A NOTE ON JOINTLY CENTRALOID OPERATORS

ROO, CHEONSOUNG, PARK, YOUNGSIK AND JE, HAIGON

1.Introduction

Let B(H) be the algebra of bounded operators on a complex Hilbert space H and $A = (A_1, A_2, \ldots, A_n)$ be an *n*-tuple of operators on H. By an operator-family we shall mean a commuting *n*-tuple of operators and denote the set of all operator-familes by $B^n(H)$. We shall say that a point $z = (z_1, \cdots, z_n)$ of \mathbb{C}^n is in Taylor's joint spectrum $S_p(A)$ of A if $z - A = (z_1 - A_1, \ldots, z_n - A_n)$ is singular. The joint numerical range W(A) of A is the subset of \mathbb{C}^n such that $W(A) = \{((A_1x, x), \cdots, (A_nx, x)) : x \in H, ||x|| = 1\}$. The joint norm, joint spectral radius and joint numerical radius of A, denote by ||A||, r(A) and w(A) respectively, are defined by

$$\begin{split} \|A\| &= \sup\{(\sum_{k=1}^{n} \|A_{k}x\|^{2})^{\frac{1}{2}} : \|x\| = 1\},\\ r(A) &= \sup\{(\sum_{k=1}^{n} |z_{k}|^{2})^{\frac{1}{2}} : (z_{1}, z_{2}, \cdots, z_{n}) \in S_{p}(A)\} \text{ and }\\ w(A) &= \sup\{(\sum_{k=1}^{n} |(A_{k}x, x)|^{2})^{\frac{1}{2}} : \|x\| = 1\} \text{ respectively.} \end{split}$$

We shall abbreviate $((A_1x, x), \dots, (A_nx, x))$ and $(\sum_{k=1}^n ||A_kx||^2)^{\frac{1}{2}}$ to (Ax, x) and ||Ax||, respectively. It is will known $||A|| \ge w(A) \ge r(A)$.

We shall introduce some classes of operator-familes. An operator-family A is called jointly noramloid, jointly transloid, jointly spectraloid and jointly convexoid, respectively if ||A|| = w(A), A-z is jointly normaloid for any point z, w(A) = r(A) and $\operatorname{Co}S_p(A) = \operatorname{Co}\overline{W(A)}$, respectively.

Received September 7,1994.

Let R_A and W_A (resp. z_A and w_A) be the jointly radius (resp.center) of the smallest disc containing $S_p(A)$ and W(A) of A. Then these radius are translatable in the sense that $R_{A-z} = R_A$ and $W_{A-z} =$ W_A , respectively for every complex number z. Obviously, R_A and W_A corresponds to R(A) and w(A) respectively. In [4], we introduced the jointly centroid operator as follows:

An opertor family $A(\in B^n(H))$ is called jointly centroid if $A - z_A$ is jointly normaloid. In [2], Fan Ming showed that $A(\in B^n(H))$ satisfies the inequality $\sup\{||Ax||^2 - |(Ax,x)|^2\} \ge R_A^2$. Moreover, if A is jointly transloid, then the above equality holds. In [4], we introduced the jointly transcendentral radius M_A as $M_A = \sqrt{B_A}$ where

$$B_A = \sup_{\|x\|=1} \{ \|Ax\|^2 - |(Ax,x)|^2 \}$$
 which was due to Garske [3].

In Takaguchi [5], the center m_A of mass for an *n*-tuple of operators A has been defined and stated that the center m_A of A is coincident with the center of the smallest sphere contains of $S_p(A)$ in the case of A being jointly transloid. In this note, We shall modify that the Fan Ming's theorem [2] and introduce a new class of operator-families called jointly centraloid, which includes both a classes of jointly-convexoid operayor-families and a class of jointly centroid operator-families. Moreover, we shall observe that the class of jointly centraloid operator-families includes some kinds of classes of operators-families.

2. Jointly Transcendental radius and jointly centraloid operators

At first, we shall show that M_A is translatable. Since

$$\sum_{k=1}^{n} (\|A_{k}x\|^{2} - |(A_{k}x,x)|^{2}) = \sum_{k=1}^{n} \{\|(A_{k}-z_{k})x\|^{2} - |((A_{k}-z_{k})x,x)|^{2}\}$$

for all $z \in \mathbb{C}^n$, we have $M_{A-z} = M_A$. In [4], $||A - m_A|| = M_A$ and if A is an *n*-tuple of operators, then there exists a unique $m_A \in \mathbb{C}^n$ such that $||A - m_A||^2 + |z|^2 \le ||(A - m_A) + z||^2$ for all $z \in \mathbb{C}^n$.

Hence the jointly transcendental radius is nothing but the distance between A and scalars. We shall prove the following modification of the Fan Ming's theorem [2]:

266

THEOREM 1. The jointly transcendental closed ball of A contains W(A) and $S_{p}(A)$, so $R_{A} \leq W_{A} \leq M_{A}$.

