbert subalgebras of order k in H. Then $1 \leq N(k) \leq\binom{ n-2}{k-2}$ for $k=2, \ldots, n$.

Proof. We note that any Hilbert subalgebra of order $k(2 \leq k \leq n)$ consists of 0,1 and $k-2$ elements $(\neq 0,1)$. Since there are $n-2$ elements $(\neq 0,1)$ in H, therefore $N(k) \leq\binom{ n-2}{k-2}$. Using Theorem 6 , We have $1 \leq N(k)$ for all $k(2 \leq k \leq n)$. The proof is complete.

If H is a bounded Hilbert algebra and $x \in H$, we denote by $x^{*}=$ $x \rightarrow 0$.

Proposition 8 ([3]). Let H be a bounded Hilbert algebra and $x, y \in H$. Then
(b_{10}) $0^{*}=1,1^{*}=0$.
$\left(b_{11}\right) x \rightarrow y^{*}=y \rightarrow x^{*}$.
$\left(b_{12}\right) x \rightarrow x^{*}=x^{*}, x^{*} \rightarrow x=x^{* *}$.
$\left(\dot{o}_{13}\right) x \rightarrow y \leq y^{*} \rightarrow x^{*}$.
(b_{14}) $x \leq y$ implies $y^{*} \leq x^{*}$.
$\left(b_{15}\right)(x \rightarrow y)^{* *}=x^{* *} \rightarrow y^{* *}$.
Proposition 9. In a bounded Hilbert algebra H, the following properties hold:
(c_{3}) $x \leq x^{* *}$.
$\left(c_{4}\right) x^{* * *}=x^{*}$.
Proof. Using (b_{6}), we have $x \leq(x \rightarrow 0) \rightarrow 0=x^{*} \rightarrow 0=x^{* *}$ and $x^{*}=x \rightarrow 0=((x \rightarrow 0) \rightarrow 0) \rightarrow 0=\left(x^{*} \rightarrow 0\right) \rightarrow 0=x^{* *} \rightarrow 0=x^{* * *}$. This completes the proof.

Definition 10. Let H be a bounded Hilbert algebra. If an element x of H satisfies $x^{* *}=x$, then x is called an involution.

Denote by $\mathcal{I}(H)$ the set of all involutions of H. Since $1^{* *}=1$, the element 1 is contained in $\mathcal{I}(H)$. Hence $\mathcal{I}(H)$ is not empty.

THEOREM 11. For any bounded Hilbert algebra $H, \mathcal{I}(H)$ is a Hilbert subalgebra of H.

Proof. Let $x, y \in \mathcal{I}(H)$. Using (b_{15}); then we have

$$
\begin{aligned}
(x \rightarrow y)^{* *} \rightarrow(x \rightarrow y) & =\left(x^{* *} \rightarrow y^{* *}\right) \rightarrow(x \rightarrow y) \\
& =(x \rightarrow y) \rightarrow(x \rightarrow y)=1
\end{aligned}
$$

that is, $(x \rightarrow y)^{* *} \leq x \rightarrow y$. It follows from $\left(c_{3}\right)$ and $\left(a_{3}\right)$ that $(x \rightarrow$ $y)^{* *}=x \rightarrow y$, which means that $x \rightarrow y \in \mathcal{I}(H)$. Since $0^{* *}=0$, we have $0 \in \mathcal{I}(H)$. Hence $\mathcal{I}(H)$ is a Hilbert subalgebra of H.

Corollary 12 ([2]). If H is a bounded Hilbert algebra, then the following assertions are equivalent:
$\left(c_{5}\right) H$ is a Boolean lattice relative to natural ordering.
$\left(c_{6}\right)$ Every element of H is involution.
Definition 13. Let H be a Hilbert algebra. For $a \in H$, the set $H_{a}:=\{x \in H \mid x \rightarrow a=a\}$ is called the stabilizer of a in H.

