BOUNDARY OF MINKOWSKI ARC LENGTH IN MINKOWSKI PLANE

Y. D. Chai* and Young Soo Lee

1. Introduction

Chakerian, in [4], generalized Crofton's formula and Poincaré's formula in the Euclidean plane to them in Minkowski plane.

For a convex set K in a Minkowski plane H.Flanders[5] proved the Bonnesen inequality in Minkowski plane:
$\rho L-A-T \rho^{2} \geq 0$ for all ρ in the interval $\left[r_{t n}, r_{o u t}\right]$ where L is Minkowski arc length, A is Euclidean area, T is Euclidean area of isoperimetrix of the Minkowski plane and $r_{t n}$ and $r_{o u t}$ are inradius and outradius respectively.

In this paper, We develop arc length formula and area formula for the parallel set in a Minkowski plane. As an application we obtain boundary of the ratio of Minkowski arc length and Euclidean arc length.

2. Preliminaries

For a centrally symmetric closed convex curve U enclosing area π and with center at the origin O of the Euclidean plane R^{2} we shall assume throughout that U is smooth and has positive finite curvature everywhere.
A usual norm $\|\cdot\|$ on R^{2} defines a Minkowski metric, m, using the formula

$$
\begin{equation*}
m(x, y)=\frac{\|x-y\|}{r} \tag{1}
\end{equation*}
$$

Received June 27,1994.
Supported by grants from KOSEF and BSRI-94-. .
where $\|x-y\|$ is the Euclidean distance from x to y,and r is the radius of U in the direction of vector $x-y$. The set of points of R^{2}, together with metric m is the Minkowskian plane, M^{2}. Certainly U is the unit ball in M^{2} and it will be referred to as the indicatrix. Given a norm $\ell(\cdot)$ on R^{2}, one can define a Minkowski metric m using the formula $m(x, y)=\ell(x-y)$ so that unit ball is a convex set symmetric with respect to the origin.

To describe the Minkowski geometry associated with U and its relation to the Euclidean geometry of R^{2} we begin with two vectors $e_{1}=(\cos \theta, \sin \theta)$ and $e_{2}=(-\sin \theta, \cos \theta)$ which are orthonormal with respect to the Euclidean metric. Now let the boundary of U be described in polar coordinates by a function $r(\theta)$. In searching for a substitute for the Frenet frame used in Euclidean geometry we set

$$
\begin{equation*}
t(\theta)=r(\theta) e_{1}(\theta), n(\theta)=\frac{1}{r(\theta)} e_{2}(\theta)-\left(\frac{1}{r(\theta)}\right)^{\prime} e_{1}(\theta) . \tag{2}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\frac{d t}{d \theta}=(r(\theta))^{2} n(\theta), \frac{d n}{d \theta}=-h(\theta)\left(h(\theta)+\frac{d^{2} h}{d \theta^{2}}\right) t(\theta) \tag{3}
\end{equation*}
$$

where $h(\theta)=\frac{1}{r(\theta)}$.
The trace of $n(\theta), 0 \leq \theta \leq 2 \pi$, is a convex set I, which is the so-called isoperimetrix, because it has the minimum boundary length (using the Minkowski definition of length) among all convex sets with a given area.(see [2] and [3].) It is easy to verify that I is polar reciprocal of U, with respect to the Euclidean unit circle,rotated through $\operatorname{deg} 90$. We shall always denote by T the area enclosed by I. In terms of radial function r the function $h=\frac{1}{r}$ is the support function for the isoperimetrix I. Also I is up to homothety the unique convex shape which minimizes the Minkowski arc length of the boundary for a given enclosed area.

If $X:[0,1] \rightarrow R^{2}$ describes a differentiable curve,then

$$
\begin{equation*}
L(X)=\int_{0}^{1} \ell\left(X^{\prime}(u)\right) d u=\int d \sigma \tag{4}
\end{equation*}
$$

is the Minkowski length of the curve. The Minkowski element of arc length at any point is related to the Euclidean arc length by $d \sigma=$ $r^{-1} d s$.

