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Algorithm to Determine the Optimal Spare Inventory Level
for Repairable-Item Inventory System
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Abstract

This article concerns the problem of determining the optimal spare inveniory level for

multiechelon repairable-item inventory system. The system we are cancerned has several bases

and a central depot. When an item fails, it is dispatched to a repair facility and, a spare, if

available, is plugged in immediately. When the failed item 1s repaired, it is sent to the base and

either used to fill a backorder or stored at a spare inventory point. We develop an optimal

algorithm to find the spare inventory level at each base spareswhich minimizes the total

expected cost and, simultaneously, satisfies a specified minimum service rate. The algorithm is

applied to examples with good results,

The repairable items such as engines of a
fighter plane or a ship are expensive, criti-
cally important, and subject {o infre-gquent
investment and

failure. Since

shortages are significant factors deter-

mnvertory

mining the efficiency of the overall system
containing the repairable-items, there has
been considerable interest in multiechelon
repairable-item inventory system. The rese-
arches on the system are focused upon the
trade-offs among spare inveritory level and
repair capacities, as well as analyses of the
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underlying stachastic process that might be
used to describe the system. In this article,
we investigate the problem of datermiming
the spare inventory level satisfying minimum
fill rate at minimum cost.(Fill rate(service rate)
is the percentage of failed tems immediately
replaced by a spare item. The minimum fill
rate is a predeiermined fill rate which
should be achieved for the efficient opera-
tion of a given system.) Before presenting
the details of the model developed, we
summarize the previous work in repairable-
item multiechelon inventory system.

There have been two parallel streams of
research in this area. The first is based on
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the METRIC model. The model develaped by
Sherbrooke [12] consists of several bases
and a ceniral depot. When an item failure
accurs, it 15 dispatched to a repair facility
and a spare, if available, is plugged in. If the
spare 1s not available, it is backordered.
When the failed item is repaired, it is sent to
a base to fill a backorder or is stored at a
spare Inventory point if there is no
backorder outstanding. The research in this
area includes papers by Sherbrooke [12],
Feeney and Sherbrooke [4], Musckstadt [9.
10], and Muckstadt and Thomas {11]. By
simplifying the models with the ample-
server, ng-gueueing-for-repair assumption,
these researchers have been able to work
with large, complex systems and able to
focus on optimization, particularly with
respect to the stockage levels at the bases
and the central depot. However, as Albright
[1] points out in his paper, a key
assumption of these METRIC models, ample
-service assumption, leads to consistent
underestimation of the amount of congestion
in the system and, consequently, results in
fewer spares than are really needed to
achieve a specified backorder level. Thus the
results of METRIC models are difficult to
apply to real problems where repair facilities
have finile capacities.

The other siream of research is based on
the similar model but has not made the
constant-failure-
rate assumptions. Instead, they study

ample-repair-capacity,

machine-repair queueing models with finite
repair capacities. Gross et al, [7] present an
implieit enumeration algorithm to calculate
the capacities of the base and depot repair
facilities as well as the spare inventory level
which together guaraniee a specified service
rate at minimum cost for a two-echelon(two

levels of repair, one level of supply) system.
Unfortunately, the enumeration scheme of
the method requires considerable computer
running times even for problems with a
relatively small numbers of items and bases.
Gross et al. [5, 61, Albright and Soni [2]
present methods for calculating the station-
ary distribution of a multidimensional
Markovchain process to find the operating
characteristics of a given system. Later
Albright and Soni [3] apply the similar
approach to a two-echelon repairable inven-
tory system. The models in this stream are
more realistic than the comparable METRIC

~ models, and are certainly more difficult to

solve due to the huge multidimensional state
spaces involved. More recently, Albright [1]
develops an algorithm for calculating an
approximation to the model with a single
type of item stocked and repaired by several
bases and a central depot. His approach
yields an accurate approximation for
reagsonably large versions of the system. The
main purpose of the methods in this stream
is to analyze the current status of a given
system and, consequently, they are imprac-
tical to apply to optimization pro-blems.

In this paper, using the results from
queueing theory and the special properties of
a cost function, we are able to develop an
efficient method to find the optimal spare
inventory level at each base which mini-
mizes expected holding plus shortage costs
and, simultaneously achieve a specified
minimum service rate for large real world
problems.

