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ABSTRACT

In this paper, we present an architecture
of the constant false alarm rate (CFAR) de-
tector called the generalized order statistics
(GOS) CFAR detector, which covers vari-
ous order statistics (OS) and cell-averaging
(CA) CFAR detectors as special cases. For
the proposed GOS CFAR detector, we ob-
tain unified formulas for the false alarm and
detection probabilities. By properly choos-
ing coefficients of the GOS CFAR detec-
tor, one can utilize any combination of or-
dered samples to estimate the background
noise level. Thus, if we use a reference
window of size N, we can realize 2¥ —1)
kinds of CFAR processors and obtain their
performances from the unified formulas.
Some examples are the CA, the OS, the
censored mean level, and the trimmed mean
CFAR detectors. As an application of the
GOS CFAR detector to multiple target de-
tection, we propose an algorithm called the
adaptive mean level detector, which censors
adaptively the interfering target returns in a
reference window.
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I. INTRODUCTION

The constant false alarm rate (CFAR) de-
tection is a signal processing technique to con-
trol false alarm rate for automatic target detec-
tion in radar systems. Since the background
clutter-plus-noise level is unknown and time-
varying at any given location, the radar detec-
tor with a fixed threshold can not be applied
to the radar returns if one wants to control the
false alarm rate. The CFAR detection tech-
nique is employed to control the false alarm
rate, which estimates the background clutter-
plus-noise level and sets a threshold adaptively
based on the local information of clutter-plus-
noise level.

In the conventional cell-averaging (CA)
CFAR detector [1], the background level is es-
timated by averaging the outputs of the neigh-
boring resolution cells (range and/or Doppler)
under the assumption that the background level
is homogeneous. As the number of cells uti-
lized in estimating the mean level increases,
the probability of detection approaches that
of the classical Neyman-Pearson case where
the mean level of clutter-plus-noise is known
a priori, provided that these cells do not con-
tain interfering target returns. However, most
CFAR processors cannot maintain the optimal
performance when homogeneous assumption
is violated.

There are two cases of nonhomogeneous
situations. One is the step change in back-
ground level, which may be observed at clutter
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edge. If the test cell is in the clear region but
a group of the reference cells are in the clut-
ter region, a masking effect results. On the
other hand, if the test cell is in the clutter re-
gion but some of the reference cells are in the
clear region, then false alarm increases with an
increase in the clutter level discontinuity.

The other case of nonhomogeneous situa-
tions results from interfering target returns. In-
terfering targets present in the reference win-
dow, which have ditferent statistics from the
background statistics, raise the threshold and
result in reduced detection probability. The
more range (and/or Doppler) cells that are used
in calculating the threshold, the greater the like-
lihood of encountering interfering target re-
turns. There exists a trade-off between main-
taining homogeneity and reducing the loss in
signal-to-noise ratio (SNR) by increasing the
number of window cells. Rickard and Dil-
lard [2] have proposed to censor a few of the
largest reference cells and use only the remain-
ing cells to estimate the background clutter-
plus-noise level. The censored mean level
detector (CMLD) exhibits a small additional
CFAR loss in a homogeneous noise situation
and is quite robust in the presence of interfering
targets as long as the number of cells censored
exceeds the number of interferers.

In the order statistics (OS) CFAR detector,
proposed by Rohling (3], the input data in a
reference window are sorted in an increasing
order. The threshold is scalar times a single
quantile, the k-th smallest cell in the reference
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window. This concept provides inherent pro-
tection against a drastic drop in performance in
the presence of interfering targets, However,
there is some CFAR loss of detection proba-
bility in the OS CFAR detector compared with
that of the CA CFAR detector in homogeneous
situation.

On the other hand, the trimmed mean (TM)
CFAR detector with proper choice of the trim-
ming parameters, introduced by Gandhi and
Kassam {4], can be a compromise between the
CA CFAR and the OS CFAR processors. The
TM CFAR processor first orders the reference
cells according to their magnitudes and then
trims 73 cells from the lower end and T cells
from the upper end. Finally the background
level is estimated by summing the remaining
cells after censoring.

In this paper, we introduce the generalized
order statistics (GOS) CFAR detector, which
includes the OS CFAR, the CA CFAR, the
CMLD, and the TM CFAR detectors as spe-
cial cases. As an application of the GOS
CFAR detector to multiple target detection, we
also introduce the adaptive mean level detector
(AMLD).

