Flavonoids from the Leaves of Betula platyphylla var. latifolia

Min-Won Lee

College of Pharmacy, Chung-Ang Univ., Seoul 156-706, Korea

Abstract—Chemical examination of the leaves of *Betula platyphylla* var. *latifolia* has led to the isolation and characterization of five flavonoid glycosides including two C-glucosyl flavonoids. The structures of these compounds were elucidated as myricetin $3-O-\alpha-L$ -rhamnoside (myricitrin), quercetin- $3-O-\beta-D$ -glucopyranoside (isoquercitrin), quercetin- $3-O-\beta-D$ -galactopyranoside (hyperoside), nalingenin- $6-C-\beta-D$ -glucopyranoside (hemiphloin) and aromadendrin- $6-C-\beta-D$ -glucopyranoside (6-C-glucosyldihydrokaempferol) on the basis of physico-chemical and spectroscopic evidences.

Keywords-Betula platyphylla var. latifolia · Betulaceae · flavonoid

In previous paper,¹⁾ the author reported a new diarylheptanoid named betulatetraol together with known phenylpropanoid, flavan-3-ol and its glycosides and proanthocyanidins. Continuous work on phenolic compounds of this plant has led to the isolation and structural elucidation of three flavonol glycosides myricitrin(1), ²⁾ quercetin-3-O- β -D-glucopyranoside(2), ³⁾ quercetin-3-O- β -D-galactopyranoside(3), ⁴⁾ and two C-glucosyl flavonoids, nalingenin-6-C- β -D-glucopyranoside(4) ⁵⁾ and aromadendrin 6-C- β -D-glucopyranoside(5) ⁶⁾ from the leaves.

Results and Discussion

Fresh leaves of B. platyphylla var. latifolia were extracted with aqueous acetone and the extract was subjected to a combination of chromatographies over Sephadex LH-20, MCI-gel CHP 20P and Cosmosil 140 C₁₈-OPN to afford five flavonoids.

Compound I showed dark green coloration with ferric chloride and UV spectra exhibited

characteristic absorptions for flavonoid. The ¹H-NMR spectrum of 1 exhibited secondary methyl signals at $\delta 0.93$ for rhamnosyl methyl together with anomeric proton doublet at $\delta 5.48(1 \text{H}, \text{d}, J=1.3 \text{Hz}, \text{Rha-1})$ as a α -configuration. It showed two meta-coupled doublets at $\delta 6.26(1 \text{H}, \text{d}, J=2 \text{Hz}, \text{H-6})$ and $\delta 6.46(1 \text{H}, \text{d}, J=2 \text{Hz}, \text{H-8})$ which means the common 5, 7-dihydroxylation pattern in A-ring and the B-ring signals were observed as a two-proton singlet at $\delta 7.10$ having 3', 4', 5'-oxygenation pattern.

The MS spectrum showed [M]⁺ ion peak at m/z 464 and fragment ion peak at m/z 318 indicating an aglycone(myricetin) and a rhamnose lost([M-146]⁺).

Acid hydrolysis of 1 yielded myricetin as its genin and rhamnose as the sugar.

From these results compound 1 was identified as myricitrin (myricetin 3-O-α-L-rhamnoside) and direct comparison with an authentic standard supported this conclusion (co-TLC).

Compound 2 was well known flavonoid, quercetin 3-O-β-D-glucopyranoside, showing typical

ABX pattern in B-ring region [δ 6.96(1H, d, J=8.5Hz, H-5'), 7.69(1H, dd, J=2.2, 8.5Hz, H-6'), 7.82(1H, d, J=2.2Hz, H-2')], 5,7-dihydroxylation pattern in A-ring region [δ 6.29(1H, d, J=2.2Hz, H-6], 6.66(1H, d, J=2.2Hz, H-8)] and a glucose anomeric proton at δ 5.55 as a β -configuration(J=7.8Hz) in the ¹H-NMR spectrum.

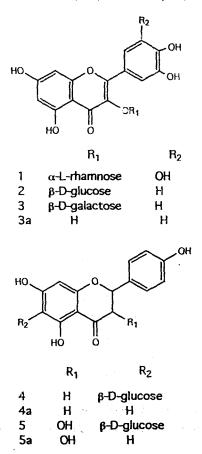
The identification was established by direct comparison (co-TLC) with an authentic sample.