The rest of this article is organized as
fotlows. In Section 1 we describe the model
and, in Section 2, introduce the optimal
algorithm for the model. We present an
example to explain the algorithm and
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conclude with some remarks.
1. MODEL FORMULATION

We introduce the following notation :

t —index for base, i=1, -+, I.

j =index for depot.

A =failure rate at base i

#; =repair rate of a repair channel at base
repair center i.

u; =repair rate of a repair channel depot
repair center.

¢; =number of repair channel at base repair
center i,

¢; =number of repair channel at depot
repair center.

¢; =probability that a failure at hase I is
base repairable.

fi =actual fill rate(service rate) at base &

F; =minimum fill rate at base .

s; =spare items level at base 1.

n =number of failed items being repaired at
base repair center.

N =number of failed items being repaired at
depot repair center.

k; =number of failed items from base i at
depot repair center.

& =number of items being transported from
depot repair center to base i

i, =travel time from depot repair center to
base i

z =total number of failed items at base i

As shown in figure 1, we consider a

sysiern with a number of bases and a

central depot. The depot stocks no spares

and only repairs the failed items from bases.

When a repair job is completed, the item is

returned to the base where it originated.

Spare Inv, of Spare Inv. of Spare Inv. of
Base 1 Basei Base |
5 Repaired
pare hem
Base Repair —— B&.ee'Repm.'r . ———
Center { © - Conteri
b
b frem with 1
Spare Base Repairable
Fail
4 y
Jeern with Depot Repaired
Failure ftem
_ Depot Reépair Center

Figure 1.
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[tem fallure rate of the base :{ is
exponentially distributed with parameter 4,
At failure, the item is replaced by a base
spare if one is available, If spare is not
available, the item is backordered. the failed
item is classified as base repairable with
probability «. Otherwise, with probability 1
—a, the item must be sent to the depot for
repair. Additionally, we assume that travel
times are positive only in the depot-to-base
direction ; in the base-to-depot direction
they are assumed to be zero.(This assump-
tion can be relaxed without difficulty.) Then
the items of a base which are currently at
the base repair center or at the depot repair
center or in transit from the depot to the
base after repair can be considered as the
total failed items of the base since they are
not available for replacement 2t the base.
Thus, after steady-state has been reached,
the probability distribution of the total failed
items of a base can be calculated by
convolution of the prebability distributions
of the items at the base repair center and at
the depot repair center and in transit from
the depot to the base. Now we derive the
above  mentioned

distributions.

three probability

Probability distribution of items at base
repair center
We introduce the following notation for a

few steady-state probability distributions to

be iniroduced.

FP{=n) =probability distribution that there
are n items at base repair center i.

P{N) =probability distribution that there
are Nitems at depot repair center.

Pk} =probability distribution that there
are k items from base i ai depot
repair center.

Pi{x;) =probability distribution that there
are £; ltems In transit from depot
to base &

=probability distribution that total
number of items of base i at base
repair and depot repair
center and in {ransit from depot to

P(z)
center

base i is zx
Since we assume that the item failure rate
of the base i is exponentially distributed
with 1, and that the failed item is base re-
pairable with probability e, the base
repairable failure rate of the base i is
exponentially distributed with parameter a.4;
. When the time 1o repair a failed item at
the base repair center i is exponential with
parameter u, the probability distribution
that there are n items at the base repair
center i Pf{n), can be obtained from
Equations of M/M/c; queueing model as in

Equations (1) and (2).

(6¥nl) P{O) forl< a = ¢,
oW (e ¢ for n = ¢,

Fimy= [ )

and

P(Yy=1/[ {§u onl+ (g% )

(1/1-pN], (2)

where g,=ad./u: and p . =ad/eu. Note
that the above probability distributions do
not exist unless the steady-state condition is
satisfied, 1.6, p; < 1 15 satisfied.

Probability distribution of items at depot
repair center

Since depot repairable failure rate of the
base distributed with
parameter (1—a)A;, and fatlure rate of
independent exponential

i 15 exponentially

each base has
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distribution, interarrival time at depot repair
center has exponential distribution with

I
parameter 2/(1—ea ;) Az Thus the probability

=1
that there are N items at the depot repair
center, Pi{N), is derived from Equations of
M/M/¢. queueing model.