This paper is organized as follows. Fol-
lowing this Introduction, the GOS CFAR de-
tector is introduced and analyzed in Section IL
In Section III, we obtain and discuss its analyt-
ical results. In Section IV, we propose a new
adaptive censoring scheme and obtain its per-
formance. Finally, Conclusions are made in
Section V.
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II. GOS CFAR DETECTOR

The GOS CFAR processor first orders
samples of range cells according to their
magnitudes. Then it multiplies the ordered
samples by the corresponding coefficients of
the GOS filter and sums the results to form
an estimate of the clutter-plus-noise level as
shown in Fig. 1. The output Z of the GOS
filter of window size N is obtained as

N
Z=Y aXa (1)
i=1

where X ;) is the i-th smallest sample among
N samples in the reference window, and
{a;}_, is a set of binary weights that can
be chosen properly for a specific application.
Then, this estimate is multiplied by a thresh-
old coefficient T to yield the adaptive thresh-
old against which the output of the cell under
test will be compared. There may be 2N-1)
kinds of CFAR processors obtained by combi-
nations of {oz,—}fv= , in the GOS CFAR detector.
By proper choice of the coefficients of the GOS
filter, the GOS CFAR detector becomes the CA
CFAR detector, which is a linear CFAR proces-
sor, or the nonlinear CFAR processor, siich as
the OS CFAR detector.

To show the relationship between the
GOS CFAR detector and other CFAR pro-
cessors, we denote the GOS CFAR detector
as GOS(ny, ny, ..., ni,---) CFAR processor,
where n; represents the position of each co-
efficient of the GOS filter whose value is 1.
For example, the OS(k) CFAR detector can be
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Fig. 1. Structure of the GOS CFAR detector.

represented as the GOS(k) CFAR processor,
and the CA CFAR detector as the GOS
(1,2,...,N) CFAR processor, and the TM
CFAR detector as the GOS(T1+1, ..., N —T3)
CFAR processor, and CMLD as the GOS
(1,...,N—T,) CFAR processor. In this way,
we can implement the GOS CFAR detectors
ranging from GOS(1) to GOS(1,2,...,N)
CFAR processors. The GOS( ) CFAR proces-
sor does not exist because it means Z=0.

To obtain detection performance of an
adaptive threshold detector, we need the prob-

ability density function (pdf) of the CFAR
threshold, which is a random variable depend-
ing on the statistics of clutter-plus-noise. Then,
given a desired false alarm rate, we can evaluate
the detection probability from the moment gen-
erating function (mgf) of the adaptive thresh-
old.

We assume that the square-law detected
output for any range cell is exponentially
distributed ( Swerling I statistics), with pdf

1 x
px)= 2% exp (—202p> )]
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where

1, under Hj
p =
(14+S),under Hy

~and S is SNR of a target, and o? is thermal
noise power.

A target is declared to be present if the mag-
nitude of the test cell, Y, exceeds the thresh-
old TZ. Here T is a threshold coefficient to
achieve a desired false alarm probability for a
given window size N and Z is the estimate of
background clutter-plus-noise level. The per-
formance of a CFAR processor is represented
by the average detection and the false alarm
probabilities depending upon the random vari-
able Z. The false alarm probability is deter-
mined by

PfazEZ{P[Y>TZlHQ]}

* 1 x
=Ez fTZ Fexp(—%z)dx]

T
[ L] o

where Mz[.] is mgf of the random variable Z.
The detection probability is obtained by

szEz[P[Y>TZ|H1]}

o
=F -
z [/TZ 202(1+8)

" X exp (————i—> dx]
20%2(1+S)
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_E TZ
= Z[CXP (_202<1+S)>]

T
=Mz [20’2(1+S)] : (4)

1. Analysis of the GOS CFAR Proces-
sor in Homogeneous Situation

The test statistic of the GOS CFAR proces-
sor is given by (1). Even if the original samples
{X1,X3,..., Xy} are independent and iden-
tically distributed (i.i.d.) random variables,
the ordered statistics {X(1), X(2),..., X))}
are not ii.d. However, assuming that
{X1, X2, ..., Xn} are exponentially distribut-
ed, the following transformation to random
variables {Wy, Wa, ..., Wy} results in inde-
pendent quantities [4,5):

Wi=X@u—Xa-1 ®)
where Xy =0. To get pdf of W;, we use the
joint pdf of X,y and X5y, 1 <r <s <N. The
joint pdf of X,y and X, is given by [5]

N!
¢ —DIs—r— 1IN —9)!

x[P@)] ! p(x)

x[P(y)— P

frs(x,y)=

xpMA-POPN,x<y  (6)

where

1 x
pw =5z (53

b

N

POy = i—iexp (-52)-
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P(x)=1—exp (—%5) :

and P(y)=1—exp (—2—{‘—2).

