Pusan Kyŏngnam Math. J. 10(1994), No. 2, pp. 279-285

A NOTE ON HILBERT ALGEBRAS

Y. B. JUN, J. W. NAM AND S. M. HONG

The concept of Hilbert algebras was introduced by Diego [5]. Busneag [2 - 4] developed the theory of Hilbert algebras and deductive systems. The aims of this paper are

1. To prove that if $x_1, x_2, ..., x_n$ $(n \ge 2)$ are distinct elements of a Hilbert algebra, then there exists x_i in Hilbert algebra such that $x_j \to x_i \ne 1$ for all $j \ne i$;

2. To show that any bounded Hilbert algebra of order n + 1 must contain a Hilbert subalgebra of order $n \ge 2$;

3. To verify that the set of all involutions of a bounded Hilbert algebra is a Hilbert subalgebra; and

4. To define the concept of stabilizers and prove some propositions.

DEFINITION 1 ([3, 5]). A Hilbert algebra is a triple $(H, \rightarrow, 1)$, where H is a nonempty set, \rightarrow is a binary operation on H, $1 \in H$ is an element (called a unit element) such that the following three axioms are satisfied for every $x, y, z \in H$:

$$(a_1) \ x \to (y \to x) = 1,$$

 $(a_2) \ (x \to (y \to z)) \to ((x \to y) \to (x \to z)) = 1,$

(a₃) If $x \to y = y \to x = 1$ then x = y.

If H is a Hilbert algebra, then the relation $x \leq y$ iff $x \to y = 1$ is a partial order on H, which will be called the *natural ordering* on H; with respect to this order relation, 1 is the largest element of H.

A bounded Hilbert algebra is a Hilbert algebra with a smallest element 0 relative to natural ordering.

A subset S of a bounded Hilbert algebra H is called a Hilbert subalgebra of H if $0 \in S$ and $x, y \in S \Rightarrow x \to y \in S$.

EXAMPLES ([3]). 1. If (H, \leq) is a poset, then $(H, \rightarrow, 1)$ is a Hilbert algebra, where 1 is the largest element of H and

$$x \to y = \left\{ egin{array}{cc} 1 & ext{if } x \leq y, \ y & ext{otherwise,} \end{array}
ight.$$

Received October 5,1994.

for $x, y \in H$.

2. If $(H, \lor, \land, \neg, 0, 1)$ is a Boolean lattice, then $(H, \rightarrow, 1)$ is a bounded Hilbert algebra, where \rightarrow is defined by $x \rightarrow y = (\neg x) \lor y$ for $x, y \in H$.

PROPOSITION 2 ([3, 5]). If H is a Hilbert algebra and $x, y, z \in H$, then the following hold:

$$\begin{array}{ll} (b_1) \ x \leq y \rightarrow x. \\ (b_2) \ x \rightarrow 1 = 1. \\ (b_3) \ x \rightarrow (y \rightarrow z) = (x \rightarrow y) \rightarrow (x \rightarrow z). \\ (b_4) \ (x \rightarrow y) \rightarrow ((y \rightarrow x) \rightarrow x) = (y \rightarrow x) \rightarrow ((x \rightarrow y) \rightarrow y). \\ (b_5) \ x \rightarrow (y \rightarrow z) = y \rightarrow (x \rightarrow z). \\ (b_6) \ x \leq (x \rightarrow y) \rightarrow y, \ ((x \rightarrow y) \rightarrow y) \rightarrow y = x \rightarrow y. \\ (b_7) \ 1 \rightarrow x = x. \\ (b_8) \ x \rightarrow y \leq (y \rightarrow z) \rightarrow (x \rightarrow z). \\ (b_9) \ \text{If } x \leq y, \ \text{then } z \rightarrow x \leq z \rightarrow y \ \text{and } y \rightarrow z \leq x \rightarrow z. \end{array}$$

PROPOSITION 3. In a Hilbert algebra H, we have the following properties:

(c₁) If $x \neq y$, then $y \rightarrow x \neq 1$ whenever $x \rightarrow y = 1$. (c₂) If $x \leq y$ and $y \leq z$ then $x \leq z$.

Proof. (c_1) Assume that $x \neq y$ and $x \rightarrow y = 1$. If $y \rightarrow x = 1$ then by (a_3) we have x = y. This is impossible.

(c₂) Suppose $x \leq y$ and $y \leq z$. Applying (b₉), we obtain $1 = x \rightarrow y \leq x \rightarrow z$, and so $x \rightarrow z = 1$ or $x \leq z$. The proof is complete.

