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ABSTRACT

In this paper we develop an approximation
formalism on the queue length distribution
for general queueing models. Qur formalism
is based on two steps of approximation; the
first step is to find a lower bound on the
exact formula, and subsequently the
Chernoff upper bound technique is applied
to this lower bound. We demonstrate that for
the M/M/1 model our formula is equivalent
to the exact solution. For the D/M/1 queue,
we find an extremely tight lower bound
below the exact formula. On the other hand,
our approach shows a tight upper bound
on the exact distribution for both the ND/D/A
and M/D/1 queues. We also consider the
M+ 2 N,D/D/1 queue and compare our
formula with other formalisms for the
2'ND/D/I1 and M+D/D/I1 queues.
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I. INTRODUCTION

Statistical analysis of queueing problems
associated with the Asynchronous Transfer
Mode (ATM) network which will be required to
carry a wide variety of traffic types is extremely
important for efficient operation of switching
systems.

When a large number of various traffic sources
are superposed on a link, the probability
distributions of statistical parameters such as the
queue length and average waiting time must be
analyzed carefully to provide high quality
services. In the ATM network, the loss rate is
required to be of below the order of 10-'°.

One of the most important information one
need to find in a traffic analysis is the queue
length distribution (QLD), which is equivalent to
the probability P(Q >r] that the queue length Q
is larger than r. However, for many traffic
models, exact analytic formulas of the QLD are
not available. For the analysis of QLDs of
various traffic models, numerous analytic
approaches and direct numerical simulations
have been studied in the last few years [1-8].

In analytic approaches, Roberts and Virtamo
[5] found the upper and lower bounds on the
QLD of the 2'ND/D/1 queue where hetero-
geneous groups of constant bit rate (CBR)
sources are superposed at the queue of a CBR
server. Their formalism was suitable for a
numerical calculation when the number of traffic
sources are small. However, in the situation that
a large number of input streams are superposed,
the computation time required by their formula
can be excessive. Furthermore, the application of
such an approach may be limited to a few traffic
models.

It is desirable to have a formalism which has
the following advantages; (i) the formalism is
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favorable to a fast numerical computation, (ii) it
can be applicable to arbitrary type of super-
position of traffic sources, and (iii) the error in
the approximation should be small. We note that,
for general queueing problems, Nakagawa [6]
made an approach based on the fundamental
recursion formula and the Chernoff bound
technique. However, his formalism was not
rigorous in a modification that his calculated
result is divided by a constant number to match
the exact solution for P[Q > 0].

In this paper, we develop an approximation
formalism on the QLD for general queueing
problems. Our formalism is based on two steps
of approximation. The first step in our approach
is to find a lower bound below the exact formula.
Subsequently, the Chernoff bound technique is
used to find an upper bound on the distribution
function obtained in the previous step. We note
that the bound characteristics is lost in our
proposed formula for the queue length
distribution, because both the lower and upper
bound techniques are used in the formalism.
However, our philosophy on the problem is that
this approach gains a better approximation than
others using multiple bounds in the same
direction.

To demonstrate advantages of the proposed
method, we make a few comparisons of our
formula with well known exact formulas of
various traffic models such as M/M/1, D/M/1,
ND/D/1, and M/D/1 queues. As an example of
complex queueing problems, we derive an
approximate formula of the QLD of the M+ S
ND/D/1 queue and compare our formula with
other calculations for the X N,D/D/1 and
M+D/D/1 queues.

Our approach developed in this paper has all
the advantages mentioned above. In this paper,
application of our formalism is limited to a few
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queueing problems which have simple analytic
solutions available. Application of our formalism
to more complex queueing problems with non-
existing analytic solutions also showed good
agreements with the direct numerical simulation.

ll. FORMALISM

We consider a queue with the customer arrival
producing a stable queue. The stable queue
means that a finite time interval T exists such
that the event of the zero queue length occurs at
least twice with probability one for r > 7. A
stable queue is guaranteed when the service load,
which is defined as the ratio of average arrival
rate against service rate, is less than one. Hence,
for a stable queue, T is the sufficient interval for
statistical analysis of the QLD. In other words,
the queue length at the present time t: is affected
by the arrival and transmission events occurred
within T in the past. It is noted that T is an
important parameter for the analysis of the
dynamic processes of general queueing systems,
but in this paper we need not to find the value of
T'in the calculation of the QLD.

