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Multi-product Lot Quantity Verification : A Weighing InspectionApproach
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Abstract

This paper presents an alternative inspection method for counting items of a lot(or kit) in

production lines or distribution centers. In this inspection, lots are weighed instead of counting

all items of the lots in order to reduce the effort required for the 100% manual counting inspec-

tion. Inspection errors of this inspection procedure are analyzed and the impact of the variabil-

ity of item weights on inspection errors are investigated. Two approaches, the cost assessment

approach and the bicriterion decision making approach, are presented for the implementation of

this inspection procedure.

1. INTRODUCTION

[n many production lines or distnbution
centers, items are transported in lots (all
items of the same type) or kits (different
types of items). Hereafter the word “lot”
will represent a lot or a kit. Verifying that a
lot contains the correct number of items is
necessary to prevent incurring costs of over
-shipments and under-shipments. An over-
shipment is a lot containing more units than
the target or order quantity, An under-ship-
ment is a lot containing fewer units than
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specified. A 100% counting nspection is
commonly used for this verification and er-
rors found are rectified. Such counting is
often lengthy and costly, particularly when
lots consist of items of varying size and
shape.

This paper presents an alternative inspec-
tion procedure, called weighing inspection, to
the 100% manual counting inspection of
each lot. The weighing inspection weighs
each lot and recommends a 100% inspection
only when the actual wieght of the lot dewvi-
ates from the target weight by mare than a
predetermined tolerance level. In deing so, 1t
reduces the number of 100% inspections.
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This inspection strategy, for example, can be
implememented distribution centers
where multiple parts are retrived from stor-

at

age according 1o an order and delivered to a
packaging area. A quick lot
verification is often required here before its

quantity

final packaging for shipment to customers.

There have been some studies in the litera-
ture that discuss controlling product quality
by monitoring preduct weighi. Duling{1876)
presents a study concerning a checkweigher
to control fill on a packaging line. The use
of the checkweigher eliminates the need of
any sampling plan or control charts because
it is essentially 100% testing, with rectifica-
tion made as necessary. A similar study has
been addressed by Mizenka and Martin
(1877). The study investigates various Lypes
of weight control systems that used to pro-
vide proper operation of filling machines.
Qverfilling increases costs, while underfilling
conflicts with legal requirements. Computer
assisted weight control systems have also
been proposed by Parobeck, et al. (1981)
and Fisher (1983). However, procedures
that use the weight of a lot to estimate the
number of items in the lot have not been
presented in the literature,

Here we discuss the design and unplemen-
tation of a weighing inspection procedure. In
section 2, inspection errors caused by this
procedure are defined and itlustrated using a
numerical example. The impact of the varia-
bility of item weight and the tolerance level
on the inspection procedure are investigated
in section 3, and two approaches to deter-
mine the best tolerance level are introduced

in section 4.

Assumptions :
a. The unit weight of each item is normal-

ly distributed with knowp mean and vari-
ance and is independem between items.

b. The actual number of units of item i in
the lot has a probability distribution over a
finite range and it is independent between
items.

¢. There are no manual inspection errors.

2. WEIGHING INSPECTION
PROCEDURE AND
INSPECTION ERRORS

The weighing inspection procedure is simi-
lar 1o a single inspection to decide whether
or not an item is conforming. In this inspec-
tion, the decision whether or not each lot
contains the exact target quantities is made
by weighing the lot and comparing the
weight with the target weight. A decision of
“good lot” is made if the actual weight devi-
ates from the target weight by less than a
predetermined tolerance level, e. If the lot is
not classified as a good lot, & 100% manual
inspection is performed The basis of this in-
spection procedure is thal pre-screening of
bad lots will make the overall inspection
process more effective. Similar approaches
can be found in studies dealing with two-in-
spector problems (Drury et al. (1986)).