Proof. Since M_A and W_A are translatable, we may assume that $m_A = 0$, that is $M_A = ||A||$. Hence the jointly transcendental closed ball centered the orgin with radius ||A|| clearly contains W(A). Since R_A and W_A correspond to r(A) and w(A) respectively, $R_A \leq W_A$, and so $R_A \leq W_A \leq M_A$.

REMARK.

(1) If $R_A = M_A$, then A is a jointly centroid operator-family.

(2) By the uniqueness of the smallest disc containing W(A), we can deduce that $W_A < M_A$ unless $w_A = m_A$.

(3) If $M_A = W_A$, then $m_A = w_A$.

(4) A jointly translod operator-family is jointly centroid.

We shall introduce a jointly centraloid operato-family as follows: $A(\in B^n(H))$ is jointly centraloid if $A - z_A$ is jointly spectraloid.

LEMMA 2 [2]. An operator-family A is jointly convexoid if and only if A - z is jointly spectraloid for all $z = (z_1, \dots, z_n)$.

From Lemma 2, every jointly convexoid operator-family is jointly centraloid.

LEMMA 3 [4]. An operator-family A is jointly centroid if and only if $B_A = R_A^2$.

The following characterization of centraloid operator-families is in parallel with one of jointly centroid operator-families given in [4]:

THEOREM 4. An operator-family A is jointly centraloid if and only if $W_A = R_A$.

Proof. Since $R_A = r(A - z_A)$, if A is jointly centraloid, then $w(A - z_A) = r(A - z_A) = R_A$. But we have $W_A < w(A - z)$ for $z \neq w_A$ and $W_A \leq w(A - z_A) = R_A$. Thus it follows from Theorem 1 that $W_A = R_A$. Conversely, if $W_A = R_A$, then $r(A - w_A) = w(A - w_A) = W_A = R_A \leq r(A - w_A)$, so $r(A - w_A) = R_A$.

COROLLARY 5. Every jointly centroid operator-family is jointly centraloid.

Proof. It is obviously by Lemma 3 and Theorem 4.

COROLLARY 6. An operator-family A satisfies $M_A = W_A$ if and only if $A - w_A$ is jointly nomaloid.

Proof. Since $W_A \leq w(A - m_A) \leq ||A - m_A|| = M_A$, if $M_A = W_A$, then $W_A = w(A - m_A)$ and $w(A - m_A) = ||A - m_A||$ Hence $A - m_A$ is jointly normaloid. Since $m_A = w_A$, $A - w_A$ is jointly normaloid. Conversely, if $A - w_A$ is jointly normaloid, then $M_A \leq ||A - w_A|| = w(A - w_A) = W_A \leq M_A$. Thus $W_A = M_A$.

From Lemma 2,3 and Theorem 4, we shall show that the following:

REMARK.

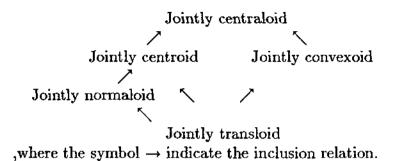
(1) There is a jointly centraloid operator-family which is not jointly centroid.

Let $A_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and $A_2 = \begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix}$. Then $A = (A_1, A_2)$ is a commuting pair of operator A_1 and A_2 , $S_p(A) = \{(1,0), (1,1)\}$, and $R_A = \frac{1}{2}$. Also we have $W_A = \frac{1}{2}$ for the unit vector $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ with $x_1 \ge x_2 \ge 0$, While $B_A = 1 > \frac{1}{4} = R_A^2$. Thus A is jointly centraloid but jointly centroid.

(2) There is a jointly centraloid operator-family which is not jointly convexoid. Let A_1 be the 4×4 identity matrix and $A_2 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \oplus \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Then $A = (A_1, A_2)$ is a commuting pair of operators A_1 and $A_2, S_p(A) = \{(1,0), (1,1), (1,-1)\}, z_A = (1,0), \text{ and } R_A^2 = 1 = B_A$. Thus A is jointly centraloid but A - z is not jointly spectraloid for any $z \in \mathbb{C}^2$, so that A is not jointly convexoid.

From Remark,Lemma 2, Corollary 5 and in [4], we shall show that the class of jointly centraloid operator-framilies includes the following kinds of classes of operator-families:

268



References

- 1. M.Cho and M.Takaguchi, Some classes of commuting n-tuple of operators, Studia Math. 802 (1984), 245-259.
- 2. M.Fan, Garske's inequality for an n-tuple of operators, Integral Equation and Operator Theory 14 (1991), 787-793.
- 3. G.Garske, An equality cocerning the smallest disc that contains the spectrum of an operator, Proc.A M.S. 78(4) (1980), 529-532
- 4. H.G. Je, Y.S. Park and C.S. Ryoo, On the properties of jointly operators, Pusan Kyongnam Math.J. 9(2) (1993), 251-260
- 5. M.Takaguchi, Centers of mass for operator-familes, Glasgow Math.J 34 (1992), 123-126.

Department of Mathematics Faculty of Science Kushu University Fukuoka,Postal No.812,Japan

Department of Mathematics University of Ulsan Ulsan 680-749,Korea