In the analysis of continuous queueing
process, we divide the time interval (t -7, t,) into
a sufficiently large number of intervals which are
not necessarily uniform. These intervals are
labeled as 1, 2, 3... starting from t.. Without loss
of generality, the queue length is measured at the
end of each interval. Then we have the following
property of queue length ¢; at end of the i-th
interval.

924, +a,—s, )

where gi and a; are the queue length and number
of arriving cells in the i-th interval, while s refers

K.-S. Lee & H. S. Park 37

to the number of cells that can be transmitted
from an infinite queue in the same interval.
Using the recursion relation in Eq. (1), we find
that the queue length at 1 has the following
relation for all i > 1,

Q=¢24-S5, (2)

where 4, = Z;."J is the number of arriving cells
for i intervals from to, while s, = >,.,s,1s associated
with the number of cells that can be transmitted
from an infinite queue for the same intervals. In
other words, S: represents the full transmission
capacity of the server for i intervals and
consequently is independent of A. Eq. (2)
implies

P[Q>r]z P[A ~S > r.]. I )]
Since Eq. (3) is true for alli > 1, we have

P[O>r]2 max,.z,{P[A,. -S> r]} )
In the continuous time process the size of an

interval can be set to be infinitesimal, and we
have the following relation;

PlO> r}2 max o {P[4 -5, -r-120]}.  (5)

Now, we apply the Chernoff upper bound
technique to Eq. (5) to obtain (see appendix for
proof) '

P[A =S, -r-120]<min, (¥, (2)¥ ()"} ,(6)
where the probability generating function (PGF)

¥ u(z) of the random variable U taking on
integral values n =0, 1, 2... is defined by

‘{’U(z)=E[zU]=zn:P[U=n]z". 7
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From Egs. (5) and (6), our proposed formula for
an approximation of the QLD of general queues
in the continuous process is given as

P[o>1)= max,,o{minlz,{‘l’m (2)¥ (z")z-lrm}} . (&)

One can easily see that approximate value of the
QLD for a given r corresponds to the magnitude
of the saddle point of the function in the
parenthesis of Eq. (8).

In the discrete time queueing processes, A, S,
and T can be replaced by A;, S, and [,
respectively. 7 and { represent integer numbers.
Hence for the discrete time gueueing processes,
our formula for the QLD is given as

F(g>r]= n‘axi?.l{minzzl{‘ym (Z)\Fs,.(z_f)z_m”}} )]

It is noted P(Q>r) can be measured in several
different ways such as by the server, arriving
customers, or other observers outside the system.
In general, W«(z) and ¥s(1/7) are dependent on
the scheme it is measured. For instance, if the
queue length is measured by the server, s = 0 in
Eq. (1) because it is measured before the service,
This is not important for the Poisson service
process because of its lack-of-memory property,
but is important for the deterministic service
process.

ill. APPLICATION

In this section we apply our formalism to a few
gueueing models whose solutions are known in
analytic forms. We will demonstrate that our
formula is in fact equivalent to the exact formula
for the M/M/1 queue, and shows very good
approximations for other queues such as the
D/M{1, ND/D/Y, M/D/Y, 2 N,D/D/1, and
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M+D/D/1 queues.

1. THE M/M/1 QUEUE
For the M/M/1 queue, we will prove that Eq.
(8) is equivalent to the exact formula (7]

P [Qw]:(%)r , (10)

where A and # represent the mean arrival and
service rates of the Poisson processes,
respectively. For a stable queue, A <g is
assumed. The PGFs of the cell numbers in the
arrival and service processes of the M/M/1 queue
are given as