For an *n* sequence $x_1, x_2, ..., x_n$ of a Hilbert algebra *H*, consider the $(n-1) \times n$ matrix

$$A = \begin{pmatrix} x_2 \rightarrow x_1 & x_1 \rightarrow x_2 & \dots & x_1 \rightarrow x_n \\ x_3 \rightarrow x_1 & x_3 \rightarrow x_2 & \dots & x_2 \rightarrow x_n \\ \vdots & \vdots & \ddots & \vdots \\ x_n \rightarrow x_1 & x_n \rightarrow x_2 & \dots & x_{n-1} \rightarrow x_n \end{pmatrix}$$

For convenience in this paper, we call A the *H*-matrix relative to the n sequence $x_1, x_2, ..., x_n$.

THEOREM 4. Let $x_1, x_2, ..., x_n$ $(n \ge 2)$ be a *n* sequence of a Hilbert algebra *H*. If $x_i \ne x_j$, whenever $i \ne j$ $(1 \le i, j \le n)$ then there exists a column in the *H*-matrix *A* which consists of nonunit elements.

280

Proof. The proof will be by induction on n. If n = 2 then the *H*-matrix is

$$A = (x_2 \to x_1, x_1 \to x_2).$$

Assume that $x_2 \to x_1 = x_1 \to x_2 = 1$. Then, by (a_3) , we have $x_1 = x_2$, which is a contradiction. Hence the assertion holds for n = 2. Suppose that the theorem is true for n = k. For a k + 1 sequence $x_1, x_2, \ldots, x_k, x_{k+1}$ of H, let $x_i \neq x_j$ whenever $i \neq j$ $(1 \leq i, j \leq k+1)$ and let

$$A_{k+1} = \begin{pmatrix} x_2 \to x_1 & x_1 \to x_2 & \dots & x_1 \to x_k & x_1 \to x_{k+1} \\ x_3 \to x_1 & x_3 \to x_2 & \dots & x_2 \to x_k & x_2 \to x_{k+1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ x_k \to x_1 & x_k \to x_2 & \dots & x_{k-1} \to x_k & x_{k-1} \to x_{k+1} \\ x_{k+1} \to x_1 & x_{k+1} \to x_2 & \dots & x_{k+1} \to x_k & x_k \to x_{k+1} \end{pmatrix}$$

be its H-matrix. Denote

$$A_{k} = \begin{pmatrix} x_{2} \rightarrow x_{1} & x_{1} \rightarrow x_{2} & \dots & x_{1} \rightarrow x_{k} \\ x_{3} \rightarrow x_{1} & x_{3} \rightarrow x_{2} & \dots & x_{2} \rightarrow x_{k} \\ \vdots & \vdots & \ddots & \vdots \\ x_{k} \rightarrow x_{1} & x_{k} \rightarrow x_{2} & \dots & x_{k-1} \rightarrow x_{k} \end{pmatrix}$$

Then A_k is the *H*-matrix relative to the *k* sequence $x_1, x_2, ..., x_k$. By inductive hypothesis, there exists a column in A_k , which consists of nonunit elements. Without loss of generality we may assume that

$$\begin{cases} x_2 \to x_1 \neq 1, \\ x_3 \to x_1 \neq 1, \\ \vdots \\ x_k \to x_1 \neq 1. \end{cases}$$

Now it suffices to discuss the following cases:

If $x_{k+1} \to x_1 \neq 1$ then each element in the first column of A_{k+1} is not equal to 1, and we obtain the results.

Assume $x_{k+1} \to x_1 = 1$. Since $x_1 \neq x_{k+1}$, it follows from (c_1) that $x_1 \to x_{k+1} \neq 1$. We then claim that $x_i \to x_{k+1} \neq 1$ for all $2 \leq i \leq k$. In fact, if not, then there exists i_0 $(2 \leq i_0 \leq k)$ such that

 $x_{i_0} \to x_{k+1} = 1$. Using (c_2) , we get $x_{i_0} \to x_1 = 1$. This is impossible, and so $x_i \to x_{k+1} \neq 1$ for all $1 \leq i \leq k$. Hence the assertion holds for n = k + 1. This finishes the proof of the theorem.

For a set S denote the cardinal of S by |S|. For a Hilbert algebra $(H; \rightarrow, 1)$, |H| is called to be the order of this algebra. If $|H| < \infty$, then $(H; \rightarrow, 1)$ is called to be of *finite order*; if |H| = n, then it is said to be of order n; if $|H| = \infty$, then it is said to be of *infinite order*.