3. Parallel set and Geometric Inequalities in M^{2}

Definition 1. Given two bodies K and \tilde{K} the homothetic, transformation of \tilde{K} and the Minkowski sum of K and \tilde{K} are the sets $\epsilon \tilde{K}=\{\epsilon y \mid y \in K\}$ and $K+\tilde{K}=\{x+y \mid x \in K, y \in \tilde{K}\}$ respectively.

The set of convex bodies forms the positive cone of a vector space under these two operations. The "thickening" of K with respect to \tilde{K} is given by $K+\epsilon \tilde{K}$ with epsilon positive. When \tilde{K} is the standard unit ball, this latter set is the set of all points in the plane whose distance from K is less than or equal to ϵ. The support function of the Minkowski sum satisfies $h_{K+\epsilon \bar{K}}=h_{K}+\epsilon h_{\tilde{K}}$. While \tilde{K} remains fixed and centered at the origin, we shall frequently wish to translate the set K. Translating K with respect to the origin corresponds to replacing h by $h+a \cos \theta+b \sin \theta$ for some a and b.([6]).

Definition 2. Let K be a convex set of area A and Minkowskian perimeter L in a Minkowski plane with isoperimetrix I containing area T. Then ϵ-parallel set is the set

$$
\begin{equation*}
K_{\epsilon}=K+\epsilon I . \tag{5}
\end{equation*}
$$

Let K be an analytic closed convex curve which contains the origin in its interior. If $h(\theta)$ is a support function of K, then the radius of curvature of K at q is $h(\theta)+h^{\prime \prime}(\theta)$ so that the euclidean line eiement
of K at q equals to $\left(h(\theta)+h^{\prime \prime}(\theta)\right) d \theta$. Therefore the Minkowski length $L(K)$ of K is

$$
\begin{equation*}
L(K)=\int_{0}^{2 \pi}\left(h(\theta)+h^{\prime \prime}(\theta)\right) \frac{1}{r\left(\theta+\frac{\pi}{2}\right)} d \theta \tag{6}
\end{equation*}
$$

where $r(\theta)$ is the radial function for the indicatrix U of the Minkowski plane if the orientation of K is positive.

In the following theorem, we calculate Minkowskian perimeter and area of parallel set of convex set.

Theorem 1. Let K_{t} be a t-parallel set of a convex set K. Then

$$
\begin{equation*}
L\left(K_{t}\right)=L(K)+2 T t, A\left(K_{t}\right)=A(K)+L(K) t+T t^{2} \tag{7}
\end{equation*}
$$

where L denotes Minkowskian perimeter and A denotes Euclidean area.

Proof. The proof is a straightforward calculation. Let $h(\theta)$ and $p(\theta)$ be the support functions of K and I respectively. Then the support function of K_{t} is $h_{t}(\theta)=h(\theta)+t p(\theta)$. So we have
(8) $L\left(K_{t}\right)=\frac{1}{2} \int_{0}^{2 \pi}\left(h_{t}(\theta)+h_{t}^{\prime \prime}(\theta)\right) \frac{1}{r\left(\theta+\frac{\pi}{2}\right)} d \theta$

$$
\begin{aligned}
= & \frac{1}{2} \int_{0}^{2 \pi}\left(h(\theta)+t p(\theta)+h^{\prime \prime}(\theta)+t p^{\prime \prime}(\theta)\right) \frac{1}{r\left(\theta+\frac{\pi}{2}\right)} d \theta \\
= & \frac{1}{2} \int_{0}^{2 \pi}\left(h(\theta)+h^{\prime \prime}(\theta)\right) \frac{1}{r\left(\theta+\frac{\pi}{2}\right)} d \theta \\
& \quad+\frac{t}{2} \int_{0}^{2 \pi}\left(p(\theta)+p^{\prime \prime}(\theta)\right) \frac{1}{r\left(\theta+\frac{\pi}{2}\right)} d \theta \\
= & L(K)+2 T t
\end{aligned}
$$