\PA, (Z):elrt:-l] (11)
and
¥, (z"):e‘““ fa-ty (12

Substituting Eqs. (11) and (12) in Eq. (8), we
have

P [Q -~ r] = max’w{z'—(r+1\elv(:,—l)eunl / ;,—-l)} , (13)

where a real number z satisfies z>>1 and is the
unique solution that minimizes the function in
the parenthesis of Eq. (13) for a given t. For the
calculation of z, one may transform the function
in the parenthesis of Bg. (13) into the semi-
logarithmic space and take a derivative of the
function with respect to z to find the z.
Subsequently, a similar derivation is carried on
the same function at z with respect to t to find
the condition that maximizes the function. In this
calculation, one must consider that z is a
function of :. After some lines of simple
calculations, one can easily show that Eq. (13) is
equivalent to Eq. (10). Furthermore, the time
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interval ¢, that maximizes the right-hand side of
Eq. (5) is calculated as

L (14)
u-Aa

and the corresponding z_is

(15)

I

S

g,

2. THE D/M/1 QUEUE

We consider a queue where a periodic arrival
stream is served by a server following the
Poisson process. Without loss of generality, it is
assumed that the inter-arrival time is a unit
interval and the service rate satisfies 2 > 1 fora
stable queue. In this subsection, we assume that
the queue length is measured by the arriving
cells and the interval ¢ can be restricted to
integers i = 1, 2, ... . Hence, the PGF of the
number of arriving cells from a CBR source for
an interval i is given as

Y(2)=7, i=12,. (16)

For PGF for the service process, Eq. (12) is
rewritten as

¥ ()=, =12, (17)

Substituting Egs. (16) and (17) in Eq. (8), we
obtain our approximate formula for the QLD of
the D/M/1 queue,

P[Q>r]= max{e’”‘””, z;"’"e"'v“’vz'")}, i»r+l1, (18)

where zi = #i/(i - r-1). When the condition ¢# <

e /(r+2) is satisfied, Eq. (18) is simply P'[Q
»>r)= e”"""". This condition can be satisfied by
high # values and corresponding low service
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load values.

Though the interval i is restricted to integers,
we take the derivative of Eq. (18) with respect to
i to get an approximate maximum value.
Surprisingly, one can get the exact formula (7] of

P(Q>r] of the D/M/1 queue from this
calculation:

Plo>r]=¢m™, (19
where & is the solution of the following
equation

In(&)=pu(£-1) (20)

In fact, results of our numerical calculation
showed that Eq. (18) is an extremely tight lower
bound below the exact formula. To demonstrate
this, we calculated the error ratio € (r) defined by
1 - P'(Q=r}/P(Q>r]. For instance, € (5) = 1.9
x 107, 5.0x 10%, 7.8 x 10*, and 2.2 X 10 for ¢
=5.0,2.0, 1.5, and 1.2, respectively.

On the other hand, if the queue length is
measured by the server, the problems can be
considered in terms of the continuous time
process and Eq. (16) must be modified by ‘¥ (2)
=9z + (1-7 )z¥, where 7 =t -(t) and [t] is
the integral part of t. Calculated results obtained
in a similar calculation showed a good
agreement with the direct simulation, though we
do not plot the results in this paper. It is noted
that \p, () measured by the server is greater than
Eq. (16) measured by arriving customers. This
implies that P(Q>r] measured by the server is
greater than that obtained by the arriving
customers in our approximation approach.

3. THE ND/D/1 QUEUE

We consider a queue where periodic arrival
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streams are multiplexed and one cell can be
served at every one unit time. With N sources,
each transmitting one cell every D service time
units, the service load is N/D. To compare our
approximation for queueing systems such as the
ND/D/1, M/D/1, and M + XN, D; /D/1 queues
with other analytic formalisms in the rest of this
paper, we will only consider a measuring scheme
that the server measures the queue length. Then
for an interval t > 0, [#/D)+1 cells arrive from a
CBR source with probability

LI

while (#/D] cells with probability 1-7. where
(/D] denotes the integral part of #/D. Then, the
PGF associated with a CBR source is given as

()= 5 10 d®) 22)
Considering all N sources, we have
¥, =¥(2)". (23)

It is noted that for a constant rate service ¢ can
be restricted to integer numbers i = 1, 2,... , if the
service interval is a unit time. As i-1 cells are
served for the interval i, the PGF for the service
process is given as

¥, ()= (24)

Our approximation formula of the QLD for the
ND/D/1 queue is obtained by substituting Egs.
(23) and (24) in Eq. (8),

