Abstract
The chemistry and performance characteristics of the EBDS process have been introduced, in which experimental results from laboratory, test plant, and pilot plant studies agree very well and can be understood from detailed kinetic models. The parametric dependencies of the NOx and $SO_2$, removal yields on the input conditions have been discussed and formulated quantitatively. The process is best suited for flue gas with high $SO_2$, loadings. The operation conditions, such as dose, ammonia, and water additions, can be adjusted fast upon load changes. The process works waste water free and the major product is a mixture of ammonium nitrate and sulfate that can be used as fertilizer. The up-date results show that the EBDS technology is safe and competitive with other already well-established technologies. Due to these interesting features, the electron beam process has gained much international recognition. Demonstration units of 100MW have been proposed in the United States and Japan. Further pilot plants are under construction in Poland and China, countries that make abundant use of highsulfur coal. Additional research activities are under way to further improve the energy efficiency of process, and accelerator prices have been decreasing during the past 10 years. So the EBDS process has a good chance to start a new generation of emission-control technology.