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ON THE UNIQUENESS OF SEQUENTIAL LIMITS
IN SEQUENTIAL CONVERGENCE SPACES

Woo Chorl Hong and Seonhee Kweon

1・ Introduction
It is well known that every compact subset of a Hausdorff space is 

closed. In [4], A. J. Insel obtained the following result:

THEOREM [4]. Let X be a first-countable space. X is Hausdorff if 
and only if every compact subset of X is closed.

I교 this note, we shall introduce sequential convergence spaces and 
study the relationship between  ̂HausdGrflLnes& ami 飞曲球厘母心s ef se
quential limits in a sequential convergence space. We shall obtain above 
A. J. InsePs reault for the case in which we replace a first-countable 
space ( Hausdorffness) by a sequential convergence space (resp. unique
ness of sequential limits). Moreover, we shall prove that a sequential 
convergence space X has unique sequential limits if and only if every 
sequentially compact subset of X is closed.

2. Sequential Convergence Spaces
In this section, we introduce sequential convergence spaces. Let X 

be any non-empty set and let S(X) be the set of all sequences in X. A 
non-empty subfamily L of S(X) x X is called a sequential convergence 
structure on X if it satisfies the following properties:

(SCI) For each w € X, ((x),x) 6 L, where (x) is the constant 
sequence whose the k~th term is x for all indices k.

(SC2) If ((xn),x) G L, then ((x^(n)), x) G L for each subsequence 
(£©(n))(*^n)*

(SC3) Let x E X and A C X. If ((?/„), x) E L for some (t/n) in 
{y € X|((zn),y) E L ior some (zn) in A}, then ((a:n),x) € L fb호 some 
(xn)in A.
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THEOREM 2.1 [3]. Let L be a sequential convergence structure on 
X. Define a function Cl : P(X) —> P(X) by

Cjr(A) = {x e X|((xn), x) E L for some (xn) in A}

for each subset A of X, where P(X) is the power set of X. Then Cl is 
a Kuratowski 시osure operator on X and hence (X)0乙) is a topological 
space.

Hereafter, we use the notation (X, £) for and we call the
pair (X, L) a sequential convergence space [3].

In a topological space X, the following property is called Frechet- 
Urysohn [1, 5, 7];

Let A C X and x E X. x E Cl(A) if and 
only if (xn) converges to x in X for some se
quence (xn) in A, where C/(A) is the closure 
of A.

REMARK. (1) It is well known that every first-countable space, and 
hence each metric space and each discrete space, has the Firechet- 
Urysohn property.

(2) A topological space is called a FYechet space [7] (or a Firechet- 
Urysohn space [5]) if it has the FYechet- Urysohn property.

(3) Every sequential convergence space has the Frechet- Urysohn 
property by Theorem 21.

THEOREM 2.2. Let (X： 丁) be a topological space. If X has the 
Frechet-Urysohn property, then Lr is a sequential convergence struc
ture on X, where

Lt = (((xn), x) G S(X) x X|(xn) converges to x in X}.

Proof, (SCI) and (SC2) are obvious. (SC3): Let A C X and x E X. 
Assume that ((^n),x) € Lr for some (yn) in

{y € X|((2M),g) € Lr for some (zn) in A}

Then, since X has the Frechet-Urysohn property,

{y G X|((2m), y) € Lr for some (气)in A} = Clt(A),
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where is the Kuratouski closure operator on X defined by LT as
Theorem 2.1, and x € C乙，(功十。4)) = Cir(A). Thus, ((xn),x) €-Lr 
for some (xn) in A.

It is easy to verify that {U C X\Clt(X — U)=X — 1厂} = and 
hence we obtain that two spaces (X, t) and (X,Zr) have exactly same 
topology. Consequently, we have that every topological space having 
the Frechet-Urysohn property is a sequential convergence space.

THEOREM 2.3 [3]. Let (X0) be a sequential convergence space 
and x E A C X. Then, A is a neighborhood of x in (X, L) if and only 
if for each ((xn), x) € L, (xn) is eventually in A.

COROLLARY 2.4. Every Grst-countable space〉and hence each met
ric space and each discrete space, is a sequential convergence space.

Proof. Let (X, r) be a first- countable space and let

Lr = G S(X) x X|(xn) converge to

Then, it is easy to prove that LT is a sequential convergence structure 
on X and

r = {Uc X|CL(X 一 C) = X - U}.

Thus (X, r) is a sequential convergence space.

Next, we show that the converse of above corollary is not true, in 
general.

EXAMPLE 2.5. Let X be a uncoxmtable discrete space. Then, the 
one-point compactification X*, let X* = XU {oo}? of X is a sequential 
convergence space, but not first-countable.

Proof. First, we show that X* is a sequential convergence space. By 
Theorem 2.2, it is sufficient to prove that X* has the Frechet-Urysohn 
property. Let 4 U X* and z G If C，x*(4) = 4 , then there
exists the constant sequence (z) in A with (z) converges to z in X* 
and hence it holds. We divide this proof into two cases:

Case 1: If 8 C A, then it is clear that C?x*(4) = A, For, if 
z E C7x*(4) — -A, then z E X and hence {z} is open in X(and open 
in X*))impossible.

Case 2: If A C X, 난icn either A — Clx*(A) or AU{oo} = CI%* (A). 
Hence we must prove this for the case AU(oo} = CZx*(A), i.e., z = oo.
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Since oo € {7 A A 0 for each open set U containing oo in
X*. Since X is discrete, every open set containing oo in X* is the 
form X* — F, where F is a finite subset of X. It follows that A is 
infinite and for every infinitely countable subset {xn\n E 2V} in A, the 
sequence (xn) in A converges to oo in X*. Thus, X* has the FYechet- 
Urysohn property. Next we show that X* is not first-countable. Since 
X is an uncountable discrete space, the local base of oo in X* is 
a superset of the uncountable set {X* — {x}|x € X} and hence X* 
is not first-count able. Therefore X* is a sequential convergence space, 
but not 血st-count able.