PlQ>r]= maxlsiw{zi"'(n,—zi +1- n,)'v}, (25)

where k= r+i-N(#/D) and z = k (1-n) / 1, (N-k).
‘The interval that maximizes the right-hand side of
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Eq. (25) is not given in a simple form. So, Eq. (25)
is compared numerically with well-known formula
[3] of the QLD for the ND/D/1 queue

o 5L B 18455

i=

JorQ<r<N. (20)
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Fig.1. The queue length distribution of the
ND/D/1 queue with service load 0.8.
The closed circles denote results of Eq.
(25), while the open circles refer to the
exact formula in Eq.(26). The solid lines
are guides to the eye.

Fig. 1 displays a few calculated results of QLD
of the ND/D/1 queue for different CBR traffics,
but at the same service load 0.8. Complementary
to Figure 1, QLD for various service load with a
CBR traffic is plotted in Figure 2. Both figures
demonstrate that Eq. (25) is in a good agreement
with Eq. (26). We find that Eq. (25) is an upper
bound on the exact solution. We note that the
error ratio of Eq.(25) increases as the service
load decreases. But the error in the estimation of
the buffer length is still less than one.
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Fig. 2. The queue length distribution of the
ND/D/1 queue for various load values. The
inter-arrival time of a cell stream was
chosen to be 1000 for this calculation.

4, THE M/D/1 QUEUE

In this section, our.approximation method is
applied to the M/D/1 queue with the Poisson
arrival process and singlé server transmitting one
cell per unit interval. As discussed in previous
sections, PGFs for the arrival and service
processes in i units of service interval are ¥, (2)
= eV and ¥ (z') = 7", respectively, if the
QLD is measured by the server. The mean arrival
rate of cells is denoted by A. Hence, we have the
approximation formula of the QLD of the M/D/1
queue

PlQ>r]= maxl.z,{z,.“”“e“‘""”} , 27
where z; = (r + D)/(AD).
In Fig. 3 we make a comparison of Eq. (27)

with the exact formula {5] for the M/D/1 queue,
which is given as

Plo>r=1-a-pR A @8)
) i (r-i)
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Fig. 3. The queue length distribution of the
M/D/1 queue for various mean arrival
rate A . The closed circles denotes
results of Eq. (27), while the open
circles refer to the exact formula in Eq.
(28).

Calculated results of QLD using Eq. (27) show a
good agreement with the exact formula given in
Eq. (28). We find that Eq. (27) is an upper bound
on the exact formula. It is noted that the relative
error from the exact solution increases for
decreasing the service load value, but it is still
not big enough to create one unit of error in the
queue length.

5. THE M+ 2" N;Di/D/1 QUEUE

In this section, we suppose that the multiplex
handles a group of heterogeneous sources in
addition to a stream following the Poisson
process with the mean arrival rate A. The
transmission capacity of the server is assumed to
be one cell per unit time. We consider m types of
sources; there are N, sources of type i generating
cells at the rate of one per D; time units. For time
interval ¢, the PGF of the arrival numbers is
obtained as
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v, =TI " 29)
j=1
where
byl
¥@=nz"0 +(1-n,)2 (30)
L
=D [D,]' €2

As we consider the QLD measured by the server,
the time interval can be restricted to integers i=
1, 2... . The PGF for the service process is given
as ¥(1/z) = z**'. Hence, we have our formula of
the QLD of the M+ 3 N,D/D/1 as follows:

Plo>r)= max,.,ﬁ.,{z;"e*’(cf""f[(n,jz,. +1~ :;,j)”" } 32)

Jj=l

where z satisfies both z > 1 and the following
equation

k
=
li+2'f' N;n; (33)
=1 77;,-7-:' +1— T],-j
and
k=rei-3 N1 (34)
i=1 Dj

As our formulas in previous sections showed
upper bounds on the exact solutions of both the
ND/D/1 and M/D/1 queue, we believe Eq. (32)
for the M+ X N.D/D/1 queue has the same
characteristics with respect to the exact solution
whose analytic formula is not available.