By taking s =i andr =i —1, and then replacing
y with x + W;, we obtain

frse, x+ W)

NI
TGN —D)!

fi-se(o)]”

1 x
XFCXP(_Z—G_Z)

1 x+ W

" 20 ZCXP( 202 )
x[l—exp(—x;‘;’i)]N—i -

After integrating (7) with respect to x, we have

frs(u/z):f frs(xvx"'vvi)dx
0

o0 N!
_,/0 T—=2N-=)!
i-2
X
x[l—eXp (——2—(}—2)]

Xlex(x)
202 P\ 7552

1 :
—5;2'(1\7—1—*—1)

LA

202
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Now, let us consider the following trans-

formation:
N
Vi=) o;Wi. ®
Jj=i
The estimate Z is given by
N
z=Y V. (10)

i=1

We can obtain mgf of Z from the product of
the individual mgf of Vs because the random
variables W/s are independent.

MW(T)zE[exp(—TW)]

o[l )

N—i+1
= e
(N—i+1)+202T 3 «;

j=i

The false alarm probability is found to be

Pf“’nM" (; )

i=

N N—i+1
=] +N . (12)

=N 4147 Zaj
=

As a special case, let us consider that the
coefficients of the GOS filter are given by
1, j=k

o= (13)
0, j#k 1<k=<N.
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In this case,

N 1, i<k
D aj= (14)
j=i 0, i>k.
Thus (12) becomes
N

N—-i+1
Pf“:n : N

SIN—i+14T Y a;

=
N N-1
SNAT N—1+T
» N—-—k-1D+1 N—k+1
N—k-1D)+14+T N—k+14+T
Nk L
N—k 1
NN k=1 (N+T—k)!
Zk(k) wanyr W

This corresponds to the equation of false alarm
probability for the OS CFAR processor ob-
tained by Rohling [3]. Also, if we set all the
coefficients of the GOS filter to one, then

N
Y aj=N—i+l. (16)
j=i

Therefore, the false alarm probability becomes
Pro=[1+T]7". 17

This represents the false alarm probability for
the CA CFAR processor. From the above re-
sults, we can see that the general expression for
the performance of the GOS CFAR processor
includes that of the OS CFAR processor as well
as that of the CA CFAR processor as a special
case in homogeneous situation.
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Finally, the detection probability can be ob-

tained as
N
T
Pi={ I My | ————
¢ Ul "'(202(1+S))
N .
i=]
N—-l+l+m ga,

2. Analysis of the GOS CFAR Proces-
sor in Nonhomogeneous Situation

In order to obtain the general formula for
the performance of the GOS CFAR processor
in nonhomogeneous environments, we follow
the approach of Blake [6], in which all the back-
ground cells have Swerling I statistics with the
clutter-to-thermal noise ratio (CNR) in the i-th
cell denoted by C;. If the j-th cell contains
only thermal noise, then C; =0.

The transformation from {X,, ..., Xx} to
{(Xa),..-. X} is not one-to-one. There
is a total of N! possible arrangements of
{x(1y, - --» X} in increasing order of magni-
tude. Thus, there are N'! inverses to the trans-
formation.

The mgf of the clutter-plus-noise estimator
is obtained as

Mz(s)=E [exp(—sZ)]

N
i=1
X
e —
> P ( 202»5(1))

= Z dxyy 2025(1)

all Ntinverses
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exXp| — @)
20 zﬁ(N)

X(N-1) 202p N

N
X EXp (—S Zaﬁcm)

i=1

Y1
- Z l_I 20'2,3(1')

allNlinverses i=1

where ;) =1+4C(; and Cy;) is CNR of back-
ground cell ranked in the i-th place after or-
dering the background cells in the reference
window.