Because of the nature of the weighing in-
spection, the inspection procedure can result
in either a type I or type T error. A type
1 error occurs if the lot is declared bad but
found to be good after a 100% manual in-
spection. A type II error occurs if a bad lot
is classified as gaod. The cost of a type I
error consists of the inspection labor cost
and delay cost caused by the manual inspec-
tian operation. The type Il errer cost con-
sists of customer dissatisfaction and expedi-
ting costs associated with the faulty lot. Let
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a and £ represent the probabilities of making
type I and type 1 errors, respectively.
Then « and £ can be mathematically repre-

sented as,
a=P[ | Wa—pu7| =¢ | X=N] 1
A=P[ | Wa— 1| <e | XxN] (2

where m=number of different types of

items in the lot,

m;=target number of units of item 1,
1=1, -+-, m, In the lot

x;=actual number of units of item 1
mn the lot,

4 ~mean weight of item 1,

a?=variance of weight of ltem i,

w,— actual weight of the j* unit of
item 1,

W =the actual weight of the lot

m X

1
(Wa=2 ;1 Wi,

I=11
# r=the target weight of the lot
I

20 nus),

1 i=1

NdE;

(ur=
1

e=maximum allowable weight

~ deviation(the tolerance},

N=(ny, n, -+, ny) and
X={x1, %3 ***y Xn)-

wys and X/s are random variables represent-
ing the weights and the number of units of
items, respectively.

Samller @ and # values would result in bet-
ter weighing inspection. It will be an ideal in-
spection if «=0 and A=0, which is obtaina-
ble only by 100% counting inspection of the
iot. Assuming that w; is normally distributed
and independent between the items, the con-

m xl
ditional distribution of W 4 = z; 121 w;; for

m
fixedXis then normal with E(W, | X)=3
=1

m
X andV(W,;|X)l{_; xo' (Larsen and

Marx (1981)). In this case, & can be easily
calculated using the standard normal distri-
bution. The value of A, however, depends en-
tirely on the types of faulty lots. Since there
are an infinite number of ways a lot can be
faulty, it i1s not possible to list all possible g
values. Instead, we use the unconditional f
value, denoted as f, in order to represent the
probability of committing a type II error in
the inspection process. Mathematically, 8 is
defined as

F=X§N{P(X) P Wa—pr| <e| X} 3)

where 2! represents the summation over
X=+N

the possible X 2N cases. Note that X may be
equal to N in which case a type H error can-
not occur. This approach using the uncondi-
tional # value 1s also found in the Iiterature
where a human inspector is assumed to have
a constant type I inspection error, regard-
less of the fatality of the defect (Collins, et
al. (1973) and Maghsoodloo (1987} ).

As mentioned earlier, there are theoreti-
cally an mfinite number of ways a lot can
be faulty (i.e., X>N cases). This is, howev-
er, not true in practice, and we assume that
the actual number of units of item i in the

Iot, x,, has a probability distribution over a fi-

nite range. Using the assumed probability
distribution, one can calculate the probabili-
ties of misshipments and £ according to
equation (3).

In this paper, we illustrate the calculation
procedure of f using the normal approxima-
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tion to the distribution. This normal approxi-
maticn is later compared with three binomi-
al distributions to investigate the impact of
the distribution on: the weighing inspection.
It is noted that one can use any other discrete
distribution or approximation by a continuous
distribution that well represenis the actual
case. The ideas behind the ncrmal approxi-
mation are that

0O It is likely that the actual number of
units of item i in the lot has a probability
distribution that is symmetric and centered
at the target number of units, n;

¢ The probability that x,=n, (correct
shipment of item i) is relatively very large
as compared to other x; values

O The probability rapidly decreases as x;
deviates from the target number of umnits,
and the range of x;is proportional to n; (ie.,
when a large number of units are picked,
the range of misshipments will increase)

The normal approximation with the mean
of n; and the standard deviation of nk,
where k is a constant coefficient of varia-
tion, incorporates these properties. The coef-
ficient of variation is expected ta be very
small, 1.e., the standard deviation is expected
to be small compared to the mean. Althcugh
we use a single k over all items in the nu-
merical example below, any value of k for
each item can be applied to calculate B.