As a special case of M+ 2 N;D/D/1 queue, we
display our calculated results of the QLD of the
2 N\D/D/1 queue in Fig.4. In the figure we also
make a comparison between our formula and
Roberts and Virtamo's (RV) formula (Eq. (13) in
Ref. 5) for an upper bound on the QLD of the
2 ND/D/1 queue. Though RV did not mention
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Fig.4. The queue length distribution of the
2 ND/D/1 queue with service loads 0.3,
0.6, and 0.9. The closed circles deno-
te results of Eq. (32), while the open
circles refer to the Roberts and
Virtamo's formula ( Eq.(13) in Ref. 5)
for an upper bound on the QLD of the
2 N,D/D/1 queue.

Table 1. Queue length r of the M+D/D/1 queue
satisfying P[Q>r] = 10"". D denotes the
interarrival time of the CBR source in the
unit of service interval. For given D and
service load values, the mean arrival rate of
the Poisson process is determined.

Load~] 2 5 10 15 30 50 70 100

0.8 24 42 48 50 52 52 53 53
0.5 * 14 16 17 18 18 18 18
0.2 * 7 8 8 8 9 9

the measuring scheme in their formalism, we
consider that their formula is for the QLD
measured by the server, because their formula is
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based on the expansion of series in terms of
integer numbers of the deterministic service
time, In our calculation, the inter-arrival times of
three types of CBR stream, D1, D:, and D: were
chosen to be 10, 100, and 1000, and (N:, N-, N:)=
(1, 10, 100), (2, 20, 200), and (3, 30, 300) which
correspond to the service load 0.3, 0.6, and 0.9.
respectively. Comparison of our formula with
RV’'s shows a general agreement. For lower
service load values, RV's formula shows a
tighter upper bound than Eq. (32), but for high
service load values the reverse is true.

As another example, we calculated the queue
length of the M +D/D/1 queue satisfying P[Q>r]
=107". Table 1 shows calculated queue length r
with respect to various values of inter-arrival time
of the CBR source for service loads 0.8, 0.5, and
0.2. Our calculation is in a good agreement with
other reports [8].

IV. CONCLUSION

In this paper we developed an approximation
formalism for the QLD of general queueing
models. Qur approximation method consists of
two steps of bound techniques, one lower bound
and a subsequent upper bound. We proved that
our formula for the M/M/I queue is in fact
equivalent to the exact solution. For the D/M/1
queue, our approach finds an extremely tight
lower bound below the exact formula. On the
other hand, for the ND/D/1 and M/D/1 queues,
our formula shows tight upper bounds on the
exact formula. Our calculation of the QLD for
the 2X'NiD/D/1 and M+D/D/1 queues showed a
good agreement with those using other
formalisms.

Though in this paper the application of our
formalism is limited to a few queueing problems
which have simple analytic solutions available,
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we believe that this approach can be extended to
other complicated systems. As the numerical
calculation using our formalism needs only O(N)
operations, it can be completed within a second
using a 80387 math-coprocessor-equipped IBM
personal computer. Hence, the algorithm based
on our formalism may be implemented in ATM
switch system for the real-time analysis of
various traffics.
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APPENDIX

In this appendix, we prove that

P[A—-S —r—120]
Al
< min:z,{‘{’,\'(:)‘{@, (;—I);-lr-w}_ (A1)

Proof
At first, for random variables N and M > 0, we
have

P[N20]=P[z" 21] 21 (A2)
and
P[M >1]< E[M], (A3)

where E[ * ] denotes the expectation value.
From these two equations. we have

P[N>0]<E[z"] 221 (A4)

Hence, we have the following relation



44 K.-S.Lee &H.S. Park ETRIJOURNAL, VOL 15, NO 3/4, Jan. 1994

networks,” in Proc. IEEE GLOBECOM

P[A -5 -r-120]<min, [EA~].  (AS5) ' 89, Dallas, TX, pp. 903-907, 1989.
[4] P. Humblet, A. Bhargava, and M. G.
Finally, itis noted that £ [2* | = ¥, (z) and E[2°] = ¥,(2"). Hluchyi, “Ballot theorems applied to the
This completes our proof. transient analysis of nD/D/1 queues,”

. IEEE/ACM Trans. Network, Vol. 1, No. 1,
pp. 81-95, 1993.
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