(6¥N1) PLO) for1< N<¢,

P(N)= [Oﬁ'(c;‘! c¥6) for Nz ¢ @)

and

€~ 1

P0)=1/[ >: SYNI+(a7/c)

(1/(1-p1], 4)

! I

where 0,=2 (I—a)A/p;andp ;=2

i=1 =1
{1—a)A/cu;.

Above probabilities exist if the steady-state
condition is met, Le., o ; < 1 is satisfied.

When we define 4.= (l—af).rh/}__i}(l—as)

A, that i1s the proportion of items from the
base ¢ at depot repair center, the conditional
probability that there are x; -~ x; tiems
from base 1, --- I, respectively, given that

N items are at the depot repair center, is

N I
P(K/N)=( ) I 8% where K= (ky-ky).
i=1

(5)

Thus the probability that there are & items
from the base i given that N items are at the
depot repair center is

N
PGk | M=Pyth | M =( l() gh (1- )75

(6)

To find out Py%), we condition on the

number of items at the depot repair center
as follows :

Pik)=3 P,k | total number of items at
N=0

the depot is N) P(iotal number of items at
the depot is N}

=% P; k/N) P(N) (By definition of P,
fr=i

(M)
- N |
=z ()en a-9 =P )
UANY

Probability distribution of items in
transit,

By the equivalence property of queueing
system (see, for example, p. 641 of Hillier
and Lieberman [8]), the probability dis-
tribution of the number of ttems in transit
from the depot repair center to the base : is
same as the probability distribution of depot
repairable Tfaillure rate of the base i
Therefore the probability distribution of
number of items in transit has poisson
distribution with parameter (1—a )AL as
in Equations (8).

Pie)=[((1—adA:t)* exp(—{(l—ali.t
)1/kid. (8

Probability distribution of total failed
items

Since the total failed items of a base is
composed of the items which are currently
at the base repair center and at the depot
repair center and in transit from the depot
repalr center to the base, the probability
distribution of the total failed items of the
base i can be obtained as in Equation (9) by
convolution of the previously derived
probability distributions.
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P(z)=3% % P{«)* P(k)* P{z—k—x)

K X

(9)

Expected cost and minimum fill rate

We define additional notation.

h; =unit holding cost per unit time of base :
b; =unit shortage cost per unit time of base
L

TC(s;) =expected total cost per unit time at
base i with spare inventory level s;

If the total failed items of a base is
greater than the spare inventory level, then
the shortage cost is incurred. Otherwise the
holding cost is incurred. Thus the total
expected cost of the base i, which is the sum
of the expected shortage and holding costs,
can be written as in Equation {0.

8, o
TC(s)=h X (si—z) Plzd+b X2

zZ=0 275;+1

(Zs— Si) P(Zi)- ClO

Theorem 1. The expected total cost
function, TC(s,), is unimodal on the interval
[0, o).

The proof of the theorem is contained in
Appendix.

Before introducing another Theorem, we
show- an Eqguation expressing relationship
between the minimum fill rate(F) and
actual fill rate (f;} below.

f=Pr{z;<s}= Z: P(z)=F, w

z2=0

Theorem 2. Let s* be the inventory level
satisfying equations A(1.1) and A(1.2)(see
Appendix for reference), that is the
minimum point of the cost function. Let s; be
the minimum of s; values satisfying equation

(1. Then the spare inventory level to achieve
the minimum fill rate at minimum cost is
Max{s*, s}

Proof. Consider graphs in Figure 2. As
shown in case (a) of Figure 2, if s* = s,
then the inventory level satisfving the
minimum fill rate at minimum cost should
be s*. On the other hand, if the reverse is
true as in case {(b) of Figure 2, then the
inventory level should be s..

Expected

cost

4
IR
T T [nventory
5 5 Level
Case a} .S_‘.--(S,?‘

Exoected

cost

¥

T T Inventory
5* E;- Level
Case bl 5",> 5

Figure 2. total expected cost function

2. THE ALGORITHM

We now formally present the algorithm
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which determines the spare. inventory level
to achieve a predetermined minimum fill
rate at minimum cost.