The MS spectrum of 3 exhibited [M]⁺ ion peak at m/z 464 and a fragment ion peak at m/z 302 arising from an aglycone unit and a hexose sugar lost ([M-162]⁺). In ¹H-NMR spectrum, the chemical shifts and coupling patterns of 3 were very similar to those of compound 2 but the ¹³C-NMR spectrum of 3 showed galactose moiety at sugar region [δ 101.7 (Gal-1), 75.7(Gal-5), 73.1(Gal-3), 71.1(Gal-2), 67.9(Gal-4), 60.1(Gal-6)]⁷.

Acid hydrolysis of 3 afforded quercetin and galactose.

The comparison of the ¹³C-NMR spectrum of 3 with quercetin as its aglycone revealed glycosylation shift at C-2(+9.3 ppm), C-3(-2.2 ppm), and C-4(+1.7 ppm), suggesting a sugar unit was attached at C-3 of quercetin. ¹⁰

Thus compound 3 was identified as quercetin $3-O-\beta-D$ -galactopyranoside and direct comparison (co-TLC) with an authentic standard supported this conclusion.


Compound 4 was obtained as white amorphous powder and gave a greenish brown color in the ferric chloride. The UV spectrum of 4, λ max (MeOH) at 295, 340 (sh) nm and ¹H-NMR signals at δ 2.72(1H, dd, J=3.17Hz, H-3eq), δ 3.27 (1H, dd, J=12, 17Hz, H-3ax) and δ 5.41(1H, dd, J=3, 12Hz, H-2) showing the couplings of the C-2 proton with the two C-3 protons indicated to be a flavanone.¹¹⁾

The ¹H NMR spectrum of 4 also showed a sugar moiety at $\delta 4.49(d, J=9.7Hz)$ and one

proton singlet at $\delta 5.95$ suggesting C-glycosyl type. And typical four-protons of two doublets (each J=8.5Hz) at $\delta 6.78$ and 7.31 showed A_2B_2 pattern for the B-ring. The ¹³C-NMR spectrum of 4 exhibited a C-glucosyl moiety at $\delta 73.0$ (Glc-1), 70.3 (Glc-2), 79.0 (Glc-3), 70.7 (Glc-4), 81.5 (Glc-5), 61.5 (Glc-6).

The MS spectrum of 4 also exhibited [M]⁺ ion peak at m/z 434 and a fragment ion peak at m/z 285 which consists of aglycone fragment containing a CH₂ remnant of C-linked sugar¹²). From these results, the aglycone type was defined as nalingenin and the sugar was glucose.

The 13 C-NMR spectrum of 4 provided information for its assignment of 6-C glucosyl position from the signals at $\delta 94.8(C-8)$ and 105.8(C-6) compared with the signals of its aglycone, nalingenin at $\delta 95.9(C-6)$ and 95.0(C-8).

Futhermore, the upfield shift in the signals of adjacent carbons at $\delta 162.8(-0.8 \text{ ppm}, \text{ C}-5)$ and 165.8(-0.9 ppm, C-7) supported the attachment of glucosyl moiety at $\text{C}-6^{13}$.

Thus the structure of compound 4 was confirmed to be 6-C-glucosyl nalingenin (hemiphloin)⁹⁾.

Compound 5 suggested to be dihydroflavonol from UV maxima at 293, 340(sh)nm and a pair of doublets (each for one proton) at $\delta 4$, 62 and 5.02 with J=11.4Hz typical for 1, 2-diaxial protons in C-ring region¹¹⁾.

The ¹H-NMR spectrum of 5 clearly showed two doublets of four protons at $\delta 6.79$ and 7.33 with $J{=}8.5$ Hz, typical of the A_2B_2 pattern in B-ring and a singlet at $\delta 5.91$ (1H) in A-ring region and a doublet for one proton at $\delta 4.85$ with $J{=}9.8$ Hz as an anomeric proton indicated 6-C or 8-C glycosyl dihydrokaempferol.

The ¹³C-NMR spectrum showed a C-glucosyl moiety at δ 75,0(Glc-1), 72.6(Glc-2), 80.1 (Glc-3), 71.8(Glc-4), 82.4(Glc-5), 62.9(Glc-6)⁸⁾, and the signals arising from the ¹³C-NMR spectrum of 5 except glucose moiety similar to its postulated aglycone, aromadendrin¹⁴⁾.