Therefore, the false alarm probability is
given by

T
Fra=Mz (zzﬁ)

N1
= > Iz

allNtinverses i=1
N -1
x(Z(ﬂ(‘j§+Ta,-)> . (0)
Jj=i

With C;y =0, (20) becomes (12), i.e.,

N /N -1
Pro=N!]] (Z(1+Taj)>
i=1 \j=i
N .
=l—l N—z+1N L@

SIN—i+1+T Y«

j=i

On the other hand, the detection probability is
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given by

N1
Fo= 3. [lgs

i1l ANALYTICAL RESULTS
AND DISCUSSION

Using the unified formulas proposed for the
performance of the CFAR processors, we first
obtain the detection performance of the vari-
ous CFAR detectors in homogeneous and mul-
tiple target situations. Next, we analyze the
false alarm rates for several CFAR processors
at clutter edge. In this aﬁalytical study, we set
the reference window size (N) to 24, the de-
sired false alarm rate (FAR) Py, to 1075, and
interfering target signal to noise ratio(INR) to
30 dB.

Fig. 2 shows the detection performance
of the CA CFAR, the OS CFAR, and the
GOS(1,...,21) CFAR processor in homoge-
neous situation. As we might expect, the
CA CFAR detector has the best detection
performance. Also shown is that the GOS
(1,...,21) CFAR detector yields better detec-
tion performance than the OS(21) CFAR detec-
tor. The background level of the GOS(1,...,21)
is estimated by Z =X(1) +... +X(21).

In Fig. 3, the detection probability is plot-
ted as a function of SNR of the primary target
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I'ig. 2. Detection probabilities vs. target SNR in bomo-
geneous situation.
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¥ig. 3. Detection probabilities vs. target SNR with one
interfering target (INR=30 dB).

with INR = 30 dB when there exists one in-
terfering target in a reference window. From
this figure, we can see that even though there
exists only one interfering target in a refer-
ence window, the detection performance of
the CA CFAR processor is seriously degraded.
However, the OS(21), the GOS(1,. . .,23), and
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Fig. 4. Detection probabilities vs. target SNR with four
interfering targets (INR=30 dB).

the GOS(19,21) CFAR processors reveal little
degradation from an interfering target. Here
the background level of the GOS(1,...,23)_
CFAR processor is estimated by Z = X3y +
...+X (23 and the GOS(19,21) by Z =X (19)+
X1). The detection performance of the
GOS(1,...,23) CFAR processor has the best
performance in this situation.

Fig. 4 shows the detection performance
when there exist four interfering target returns
in the reference window. In this case, the detec-
tion performances of the GOS(1,. . .,20) and the
GOS§(15,20) CFAR detectors are good, while
those of both the 0S(21), the GOS(19,21),
and the CA CFAR processors are severely
degraded. This is the reason that the GOS
(1,...,20) and GOS(15,20) CFAR detectors
can handle up to four interfering target returns
while the QS(21) CFAR and GOS(19,21)
CFAR processors can handle only three
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interfering targets. If there exist five inter-
fering targets in the reference window, the
detection performance of the GOS(15,20)
CFAR detector shall be seriously degraded.

—e— TM(0,3) CFAR
=2.51 —— 05(17) CFAR
—+—(CA CFAR
—=—085(20) CFAR

"""" TM(20,2)CFAR]
—— 0Q5(22) CFAR
—— 05(23) CFAR
= 05(24) CFAR
= designed FAR

12 14 16 18 20 22 24
Numbier of clutter cells

Fig. 5. False alarm rates at clutter edge (CNR=30 dB).

In order to obtain the performance of each
CFAR processor at clutter edge, we compare
the false alarm rate as a function of the num-
ber of the clutter cells as shown in Fig. 5. In
this figure, we assume that the test sample is
from the clutter region and CNR=304dB. Here
the background level of the GOS(20,22) CFAR
processor is estimated by Z = X 29, + X (22).
From the figure, one can notice that the false
alarm rates of both the GOS(20,22) CFAR pro-
cessor and the TM(20,2) CFAR processor are
between those of the OS(21) CFAR processor
and the OS(22) CFAR processor. And the false
alarm rates of the the GOS(19,21) CFAR pro-
cessor are worse than that of the 0S(21) CFAR
processor. Therefore, we notice that as long as
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T is fixed, the Jarger T, the better performance
in false alarm rate because the background esti-
mator uses less of small clutter-plus-noise sam-
ples. The TM(23,0) CFAR detector, which is
equivalent to the O5(24) CFAR processor, has
the lowest performance sensitivity for the false
alarm rate, but the capturing effect, which is
occurred by raising the threshold due to the
uncensored interference in multiple target sit-
uations, is most severe. Also, one should no-
tice that the performance of the OS(17) CFAR
processor and the TM(0,3) CFAR processor
are worse than that of the CA CFAR detector.
When we compare the performance between
the GOS(19,21) CFAR detector and the O8(21)
CFAR detector, the GOS(19,21) reveals better
performance in multiple target situations while
the OS(21) CFAR detector does at clutter edge.
In this situation, the false alarm rate is con-
trolled if the background level is estimated only
with the clutter samples from the clutter region
after censoring the noise samples from the clear
region. This ideal performance can be obtained
by adaptive scheme that estimates exactly the
number of noise samples from the clear region.