Using the normal approximation, the rang-
es of x;'s are determined by n;+[3(nk)]",
for all it. One rule of thumb to determine
the value of k is to fit this range to the prac-
tical rangeof possible misshipment for each

t c=[r]" is the smallest integer such that ¢=r. Due to
this notation and the normal approximation to the
discrete case, even if we used + 3¢ for the range, the
probality that x; is in the range will be sufficiently

close to 1.

item. In this case, the ranges of x; is directly
proportienal to n. Given the ranges of x/s
and their distributions, # is now obtainable
by enumerating all misshipments within the
ranges of all x's. Example 1 is used to itlus-
trate the calculations of @ and 5.

Example 1 : Suppose that the target number
of units of 5 different items in a lot are n,=
5, m=12, n3=3, ,=3, and ns=7. Let p.,=
10 (unit=1bs), x.=7, p3=5, ¢.=3 and
is=6, and 8{=0.10, f=0.07, 87=0.05, &}
=0.03 and 8#=0.06. Also assumed is that
the standard dev the actual number units, x
» 18 n;/6 {i.e., k=1/6) for all i

_ To calculate the probability of misship-
mertt, the ranges of x;'s are first determined
by n:£[3(nk)]* for all i. For example, the
range of x; is calculated by 5+[3(5/6)]",
or 2=<x,=8. Similarly, the ranges for other
x/s are determined | 6=<x;<18, 1<x;<5,1
<x,<5, and 3=<x;<11. Assuming that the
tolerance of e=3(lbs} is used for the weigh-
ing inspeciion, calculation procedures of «
and £ are illustrated.

Calculation of « :
¢ =prabability of rejecting a good lot
=P{ | Wa—pur| 2| X=N]
=P[ | Wa—ur] 23 1bs|X=(5 12,
3,3,7]
=P[|Y]|=3 | X=(5, 12, 3, 3, T}]
where Y=W,—ur

Since Y=(W.— 2 7) is N(0, 6%, x), where
5
darx=V(W, | X)=1§ x7=2.0, @ can be

easily calculated and the resulting a=0.
03390.

Calculation of 8 :
F=the unconditional probability to accept
a bad lot
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= Z (PO P[| Wa—url <e| XI).

The calculation of 8 requires two probabili-
ties for each misshipment —the probability of
the misshipment P(X) and the probability of
typell error f for a specified X=N. P(X) 1s
calculated by the probability distribution of
x/s. For example, when the normal appro-
ximtion is used, P{X=(4, 12, 3, 3, 7)] is
computed by the product of P[3.5<x;<4.5],
Pl115=<x,=<125], P[25=x,=35], P[25<
x¢<3.5], and P[6.5<x;<75], where x;is N
(n;, n?/36) for all i. The probability of type
I error, f, for the misship-ment is then cal-

culated using the assumption that the condi-
m ki

tional distribution of W, =121 21 w; Tor fixed

m

X is normal with E(W, | X)=(W,2] xiu:

i=1

m
and V(W4 | X)=2 x0% By calculating two
i=1

probabilities and summing up their product
over all misshipments (i.e., all possible XN
cases), #=0.11561 is obtained.

It was noted that any probability distribu-
tion, if it is appropriate for the situation, can
be used as the distribution of the actual

number of units of item i, x.. In order to in-
vestigate the impact of the distribution of x;
on the weighing inspection, a comparative
study was performed using Example 1.
Three binomial distributions (with p=0.25,
0.5, and 0.75, where p is the probability that
a unit is correctly picked) have been com-
pared with the normal approximation for
various ¢ values. The binomial distributions
were shifted to the right so that the distribu-
tions could be defined over the range ob-
tained by n;+((3nk)]*. For example, when
X; is assumed to be binomial with p=0.25,
the probability distribution 1s defined as

Pixi=k] :(k _62) (0.25)%=2(0.75)5® D,
for 2<k=<8.

The distributions were then used to calcu-
late the probabilities of misshipments for de-
termining 5. The results of the study are list-
ed in Table 1.

It is seen from the table that the normal
approximation resulied in the worst g values
in all cases. This is because the normal ap-
proximation has higher probabilities of mak-
ing minor (1 or 2 units) misshipments, as

Table 1. The distributions of x’s and inspection errorss.