It is easy to verify that for a first-countable space X、X is Hausdorff 
if and only if X has unique sequential limits, i.e., every convergence 
sequence in X has only one limit point in X. It is also clear that 
if a topological space X is Hausdorff, then X has unique sequential 
limits, but the converse is not true in general. In [1], an example of a 
non first -count able Frechet space (and hence a sequential conver^iee 
space), not Hausdorff, but with unique sequential limits was given as 
follows: Let X = (、N x N) U {p, q} with q and {p, q) (N x N)= 
0, where N is the set of all natural numbers. Each (i, j) E N x N 
will be discrete. Basic open neighborhoods of p will be of the form 
{p} U J) I j E N} for each k E and those of q of the form

UU而,j) \j 2 L € N}.

3. Main Results
We now shall show A. J. Ins시's result for the case in which we 

replace a first-countable space (Hausdorffness) by a sequential conver
gence space (resp. uniqueness of sequential limits). The proof of this 
theorem is very similar to Theorem 3.3 below and hence we omit.

THEOREM 3.1. Let (X, L) be a sequential convei^ence space. Then, 
X has unique sequential limits if and only if every compact subset of 
X is closed.

Combining Corollary 2.4 and Theorem 3.1, wc have A. J. InseFs 
result.

COROLLARY 3.2 [4]. Let X be any Srst-countable space. Then, X 
is Hausdorff if and only if every compact subset of X is 시osed.
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Finally, we shall obtain Theorem 3.1 for the case in which we replace 
compactness by sequential compactness.

REMARK. (1) There are compact HausdorfFspaces that are not se
quentially compact (See [2, p.313]).

(2) There are sequentially compact HausdorfF, first-countable spaces 
that are not compact (See [6, p.16이).

THEOREM 3.3. Let (X、L) be a sequential convergence space. Then, 
X has unique sequential limits if and only if every sequentially compact 
subset of X is closed.

Before we prove this theorem, we show the following lemma.

LEMMA 3.4. Let X be any topological space and let (xn) be a se
quence in X with xn x E X. Then, let A = {xn\n E N} U {t), A is 
a sequentially compact subset of X.

Proof. Let (yn) be a sequence in A. If the range {yn|n G N} of 
(yn) is finite, it is obvious that (j/n) has a convergent subsequence. 
Assume that the range (yn|n € N} of (yn) is infinite. If there exists 
z G {?/n|^ C 】V} such that (n € N\z = yn} is infinite, then it is clear 
that the constant sequence (z) is a convergence subsequence of (yn). 
If (?/n) does not have any constant subsequence, we can construct a 
subsequence (；©(”)) of (yn) using the well-orderedness of the natural 
number set N as follows : Put %=the first element of {n E 7V|3：n G 
{如|卩 € N}} and。(1) = max{n G N\xai = yn}« Put %=the first 
element of {n € 7V|xn E {yn\^ > 4(1)}} and ,(2) = max{n € N\xa2 = 
yn, n > ©(1)}. By induction, for each p E N(p M), we can take

oip = the first element of {n C JV|xn 6 {?/n|n > Mp 一 1)}) 

and
Mp、) = max{n G N|电卩=侦□> 4»P 一 】)}•

Then, clearly, this sequence (y^(n)) is a subsequence of (yn) and also a 
subsequence of (xn), and thus g©(n)-> x because xn —> x.

Proof of Theorem 3.3* Suppose that there is a sequence (xn) in X 
such that xn —> p and xn q with p 尹 g. We divide this proof into 
two cases.
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Case 1. (n € N\xn = p} is infinite (or {n € 2V|xn = q} is infinite).
Then, clearly, the constant sequence (p) is a subsequence of (zn). 

Since X is a sequential convergence space, by (SC 2), (p) also converges 
to p and q. It is clear that {p} is sequentially compact and hence, by 
hypothesis, {p} is closed and so {p} = C匕({,}))which is a contradic
tion to the fact that the constant sequence (p) converges to p and q 
with p /

Case 2. (n £ N\xn = p or xn q} is finite.
Then, there exists a subsequence (%机財)of (^n) such that x^(n)丰 p, 

供 q for all n € TV. Since X is a sequential convergence space and 
(xn) converges to p and q , by (SC2), also converges to p and 
q. Let A = {x^(n)|n £ N}. Then, by above Lemma 3.4, A U {p} is 
sequentially compact. By hypothesis, AU{p} is closed, and so A(J{p]= 
Cl(A U {p)). It follows that q 金 Cl(A U {p)) and hence there does 
not exist a sequence (yn) in A U {p} such that yn —> g, which is a

and q with p # q・ Therefore, we have that every convergent sequence 
in X has only one limit, and so X is Hausdorff.

Conversely, assume that X has unique sequential limits and let A 
be a sequentially compact subset of X. It is enough to show that 
Cl(A) C A. Let x G Then, since X is a sequential convergence 
space, X has the FYechet-Urysohn property and hence there exists a 
o quence (xn) in A such that xn t x. Since A is sequentially compact; 
every sequence in A has a convergent subsequence which converges to 
a point in & it follows that the limit of any convergent sequence in A 
is in A. Thus we have that x € A, and therefore A is closed.

Combining Corollary 2.4 and Theorem 3.3, we have the following.

COROLLARY 3.5. Let X be a first-countable space. Then, X is 
Hausdorif if and only if every sequentially compact subset of X is 
closed.
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