IV. APPLICATION OF THE GOS
CFAR DETECTOR TO
MULTIPLE TARGET
DETECTION

Since target capturing is experienced un
der multiple target situation, it is necessary to
reduce the capturing effect to a mimimum. If
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interfering targets of strong magnitude appear
in the reference window, they occupy the high-
est positions in the ordered cells with high prob-
ability. So, we can avoid the capturing effects
due to interfering targets by ordering the back-
ground noise samples to their magnitudes and
discarding properly those from the interfering
target returns.

The CMLD needs a priori information
of the number of interfering target returns in
multiple target situation. So, target capturing
may occur. An adaptive scheme is required
to estimate the number of interferers. Ap-
proaches, such as the Barboy’s multistep pro-
cedure |7] and the Barkat’s method [8], cen-
sor adaptively the interfering target returns in
the reference window. However, the simula-
tion result by Barkat (8] shows that the Bar-
boy’s multistep procedure cannot maintain the
robustness when the number of cells are small.
On the other hand, to operate the CFAR detec-
tor in real time, the computational complex-
ity is an important factor. In this paper, we
also introduce the adaptive mean level detec-
tor (AMLD), which has better detection per-
formance than the generalized censored mean
level detector (GCMLD), and also reduce ef-
ficiently the computational complexity when
there exist a few interfering targets in the ref-
erence window.,

In this section, we introduce the AMLD
algorithm for censoring the interfering target
returns and obtain its performance.
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1. AMLD

To exclude interfering target returns in a
reference window, we should utilize all the
status information of each background cell in
the reference window. We divide the reference
window into a leading window and a lagging
window. The status information of each cell
in the lagging window can be easily obtained
by comparing the cell under test with the esti-
mated threshold (T Z /2). However, the status
information of each cell in the leading win-
dow cannot be obtained from the conventional
CFAR structures.

In AMLD, we modify the conventional
CFAR structure to obtain the status information
of each cell in the leading window. Different
from the other CFAR processors, AMLD has
two test cells. Beside a test cell at the center of a
window as that used in the conventional CFAR
detectors, AMLD use one more cell called the
pre-test cell, which will be entered into the ref-
erence window at the next time. Let the content
of the pre-test cell be Y.

The block diagram of AMLD is shown in
Fig. 6. To illustrate the AMLD algorithm more
clearly, a timing diagram of the data flow in
AMLD is shown in Fig. 7 when the window
size is 4. We assume that there are 10 input
data cells denoted by 1 to 10 in a sequential
order. At each time instant, all the cells in
the window shift right one place to exclude the
oldest cell and obtain new one.
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level and the results of each test stored in the
lower and upper post detection integrator (PDI)
Y, Y . .
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Y: cell under test, Y, : pre-test cell.

- Fig. 7. Timing diagram of the data flow in AMLD.

In order to remove the interfering target re-
turns in AMLD, the pre-test cell Y, and the cell
under test ¥ are compared with the threshold

ceeds (T Z /2), then 1 is stored in the upper PDI
shift register. Otherwise, 0 is stored. The PDI
registers can be set by both false alarms and tar-
get returns, but the false alarms are negligible.
The number of interferers can be estimated by
simply summing the number of 1’s in the PDI
registers. Fig. 8 shows the overall operation of
AMLD.
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.. 8. Flowchart for operation of AMLD.