THEOREM 5. Let H be a bounded Hilbert algebra. If S is a Hilbert subalgebra of H, then $|S| \ge 2$.

Proof. We note that $0 \in S$, so that $0 \to 0 = 1 \in S$. Hence $|S| \ge 2$.

THEOREM 6. Any bounded Hilbert algebra of order n + 1 must contain a Hilbert subalgebra of order $n \ge 2$.

Proof. Let $H = \{0, x_1, x_2, ..., x_{n-1}, 1\}$ be a bounded Hilbert algebra of order n + 1, in which $x_i \neq x_j$ whenever $i \neq j$ and let

$$B = \begin{pmatrix} x_2 \to x_1 & x_1 \to x_2 & \dots & x_1 \to x_{n-1} \\ x_3 \to x_1 & x_3 \to x_2 & \dots & x_2 \to x_{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n-1} \to x_1 & x_{n-1} \to x_2 & \dots & x_{n-2} \to x_{n-1} \end{pmatrix}$$

be the *H*-matrix relative to the n-1 sequence $x_1, x_2, ..., x_{n-1}$. By Theorem 4, there exists a column in *B* which consists of nonunit elements. Without loss of generality, we can suppose it is the last column of *B*, that is,

$$x_i \to x_{n-1} \neq 1$$
, for all $i = 1, 2, ..., n-2$.

We now show that $H' = \{0, x_1, ..., x_{n-2}, 1\}$ is a Hilbert subalgebra of H. If H' is not a Hilbert subalgebra of H, then there exist distinct subscripts i and j $(1 \le i, j \le n-2)$ such that $x_i \to x_j = x_{n-1}$. It follows from (a_1) that

$$x_j \to x_{n-1} = x_j \to (x_i \to x_j) = 1,$$

which contradicts to $x_i \rightarrow x_{n-1} \neq 1$ for all i = 1, 2, ..., n-2. This completes the proof.

THEOREM 7. Let H be a bounded Hilbert algebra of order $n \geq 2$ and let N(k) denote the number of Hilbert subalgebras of order k in H. Then $1 \leq N(k) \leq \binom{n-2}{k-2}$ for k = 2, ..., n.

Proof. We note that any Hilbert subalgebra of order $k(2 \le k \le n)$ consists of 0,1 and k-2 elements $(\ne 0,1)$. Since there are n-2 elements $(\ne 0,1)$ in H, therefore $N(k) \le \binom{n-2}{k-2}$. Using Theorem 6, We have $1 \le N(k)$ for all $k(2 \le k \le n)$. The proof is complete.

If H is a bounded Hilbert algebra and $x \in H$, we denote by $x^* = x \to 0$.

PROPOSITION 8 ([3]). Let H be a bounded Hilbert algebra and $x, y \in H$. Then

 $\begin{array}{ll} (b_{10}) \ 0^* = 1, \ 1^* = 0. \\ (b_{11}) \ x \to y^* = y \to x^*. \\ (b_{12}) \ x \to x^* = x^*, \ x^* \to x = x^{**}. \\ (b_{13}) \ x \to y \le y^* \to x^*. \\ (b_{14}) \ x \le y \text{ implies } y^* \le x^*. \\ (b_{15}) \ (x \to y)^{**} = x^{**} \to y^{**}. \end{array}$

PROPOSITION 9. In a bounded Hilbert algebra H, the following properties hold:

(c₃) $x \le x^{**}$. (c₄) $x^{***} = x^{*}$.

Proof. Using (b_6) , we have $x \leq (x \to 0) \to 0 = x^* \to 0 = x^{**}$ and $x^* = x \to 0 = ((x \to 0) \to 0) \to 0 = (x^* \to 0) \to 0 = x^{**} \to 0 = x^{***}$. This completes the proof.

DEFINITION 10. Let H be a bounded Hilbert algebra. If an element x of H satisfies $x^{**} = x$, then x is called an *involution*.

Denote by $\mathcal{I}(H)$ the set of all involutions of H. Since $1^{**} = 1$, the element 1 is contained in $\mathcal{I}(H)$. Hence $\mathcal{I}(H)$ is not empty.

THEOREM 11. For any bounded Hilbert algebra H, $\mathcal{I}(H)$ is a Hilbert subalgebra of H.