The position of the glucosyl group was determined by comparing the 13 C-NMR spectra of 5 with aromadendrin. The signals of C-6 and C-8 in aromadendrin was $\delta 97.5$ and 96.4 respectively in the literature¹⁴) but 5 showed its C-6, C-8 signals at $\delta 106.2$, 96.5 respectively.

From these results the downfield shift at $\delta 106.2$ was assigned to C-6 and similar results were reported for 6-C-methylaromadendrin¹⁴).

Futhermore, the upfield shift in the signals of adjacent carbons (C-5 and C-7) at δ 164.0 (-1.3 ppm) and 167.5(-1.3 ppm) respectively supported this conclusion¹³⁾.

Thus the structure of compound 5 was elucidated as aromadendrin-6-C- β -p-glucopyranoside (6-C-glucosyldihydrokaempferol)⁹⁾.

Experimental

General—NMR spectra were recorded at 100 and 300 MHz(1 H-NMR), 25.05 and 75.47 MHz (13 C-NMR). Chemical shifts are given in δ (ppm) scale with TMS as int. std. MS were measured at 70eV. CC was carried out on Sephadex LH-20(25 \sim 10 μ m, Pharmacia), MCI-gel CHP 20P(75 \sim 150 μ m; Mitsubishi) and cosmosil 140 C₁₈-OPN(Nacalai). TLC was conducted on precoated silica gel 60 F₂₅₄(Merck) and precoated cellulose F₂₅₄ plates(Merck). Spots were detected under UV and by spraying with FeCl₃ and dil. H₂SO₄, followed by heating.

Plant material—Leaves of B. platyphylla var. latifolia were collected Mt. Kuanak near Seoul city, Korea.

Extraction and isolation—Fresh leaves (5.5 kg) were extracted with 80% aq. Me₂CO at room temp. After removal of Me₂CO in vacuo, the aq. solution was filtered. The filtrate was concentrated and then applied to Sephadex LH-20 column.

Elution with H₂O containing increasing proportion of MeOH afforded 3 frs, I(150 g), II(225 g) and III(320 g). Repeated CC of fr. I on MCI-gel CHP 20P with an H₂O-MeOH gradient system and Sephadex LH-20 with EtOH gave 6-C-glucosyl aromadendrin(5, 150 mg).

CC of fr. II over MCI-gel, cosmosil 140 C₁₈-OPN with an H₂O-MeOH gradient system furnished 6-C-glucosyl nalingenin (4, 100 mg).

CC of fr. III over MCI-gel with an $H_2O-MeOH$ gradient system and Sephadex LH-20 with EtOH afforded myricitrin(1, 50 mg), quercetin-3-O- β -p-glucopyranoside(2, 1 g) and quercetin-3-O- β -p-galactopyranoside(3, 2 g).

Myricitrin (1)—Yellow amorphous powder, FeCl₃: dark green, $[\alpha]_D^{26}$ -126.0° (MeOH: c 0.3); MS m/z 464 [M]+, 318 [M-Rha]+; 1H -NMR (100 MHz, Me₂CO-d₆+D₂O) δ : 0.93

(3H, d, J=5.9Hz, Rha-CH₃), 3.76(1H, dd, J=3.6, 9Hz, Rha-3), 5.48(1H, d, J=1.2Hz, anomeric H), 6.26(1H, d, J=2Hz, H-6), 6.46(1H, d, J=2Hz, H-8), 7.10(2H, s, H-2' and H-6'); UV, $\lambda_{\text{max}}^{\text{MeOH}}$ nm(log ε) 256, 297, 308, 353; $\lambda_{\text{max}}^{\text{MeOH}+\text{NaOH}}$ nm 261 sh, 293, 369(dec); $\lambda_{\text{max}}^{\text{NaOAc}}$ 270, 308, 369; $\lambda_{\text{max}}^{\text{NaOAc}+\text{H}_3\text{BO}_3}$ nm 259, 294, 374; $\lambda_{\text{max}}^{\text{AlCl}_3}$ nm 380.

Acid hydrolysis of 1—A solution of 1 (20 mg) in 5% HCl was refluxed for 3hr, and the reaction mixture was extracted by EtOAc. The organic part was concentrated and then applied to a column of Sephadex LH-20 with a H₂O-MeOH in gradient to give yellow powder, which was identified as myricetin by direct comparision with an authentic sample (co-TLC).

