An Algorithm for the Concave Minimization Problem under 0-1 Knapsack Constraint

0-1 배낭 제약식을 갖는 오목 함수 최소화 문제의 해법

  • Published : 1993.06.30

Abstract

In this study, we develop a B & B type algorithm for the concave minimization problem with 0-1 knapsack constraint. Our algorithm reformulates the original problem into the singly linearly constrained concave minimization problem by relaxing 0-1 integer constraint in order to get a lower bound. But this relaxed problem is the concave minimization problem known as NP-hard. Thus the linear function that underestimates the concave objective function over the given domain set is introduced. The introduction of this function bears the following important meanings. Firstly, we can efficiently calculate the lower bound of the optimal object value using the conventional convex optimization methods. Secondly, the above linear function like the concave objective function generates the vertices of the relaxed solution set of the subproblem, which is used to update the upper bound. The fact that the linear underestimating function is uniquely determined over a given simplex enables us to fix underestimating function by considering the simplex containing the relaxed solution set. The initial containing simplex that is the intersection of the linear constraint and the nonnegative orthant is sequentially partitioned into the subsimplices which are related to subproblems.

Keywords