Proof. Let $x, y \in \mathcal{I}(H)$. Using (b_{15}) ; then we have

$$(x \to y)^{**} \to (x \to y) = (x^{**} \to y^{**}) \to (x \to y)$$
$$= (x \to y) \to (x \to y) = 1,$$

that is, $(x \to y)^{**} \leq x \to y$. It follows from (c_3) and (a_3) that $(x \to y)^{**} = x \to y$, which means that $x \to y \in \mathcal{I}(H)$. Since $0^{**} = 0$, we have $0 \in \mathcal{I}(H)$. Hence $\mathcal{I}(H)$ is a Hilbert subalgebra of H.

COROLLARY 12 ([2]). If H is a bounded Hilbert algebra, then the following assertions are equivalent:

 (c_5) H is a Boolean lattice relative to natural ordering.

 (c_6) Every element of H is involution.

DEFINITION 13. Let H be a Hilbert algebra. For $a \in H$, the set $H_a := \{x \in H | x \to a = a\}$ is called the *stabilizer* of a in H.

The following theorem is obvious.

THEOREM 14. For a Hilbert algebra H and $a \in H$, we have

 $H_a = H$ if and only if a = 1 if and only if $a \in H_a$.

DEFINITION 15 ([5]). If H is a Hilbert algebra, a subset D of H is called a *deductive system* of H if it satisfies:

 $(a_4) \ 1 \in D,$

 $(a_5) x \in D \text{ and } x \to y \in D \text{ imply } y \in D.$

THEOREM 16. For a Hilbert algebra H and $a \in H$, the stabilizer H_a of a is a deductive system of H.

Proof. Since $1 \to a = a$, we have $1 \in H_a$. Let $x \in H_a$ and $x \to y \in H_a$. Then $x \to a = a$ and $(x \to y) \to a = a$. From (b_1) , we get $a \leq y \to a$. Now

$$(y \to a) \to a = (y \to (x \to a)) \to a$$
$$= (x \to (y \to a)) \to a \quad [by (b_5)]$$
$$= ((x \to y) \to (x \to a)) \to a \quad [by (b_3)]$$
$$= (x \to ((x \to y) \to a)) \to a \quad [by (b_5)]$$
$$= (x \to a) \to a$$
$$= a \to a$$
$$= 1,$$

and so $y \to a \leq a$. Hence $y \to a = a$ or $y \in H_a$. This completes the proof.

THEOREM 17. In a Hilbert algebra of order n, any deductive system of order n - 1 is the stabilizer of some element.

Proof. Let H be a Hilbert algebra of order n and let D be a deductive system of order n-1. Assume that $a \notin D$. Then for any $x \in D$, $x \to a \notin D$. Hence $x \to a = a$ or $x \in H_a$. Since $a \neq 1$, we have $a \notin H_a$. Therefore $D = H_a$, completing the proof.

THEOREM 18. Let H be a Hilbert algebra of order n and let D be a proper deductive system of H. Then there exists an element $a(\neq 1)$ in H such that $D \subseteq H_a$.

Proof. Since $H \\ D = \emptyset$ and $|H \\ D| < \infty$, there exists a maximal element, say a, in $H \\ D$. It is obvious that $a \neq 1$. For any $x \in D$, $x \to a \notin D$ or $x \to a \in H \\ D$. Since a is a maximal element in $H \\ D$, by using (b_1) we have $x \to a = a$ or $x \in H_a$. This means that $D \subseteq H_a$ which completes the proof.

References

- 1. R. Balbes and P. Dwinger, *Distributive lattice*, University of Missouri Press (1974).
- 2. D. Busneag, A note on deductive systems of a Hilbert algebra, Kobe J. Math 2 (1985), 29 35
- 3. D. Busneag, Hilbert algebras of fractions and maximal Hilbert algebras of quotients, Kobe J. Math. 5 (1988), 161 - 172.
- 4. D. Busneag, Hertz algebras of fractions and maximal Hertz algebras of quotients, Math Japon. 39 (1993), 461 - 469.
- 5 A. Diego, Sur les algébras de Hilbert, Ed. Hermann, Colléction de Logique Math Serie A 21 (1966).
- 6 G. Gratzer, Lattice theory, W H. Freeman and Company, San Francisco (1979).
- 7. J. Hashimoto, Ideal theory for lattices, Math. Japon 2 (1952), 149 186.
- 8. Y. B. Jun, Deductive systems of Hilbert algebras, to appear in Math. Japon
- 9 J. Meng and Y. B. Jun, BCK-algebras, Kyung Moon Sa Co., Seoul, Korea (1994).

Department of Mathematics (Education) Gyeongsang National University Chinju 660-701, Korea