2. Probabilities of Detection
and False Alarm

In multiple target situations, let us suppose
that the reference window contains n(PDI)
interfering target returns with the power level
of (14+1)/2.and N —n(PDI) noise cells with
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power level of (1/2) where I denotes the aver-
age INR. Also, letus assume that INRs of all the
interfering target returns are the same. Given
the estimated n(P DI) and INRs of the interfer-
ing targets, the detection and false alarm prob-
abilities are obtained as

N-1
Py= Z Pdln(PDI)Pr[”(PDI)] (23)
n(PDI=0
N-1

Pfa = Z Pfal,,(pDI)Pr [n(PDI)](24)
n(PDN=0

and

N

Pajn(ppn = Z

all N!inverses i=1

ul 1 TO!J' -
X(Z(1+I(j)+1+8)) 25)

j=i

1+1)

Noooq

1+I(i)

Pranppny = Z

all Nlinverses i=1

N 1 -1
x (Z ( Ty +Ta,)) (26)

J=i

where I;) is I or 0 depending on the existence
of an interferer or not.

We can obtain the probabilities of false
alarm and detection in multiple target situation
by setting the coefficients of the GOS filter as

1, 1<i<N-—-n(PDI)
o= 27
0, otherwise.
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Table 1. Computational complexities of GCMLD and AMLD (N =2M).

! NO. of GCMLD AMLD

Interferers Add Multiply|Compare Sort Add{Multiply|Compare Sort
0 2(M-2)+1 | 2(M-1) | 2(M—1) | 20 (Mlog, M) 1 2 O(Nlog, N)
1 (2M-5)+1| 2M-3 | 2M-3 | 20(Mlog,M) 1 2 O(Nlog,N)
2 2(M-3)+1| 2M—4 2M—4 | 20 (Mlog, M) 1 ] 2 O(Nlog, N)

3. Computational Complexity of
AMLD

We obtain the computational complexity
of the proposed AMLD algorithm in estimat-
ing the number of interferers and compare the
result with that of the GCMLD introduced by
Barkat [6]. The estimator to obtain the num-
ber of interfering targets in AMLD consists of
two shift registers with size M, an adder, a di-
vider, and two comparators to test the pre-test
cell in addition to the original comparator. Ta-
ble 1 shows the computational complexities for
a few interfering target returns. In this Table,
subtract operations in AMLD are included in
add operations and the number of add opera-
tions at the initial time is N in AMLD. If there
are two interfering targets in the reference win-
dow with size N = 24, the number of computa-
tions for each operation is obtained as follows:

GCMLD - Add=19, Multiply=20,
Compare=20, and Sort= 96

1 Add= 4, Multiply= 1,
Compare= 2, and Sort=120.

AMLD

Since AMLD uses the reference window as a
whole while GCMLD divides that into the lead-
ing and lagging windows in sorting, the com-
putational complexity of sorting in AMLD is
greater than that of GCMLD. However, compu-
tational complexities in terms of add, multiply,
and compare operations of AMLD are far less
than those of GCMLD.

On the other hand, GCMLD has a merit
to obtain the background level estimate, Z,
in this censoring process while AMLD needs
N —n(P DI) extra summations to get it. How-
ever, GCMLD needs an additional procedure
(e.g. reading a look-up table) to obtain thresh-
old coefficient T; per each iteration in the cen-
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soring process, while AMLD does not need

such threshold coefficients except the final 7.

Upper PO register

PDI(12) FDI(1)
1jofojol1{ojoejoj1|{o]|o]1

3 nPDN=8
1]loflojofrf{ofolof1]lo]o|1

PRIOZ) DK

Lower PDI registar

Fig. 9. Initial data of PDI registers used in simulation.

4. Simulation Example of the AMLD
Operation

The initial condition of AMLD is impor-
tant, but simple. As long as the initial value,
i.e., n(PDI), is greater than or equal to the
number of interfering targets in the reference
window, AMLD operates steadily. Therefore,
it is recommended that n(P DI) at the initial
time should be set to a larger value. In this sec-
tion, we show one example of the AMLD op-
eration. The level of background noise power
is 20 dB and INR is 20 dB. The size of the ref-
erence window is 24. Between range cell 20
and range cell 60, there exist 2 ~ 6 targets in
the reference window. In this simulation, we
select n(P DI) =38 at the initial time as shown
in Fig. 9.
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Power Level

0 10 20 30 40 50 6 70 B0 90 100
Sequence of input data

Fig. 10. Behavior of AMLD in multiple target situations
(INR=20 dB).