and

$$
\begin{align*}
A\left(K_{t}\right)= & \frac{1}{2} \int_{0}^{2 \pi}\left(h_{t}^{2}(\theta)-\left(h_{t}^{\prime}(\theta)\right)^{2}\right) d \theta \tag{9}\\
= & \frac{1}{2} \int_{0}^{2 \pi}\left(h^{2}(\theta)-\left(h^{\prime}(\theta)\right)^{2}\right) d \theta \\
& +t \int_{0}^{2 \pi}\left(h(\theta) p(\theta)-h^{\prime}(\theta) p^{\prime}(\theta)\right) d \theta \\
& +t^{2} \frac{1}{2} \int_{0}^{2 \pi}\left(p^{2}(\theta)-\left(p^{\prime}(\theta)\right)^{2}\right) d \theta \\
= & A(K)+L(K) t+T t^{2}
\end{align*}
$$

Theorem 2. Let K be a convex set of perimeter L in a Minkowski plane M^{2} with isoperimetrix I. If we denote r_{t} and r_{o} by inradius and outractius of I respectively, then

$$
\begin{equation*}
L_{e} r_{1} \leq L \leq L_{e} r_{o} \tag{10}
\end{equation*}
$$

where L_{e} is Euclidean perimeter of K and T is area of isoperimetrix.
Proof. Let D^{2} and D° denote the Euclidean disks of radius r_{2} and r_{o} respectively. Then we have

$$
\begin{equation*}
K+t D^{i} \subseteq K+t I \subseteq K+t D^{o} \tag{11}
\end{equation*}
$$

So we have

$$
\begin{equation*}
A\left(K+t D^{2}\right) \leq A(K+t I) \leq A\left(K+t D^{o}\right) \tag{12}
\end{equation*}
$$

So from (7) and (12) we have

$$
\begin{equation*}
L_{e} r_{i}+\pi t r_{\mathrm{t}}^{2} \leq L+T t \leq L_{e} r_{o}+\pi t r_{o}^{2} \tag{13}
\end{equation*}
$$

So if t tend to 0 , then we have the desired inequality in (10).
From the Theorem 2 we have the following corollary.

Corollary 1. Let K be a convex set with Minkowskian perimeter Land Euclidean perimeter L_{e} in a Minkowski plane M^{2} with isoperimetrix I.If we denote r_{i} and r_{0} by inradius and outradius of isoperimetrix I respectively, then $r_{1} \leq \frac{L}{L_{e}} \leq r_{o}$ and $\frac{L}{L_{e}}=1$ if and only if M^{2} is the Euclidean plane.

An easy corollary of the Crofton formula (Chakerian[4]) is that a convex hull of a closed simple curve has a boundary whose Minkowskian length is less than the Minkowskian length of the curve itself.

So we have the following corollary
Corollary 2. Let C be an arbitrary closed curve in M^{2}, and r_{2} and r_{o} inradius and outradius of isoperimetrix I respectively. If we denote the Minkowskian perimeter and Euclidean perimeter of convex hinll of C by \tilde{L} and $\tilde{L_{e}}$ respectively, then

$$
\begin{equation*}
\tilde{L} \leq r_{o}^{2} L_{e}, r_{i}^{2} \tilde{L}_{e} \leq L \tag{14}
\end{equation*}
$$

References

1. O.Biberstein, Elements de geometrie dafferentielle Minkowsktenne, thesis, University of Montreal.
2. H.Busemann, The isoperimetric problem th the Minkowski plane, Amer. J. Math. 69 (1947), 863-871.
3. --, The foundatzons of Minkowskzan geometry, Commentarii Mathematici Helvetici 24 (1950), 156-187.
4. G.D.Chakerian, Integral geometry in the Minkowsky plane, Duke Math. Journal 29 (1962), 375-382
5. H Flanders, A proof of Minkowski's mequality for convex curves, Amer. Math. Mo 75 (1968), 581-593.
6. M.E.Gage, Evolving plane curves by curvature in relative geometries, preprint.
7. L A Santalo, Integral Geometry and Geometric Probabrity, Addison-Wesley Publishing Co, 1976.

Department of Mathematics
Sung Kyun Kwan University
Suwon 440-746
South Korea