Step 1. Verify the {following steady-
state conditions are satisfied.

!
P;‘=§ (I—a)Ai/cu; < 1 and

o =aidfep; < 1fori=1, -, I.

If the conditions are met, go to Step 2.
Otherwise stop.

Step 2. Calculate P{N} untile the
prebability becomes less than e=10"1.

Step 3. Calculate Pin), Pi(k), Pulai)
for i=1, -, I until each probability be-
comes less than ¢ =107".

Step 4. Calculate the minimum point of
the cost function, s*, by the Bisection
Method.

Step 5. Calculate the minimum inven-
tory level satisfying the mimmunm fill rate, 5

Step 6. Choose the maximum of s* and
s as the answer for a given system.

In Step 1, if the steady-state conditions
are not met, ne probability distribution
exists and the optimal inventory level does
not exist. Steps 2 and 3 are to calculate
probability distributions previously intro-
duced. In Steps 4 and 5, we find the
minimum point of the cost function using
the Bisection Method and calculate the
minimum inventory level satisfying the
specified minimum fill rate. Using the results
of Steps 4 and 5, we are able to find the
desired answer in Siep 6.

Example

To illustrate the implementation and
performance of the Algorithm, we employ
Consider a

the following example.

multiechelon inventory system with two
hases and a depot as an example. The
shortage costs for each base are 20 and the
holding costs are set to 30. Other relevant
data can be found in Table I. The proposed
algorithm is programmed in C and tested on
a 80386 based IBM compatible P.C. system.

Table I shows the desird inventory levels
when we consider the total cost alone. For
base 1, when we neglect the mimimum fili
rate, the minimum point(inventory level of
the minimum total expected cost) i1s 11
items at the minimum cost of 38.58. For
base 2, it is 20 items at the cost of 50.38.
The solution of the example, inventory levels
satisfying the minimum fill rate at minimum
cost, is shown in Table 1. The first column
is for the given minimum fill rates and the
second column is for the achieved{actual)
fill rates of the base. As we expected, the
optimal spare level and the optimal cost are
decreased until the minimum point is
reached as we gradually lower the minimum
fill rate. When the optimal inventory level
arrives at the minimum point, it remains at
that point despite further decrease of the
minimum fill rate. The example problem
took less than 10 minutes to find the optimal
sotution. Therefore, we may safely conclude
that the method is capable of solving real
problems in reasonable time.

Table 1. data for the example

Parameters
A, Q,; i & Ky
Base/Depot
Base 1 10 06 2 2 25
Base 2 20 075 3 2 30
Depot - - - 4 3
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Table 2. minimum cost inventory level

Base inventory Level Minimum Cost
Base ] 1i 3858
Base 2 20 5038

Table 3. output of the algoritbm for

the example

MNIMUM | ol fll e [Optimal sparc level|  Optimal cost
0.99 0.9940.562) 20030) DS.85(120.00)
0.95 0.85K0.559) 16(28) SOLEHES 06}
0.5¢ 0.977(0.916) 1524y 53.08{67.32)
0.85 0.888(0.83) 14(23) 463037
080 0.8330.840) 1327 41395563
0.75 0.75%0.786) 1221 38.6(52.0)
070 0.75%0.721) 12020 30.60{5038)
0.65 0.6670.721) 1025 38, 58(5038)
0.60 0.66700.721} 1120 3RSRIS0.38)

3. CONCLUDING REMARKS

In this article we developed a method to
calculate the optimal spare inventory level
which satisfies a predetermined minimum
service rate at minimum cost. With this
approach, we are able to solve large
problems very quickly. We helieve that the
method could be wused for efficient
management of real repairable item inven-
iory system.

Possible extensions to our model include
incorporation of more sophisticated cost
structures such as nonlinear holding or
shortage costs. Furthermore, it may be
possible to enhance the model accuracy by
relaxing the implicit assumption of infinite
number of items operating at each base,
which enables us to make use of the
formulas fram M/M/s madel.
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APPENDIX

Proof of Theorem 1

For the given cost function to be unimodal,
there should exists an inventory level
(integer point), s, satisfying the following
Equations (A.1.1) and (A.1.2).