The remaining aqueous solution was neutralized by Amberlite MB-3 and concd. L-Rhamnose was detected by TLC.

Quercetin-3-O- β -D-glucopyranoside (2) — Yellow amorphous powder, FeCl₃: green, $[\alpha]_D^{26}$ — 11.0° (MeOH; c 0.3). ¹H-NMR (100 MHz, Me₂CO-d₆+D₂O): δ 5.55(1 H, d, J=7.8 Hz, anomeric H), 6.29(1H, d, J=2.2Hz, H-6), 6.65(1H, d, J=2.2Hz, H-8), 6.96(1H, d, J=8.5Hz, H-5'), 7.69(1H, dd, J=2.2, 8.5Hz, H-6'), 7.82(1H, d, J=2.2Hz, H-2').

Quercetin-3-O- β -D-galactopyranoside (3) —Yellow amorphous powder, FeCl₃: green, $[\alpha]_D^{26}$ —44.0° (MeOH; c 0.3); UV, $\lambda_{\text{max}}^{\text{MeOH}}$ nm(log ε) 257, 359; $\lambda_{\text{max}}^{\text{MeOH+NaOH}}$ nm 271, 330, 410; $\lambda_{\text{max}}^{\text{NaOAc}}$ nm 269, 379; $\lambda_{\text{max}}^{\text{NaOAc+H_3BO_3}}$ nm 264, 384; $\lambda_{\text{max}}^{\text{AlCl_3}}$ nm 267, 401; $\lambda_{\text{max}}^{\text{AlCl_3}+\text{HCl}}$ nm 267, 298, 363, 400; MS m/z 464[M]+, 302[M-Gal]+; ¹H-NMR (100MHz, Me₂CO-d₆+D₂O) δ : 5.22(1H, d, J=7.6Hz, anomeric H), 6.28(1H, d, J=2Hz, H-6), 6.53(1H, d, J=2Hz, H-8), 6.94(1H, d, J=8.5 Hz, H-5'), 7.61(1H, dd, J=2.2, 8.5Hz, H-6'), 8.07(1H, d, J=2.2Hz, H-2'); ¹³C-NMR (25.05 MHz, DMSO-d₆): see Table I.

Acid hydrolysis of 3—A solution of 3 (20 mg) in 5% HCl was refluxed for 3 hr. After cooling, the solution was extracted with EtOAc. TLC examination of EtOAc layer showed the presence of quercetin. The aqueous layer was neutralized with Amberlite MB-3 and concentrated in vacuo. D-Galactose was detected by TLC.

6-C-Glucosylnalingenin (4)—White amorphous powder, FeCl₃: greenish brown, $[\alpha]_D^{26} + 28^{\circ}$ (MeOH; c 0.3); UV, $\lambda_{\text{mex}}^{\text{MeOH}}$ nm (log ε) 289, 325sh; $\lambda_{\text{mex}}^{\text{MeOH}+\text{NaOH}}$ nm 246, 328; $\lambda_{\text{max}}^{\text{NaOAc}}$ nm 291, 328; $\lambda_{\text{max}}^{\text{NaOAc}+\text{H}_3\text{BO}_3}$ nm 291, 328, MS m/z 434[M]+, 285; ¹H-NMR (300 MHz, DMSO-d₆) δ : 2.72

Table I. ¹°C-NMR Chemical shifts of compound 3~4a in DMSO-d₆ and 5~5a in CD₃OD

Carbon	3	3 a ^{a)}	4	48ª)	5	5 a ^{b)}
C-2	156.2	146.9	78.3	78.4	84.9	85.0
C~3	133.4	135.6	21.0	42.0	73.5	73.7
C-4	177.4	175.7	196.6	196.2	198.8	198.4
C-5	161.1	160.7	162.8	163.6	164.0	165, 3
C-6	98.6	98. 2	105.8	95.9	106.2	97.5
C-7	164.0	163.9	165.8	166.7	167.5	168.8
C-8	93, 4	93. 4	94.8	95.0	96.5	96. 4
C-9	156. 2	156.2	161.7	162.9	163, 8	164.6
C-10	103.8	103.0	101.5	101.8	101.7	101.9
C-1'	121.9	122.0	128.9	128.9	129.1	129.4
C-2'	115.0	115.3	128.3	128.2	130.3	130.4
C-3'	144.7	145.0	115.2	115.2	116.2	116.3
C-4'	148.4	147.6	157.7	157.8	159.1	159. 2
C-5′	115.9	115.6	115.2	115.2	116.2	116.3
C-6'	120.9	120.0	128.3	128.2	130.3	130.4
Galactose			Glucose		Glucose	
C-1	101.7		73.0		75.0	
C-2	71.1		70.3		72.6	
C-3	73. 1	* 1	79.0		80.1	
C-4	67.9		70.7		71.8	
C-5	75. 7	the state of	81.5		81.4	
C-6	60.1		61.5		62.9	

a) Reference data reported by Markham et al. (13C NMR Chart).7)

b) Reference data reported by Agrawal. 15)