Fig. 10 shows the relationships between the
input data used in this simulation, the thresh-
old (TZ), and the estimate of background
level (Z). From the figure, we can see that
the AMLD detects all the targets except range
cell 33. Since the target signal fluctuates with
Swerling I model, target may be missed like
at a range cell 33. However, AMLD performs
well without the effects of the interfering tar-
gets because the estimator for the number of in-
terfering target can detect all the targets in this
simulation as shown in Fig. 11. Fig. 11 shows
the relationship between the number of inter-
fering targets in the reference window and its
estimate obtained by AMLD. From the figure,
one can notice that just after M time instances
from the initial time operation, the number of
interfering targets estimated by AMLD is the
same as that of actual interfering targets in the
reference window. M is the the maximum time
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duration that the number of interfering targets
estimated by AMLD converges to the num-
ber of actual interfering targets in the refer-
ence window from the initial time. Simulation
results show that AMLD also performs well
even though the number of interfering targets
changes with time.

--0r= Estimate of No. of Targets
—== No. ol Actyal Turgets

Number

20 ) 60 80 100
Sequence of input data

Fig. 11, Relationship between the number of interfering
targets and its estimate in AMLD (INR=20 dRB).

5. Simulation Results and Discussion

In this section, we compare the perfor-
mance of AMLD with that of GCMLD. Since
the Pr{n(P D1I)]is difficult to obtain mathemat-
ically, the performance of AMLD is evaluated
by computer simulations. The results are ob-
tained after 100,000 trial simulation. In this
simulation study, we set the reference window
size (N) to 24, the designed FAR t01076, and
the designed probability of the false censoring
(Prc) is equal to the designed FAR. All the
probabilistic data used in this simulation are
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obtained by the IMSL statistical library.

10
0g{ —— GOS(1--22)
—s— AMLD /‘.'
08 —=— GCMLD(0.2) -
--e- GOMLD(LL) vy
0.
0.5]
0.5
0.4

0.3

Delection Probability, Pd

0.24

0.1

0.0

15 20 25 30
SNR[dB]

Fig. 12. Simulated detection probability of AMLD and
GCMLD for two interfering targets (I/S=1).

Fig. 12 shows the detection performance
of AMLD and GCMLD when there exist two
interfering targets in the reference window.
GCMLD(0,2) in this figure means that two
interfering targets are present in leading win-
dow or lagging window. GCMLD(1,1) means
that there exists one interfering target in lead-
ing and lagging window, respectively. The
GOS(1, ..., 22) CFAR detector has the max-
imum detection performance in this situation.
We can see that AMLD has slightly better de-
tection performance than GCMLD(1,1). Also
shown is that the performance of GCMLD(0,2)
is worse than that of GCMLD(1,1).

Fig. 13 shows the detection performance
of AMLD and GCMLD when there exist
four interfering targets in a reference window.
The GOS(1, ..., 20) CFAR detector yields the
maximum detection performance in this situa-
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1.0
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1ty 13, Simulated detection prbbability of AMLD and
GCMLD for four interfering targets (I/S=1).

tion. We can see that AMLD has better detec-
tion performance than GCMLD. Also shown is
that the performance of GCMLD(0,4) is worse
than that of GCMLD(2,2).

Y. CONCLUSIONS

In this paper, we propose the GOS CFAR
processor, a generalized structure of the QS
CFAR processors. And a unified formula for
the false alarm probability in homogeneous as
well as nonhomogeneous situations is derived
in a closed form. By properly choosing the co-
efficients of the GOS filter, we can obtain the
OS CFAR processor, the TM CFAR proces-
sor, and the CMLD as well as the CA CFAR
processor as special cases. Using the unified
CFAR structure and the performance formula,
we compare the detection performance of var-
ious CFAR processors in homogeneous and
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multiple target situations and false alarm per-
formance at clutter edge. In homogeneous situ-
ation, the CA CFAR detector, which is equiva-
lent to the GOS(1, ..., N) CFAR detector, has
the best detection performance, but it exhibits
serious performance degradation in nonhomo-
geneous situations. When there exist the in-
terfering targets in the reference window, it is
desired to design the CFAR detector that es-
timates, the background level with all the re-
maining samples after censoring the interfer-
ence samples. On the other hand, from an anal-
ysis of the false alarm performance at clutter
edge, we can see that to control the false alarm,
it is desirable to estimate the background level
with the ordered samples at high position af-
ter removing the noise samples from the clear
region.

As an application of the GOS CFAR de-
tector to multiple target situation, we com-
pared the detection performance of AMLD and
GCMLD. The simulation results show that the
former can have better detection performance
than the latter. AMLD also has less computa-
tional complexity than GCMLD. As an another
application, we are now studying the modified
AMLD algorithm to regulate the false alarm
rate at clutter edge.
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