TC(si+k+1)>TC{s;+ k) for k=0, 1, ++-, o0
(A.1.1)

TC(si—k—1)>TC(s,— k) for k=0, 1, -,

si—1 (A.1.2)

Now we prove the Theorem for k=@ first.
1) Case k=0

Plugging k=0 into Equations (A.1.1) and
(A.1.2) gives.

TC(s+1) > TC(s)
TC(si41) > TC(s;)

(A.2.1)
(A.2.2)

Now Equation (10 can be expressed as in
Equations (A.3), (A.4), and (A.5).

s 1

TC(s)=h T (s—2Z) P(Z)+b X
z=0 Z=85+1
(Zi—s) P(Z) (A.3)

#;
TC(S,+1)=h,E (3,+1_Z|) P(Z.)+b,

z=0

2 (Zi—s—1) P(Z) (A4)

Z=5+2

TC(s—1)=h 3 (s—1—23 P(Z)+h

Z=0
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Z (Zi—s—1) P(Z) (A.5)

Z=8+2

Plugging Equations {(A.3) and (A.4) into
Equations (A.2.1) and (A.2.2), respectively,
gives

b3 P(Z)=b 3 P(Z)>0 (A6)
z=0 =8
s 1 -
k3 P(Z)=b % P(Z)>0 (A7)
&=0 =8

Using (A8} and (A.7), (A.2.1) and (A.2,
2) can be wirtten as in (A.8).

T P(Z)/ T PZ)<hib< 3 P(Z)/

z=5.+1 z=0 zZ=3;

s~ 1
2 P(Z) (A.8)
=0

8¢ 8- 1 ™
Since 2 FZ) > ¥ P(Z) and 3

z=0 z=0 zZ=8-1

P(Z) < ¥ PZ), (A.8)
z=s,

We obtain following Equation {A.9).

. &; = 81
2 Py E PZ) < X KZy/ Z

2=8+1 =0 Z2=8; =0

P(Z). (A9}

Thus there exists a real number that is
between the values of the left and the right
hand sides of (A.9). In other words, there
exists h/b; satisfying(A.8), which is the
equivalent form of the original unimodality
condition in (A.2.1) and (A.2.2).

This establishes the Theorem for £=0.

2) Case kx0
Equation {({)f can be modified as in

Equations (A.10) and (A.11).

sprke 1

TC(s;+k)=h; Z.' (s;+k—2Z;) P(Z)
#=0
+b i' (Zi—s—k)y P(Z) (A.10)
Z=Eth=1
stk

TC(s+k+1)= 2 (si—Z+k+1) P(Z)
0

Zi=

5 3

B=8 kt2

(Zl'_s:_k) P(Z:) (A.ll)

Using Equations (A.10) and (A.11), the
unimodality condition in Equation (A.1.1)
can be expressed as in Fquation (A.12).

Stk sk
WY (s—Z+k+l) P(Z)—-h T (si—Z
z=0 z=6

an

+k) P(Z)+b X (Z—s—k—1) P(Z

z,-:sx+k+1
= &Stk
)=b X (Zi—si—k) P(Zy=hX P
=8t ktl =0
(Zo—-b 2 FZ)>0 (A.12)
Z=8+kt]

{(A.12) can be simplified further as in
Equation (A.13) below.

stk

> Z)/ 3 PZ)

Z=8k+] 2=

hi/b > (A.13)

Similarly Equation {0 can be written as in
Equations (A.14) and (A.15).

z

%

S k-2 S k-1
hio & (s—Zimk=1) H(Z)—h
o =0

(S:'__ Zx_ k} P( Z:) +b¢ Z

Z=sh

(Z,-—SH‘ k"‘ 1)
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P(Z)—b; 2z

=8 k+1

(Zi—st k) P(Z)=—N

S P(Z)-b ¥ P(Z) >0

=0 =5~ h

(A.16)

{A.186) can be simplified further as in (A.
i7)

&- k-1

ek < X PZ) T PZ)

Z=8r k z=0

(A1T)

Now a real number h/b; satisfying {A.8)

satisfies (A.13) and (A.17) automatically.
Since(A.13) and (A.17)
unimodality condition for k>0, this
establishes the Theorem for %>0 and,
together with the proof for £ =0, completes
the proof for Theorem 1.

comprise the
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