(1H, dd, J=3, 17Hz, H-3eq), 3.27(1H, dd, J=12, 17Hz, H-3ex), 4.49(1H, d, J=9.7Hz, anomeric H), 5.41(1H, dd, J=3, 12Hz, H-2), 5.95(1H, s, H-8), 6.78(2H, d, J=8.5 Hz, H-3' and H-5'), 7.31(2H, d, J=8.5 Hz, H-2' and H-6'), 12.72(1H, s, 5-OH); 13 C-NMR (75.47MHz, DMSO-d₆): see Table I.

Aromadendrin 6-C-β-D-glucopyranoside (5)—Light brown amorphous powder, FeCl₃: brown, $[\alpha]_D^{26} + 32^\circ$ (MeOH; c 0.3); UV, $\lambda_{\text{max}}^{\text{MeOH}}$ nm(log ε) 294, 346sh; $\lambda_{\text{max}}^{\text{MeOH+NaOH}}$ nm 247, 320; $\lambda_{\text{max}}^{\text{NaOAc}}$ nm 255, 334; $\lambda_{\text{max}}^{\text{NaOAc+H}_3\text{BO}_3}$ nm 294, 330, $\lambda_{\text{max}}^{\text{AlCl}_3}$ nm 295, 320sh; $\lambda_{\text{max}}^{\text{AlCl}_3+\text{HCl}}$ nm 312, 389 sh; Positive FAB-MS m/z 451[M+H]+; ¹H-NMR(300MHz, DMSO-d₆) δ: 4.48(1H, J=9.8 Hz, anomeric H), 4.56(1H, d, J=11.4Hz, H-3), 5.03(1H, d, J=11.4Hz, H-2), 5.91(1H, s, H-8), 6.79(2H, d, J=8.5Hz, H-3' and H-5'), 7.33(2H, d, J=8.5Hz, H-2' and H-6'), 12.48 (1H, s, 5-OH).

¹³C-NMR(75.47MHz, DMSO-d₆): see Table I. (Received May 30, 1994:

Accepted June 8, 1994>

Literature Cited

1. Lee, M.-W., Tanaka, T., Nonaka, G. and Hahn,

- D.-R.: Arch. Pharm. Res. 15, 211(1992).
- Mensah, I.A. and Achenbach, H.: Phytochemistry 23, 2043(1984).
- Park, W.-Y., Lee, S.-C., Ahn, B.-T., Lee, S.-H.,
 Ro, J.-S. and Lee, K.-S.: Kor. J. Pharmacogn.
 24, 20(1993).
- Cho, E.-H. and Kim, I.-H.: Yakhak Hoeji 35, 427(1991).
- 5. Lorente, F.T., Ferreres, F. and Barberan, F.T.: Phytochemistry 21, 1461(1982).
- Harborne, J.B.: The Flavonoids, Advances in Research since 1980, Chapman and Hall, New York, p. 67 (1980).
- Harborne, J.B. and Mabry, T.J.: The Flavonoids, Advances in Research, Chapman and Hall, London, New York, p. 38 (1982).
- 8. ibid., p. 46.
- 9. ibid., p. 459.
- 10. Tanaka, O.: Yakugaku Zasshi 105, 323(1985).
- 11. Mabry, T.J., Markham, K.R. and Thomas, M.B.: The Systematic Identification of Flavonoids, Springer-Verlag, Berlin, p. 267(1970).
- 12. Markham, K.R.: Techniques of Flavonoid Identification, Academic Press, London, p. 91(1982).
- 13. ibid., p. 82.
- Shen, Z. and Theander, O.: Phytochemistry 24, 155(1985).
- Agrawal, P.K.: Carbon-13 NMR of Flavonoids, Elsevier Science Publishing Company Inc., New York, p. 118(1989).