The following theorem is obvious.
Theorem 14. For a Hilbert algebra H and $a \in H$, we have

$$
H_{a}=H \text { if and only if } a=1 \text { if and only if } a \in H_{a}
$$

DEFINITION 15 ([5]). If H is a Hilbert algebra, a subset D of H is called a deductive system of H if it satisfies:
$\left(a_{4}\right) 1 \in D$,
$\left(a_{5}\right) x \in D$ and $x \rightarrow y \in D$ imply $y \in D$.
Theorem 16. For a Hilbert algebra H and $a \in H$, the stabilizer H_{a} of a is a deductive system of H.

Proof. Since $1 \rightarrow a=a$, we have $1 \in H_{a}$. Let $x \in H_{a}$ and $x \rightarrow$ $y \in H_{a}$. Then $x \rightarrow a=a$ and $(x \rightarrow y) \rightarrow a=a$. From (b_{1}), we get $a \leq y \rightarrow a$. Now

$$
\begin{aligned}
(y \rightarrow a) \rightarrow a & =(y \rightarrow(x \rightarrow a)) \rightarrow a \\
& =(x \rightarrow(y \rightarrow a)) \rightarrow a \quad\left[b y\left(b_{5}\right)\right] \\
& =((x \rightarrow y) \rightarrow(x \rightarrow a)) \rightarrow a \quad\left[b y\left(b_{3}\right)\right] \\
& =(x \rightarrow((x \rightarrow y) \rightarrow a)) \rightarrow a \quad\left[b y\left(b_{5}\right)\right] \\
& =(x \rightarrow a) \rightarrow a \\
& =a \rightarrow a \\
& =1
\end{aligned}
$$

and so $y \rightarrow a \leq a$. Hence $y \rightarrow a=a$ or $y \in H_{a}$. This completes the proof.

Theorem 17. In a Hilbert algebra of order n, any deductive system of order $n-1$ is the stabilizer of some element.

Proof. Let H be a Hilbert algebra of order n and let D be a deductive system of order $n-1$. Assume that $a \notin D$. Then for any $x \in D$, $x \rightarrow a \notin D$. Hence $x \rightarrow a=a$ or $x \in H_{a}$. Since $a \neq 1$, we have $a \notin H_{a}$. Therefore $D=H_{a}$, completing the proof.

Theorem 18. Let H be a Hilbert algebra of order n and let D be a proper deductive system of H. Then there exists an element $a(\neq 1)$ in H such that $D \subseteq H_{a}$.

Proof. Since $H \backslash D=D$ and $|H \backslash D|<\infty$, there exists a maximal element, say a, in $H \backslash D$. It is obvious that $a \neq 1$. For any $x \in D$, $x \rightarrow a \notin D$ or $x \rightarrow a \in H \backslash D$. Since a is a maximal element in $H \backslash D$, by using (b_{1}) we have $x \rightarrow a=a$ or $x \in H_{a}$. This means that $D \subseteq H_{a}$ which completes the proof.

References

1. R. Balbes and P. Dwinger, Distributive lattice, Unıversity of Missouri Press (1974).
2. D. Busneag, A note on deductive systems of a Hulbert algebra, Kobe J. Math 2 (1985), 29 - 35
3. D. Busneag, Hilbert algebras of fractions and maximal Hulbert algebras of quotients, Kobe J. Math. 5 (1988), 161-172.
4. D. Busneag, Hertz algebras of fractions and maximal Hertz algebras of quotients, Math Japon. 39 (1993), 461-469.
5 A. Diego, Sur les algébras de Hilbert, Ed. Hermann, Colléction de Logique Math Serie A 21 (1966).
6 G. Gratzer, Lattice theory, W H. Freeman and Company, San Francisco (1979).
5. J. Hashmoto, Ideal theory for lattsces, Math. Japon 2 (1952), 149-186.
6. Y. B. Jun, Deductive systems of Hilbert algebras, to appear in Math. Japon

9 J. Meng and Y. B. Jun, BCK-algebras, Kyung Moon Sa Co., Seoul, Korea (1994).

Department of Mathematics (Education)
Gyeongsang National University
Chinju 660-701, Korea