]

£ « Normal Binomial distribution with

p=0.25 p=05 p=0.75
0 1.00000 0.00000 0.00000 0.00000 0.00000
1 0.47950 0.03653 0.00046 0.03783 0.00046
2 0.15730 0.07503 0.00093 0.07611 0.00094
3 0.03390 0.11561 0.00143 0.11474 0.00143
4 0.00468 0.15705 0.00196 0.15335 0.00196
5 0.00041 0.19842 0.00252 0.19166 0.00253
6 0.00002 0.23969 0.00314 0.22953 0.00315
7 0.00000 0.28079 0.00382 0.26686 0.00383
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the probabilities are higher near the mean as
compared to other cases. This implies that
the normal approximation would result con-
servative estimate of B, because an over-es-
timation of § is better than an under-estima-
tion.

Note that « is identical regardless of the
distribution {see equation (1)). The binomial
distributions with p=0.25 and p=0.75 inply
tendencies in misshipments, more under-
shipments or more over-shipments, res-
pectively. Table 1 indicates, in this case, that
the weighing inspection will perform well (i
e., B is small). This is because the probabili-
ty of making major (a large number of
units} misshipments is high and the probabil-
ity that such major misshipments pass the
weighing inspection is small for a fixed .

3. IMPACT OF ¢ AND ¢ ON IN-
SPECTION ERRORS

The values of « and £ are important fac-

tors for the actual implementation of this in-
spection procedure. a is dependent on ¢® and
¢, while § relies on these two factors and k,
the coefficient of variation. From equations
(1) and {3), it can be easily proven that {a) «
monotonically decreases on & and (b)
monotonically increases on ¢ This is illus-
trated in Table 1. This characteristic states
that « and # are in conflict and & determines
¢ and F simultaneously. |t is noted here that
¢ can be chosen by the manager in such a
way that it results in the most preferred val-
ues of « and #. This will be discussed in sec-
tion 4.

It is also obvious that for a fixed ¢, ¢
monotonically increases as the of's increase,
because a higher variability of item weights
increases the possibility of judging good lots
as bad. This is ilustrated in Figure 1. In the
figure, the variances are represented as
fractions of the mean weights.

1
0.9 +

0.8
0.7
0.6
0.5

0.4 -

1 2 3
Figure1.

4 5

The impact of increases in of on o

10

6 7 8 9
100{af 1) (%)
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In Figure 2, A is plotted against the m-
creases in o7’s. It is shown ihat g is decreas-
ing on o%’s. It seems that 8 will generally de-
crease. However, this is not necessarily the
case. The reason for this situation can be
easily understood by rewriting P[ | Ws—

| <el
and evaluating the probability for various

standard normal distribution form

values of g7 and & From the fact that £ is
generally decreasing on 6%, it is noted that

under-estimation of the variances of the
weights will not much affect the inspection
process, as it decreases « only., Knowing
that a type I error is followed by a 100%
manual inspection, # seems more critical
than a. B is also a function of P(X); ie, k
when the normal approximation is used.
Computational time is directly proportional
to k.

05.
0.45 1
04 -
=9
.35 1 X ¥ > v
_ 0.3 e=7
A ¢ B g =] = £3 = = a8 @
0.25 1
=5
0.2 * * * —¥ e ¥ X * ¥ : 3
0.15 7 £=3
1 [ [l 1 ! i ] [
0-1 i T Ll 1 1 ¥ T T 1
0.05 4 _ =1
0 T T T T T T 1 T
1 2 3 4 5 6 7 8 9 10
100(ef 1) (%)
Figure 2. The impact of increases in of on B

4. DETERMINATION OF TOL-
ERANCE LEVEL

One of the most important advantages of
this inspection procedure is that the manag-
er can determine « and 2 by controlling the
tolerance level, . The management will pre-
fer a small ¢ if the manual inspection is &
costly procedure as compared to the cost of
a faulty lot. On the contrary, if the loss

caused by a faulty lot is critical, a smaller £
will be preferred. Therefore, a proper selec-
tion of ¢ is very important in the implemen-
iation of the weighing inspection. We pro-
pose two approaches to determine the toler-
ance level, &. They are the cost assessment
approach and the bicriterion decision mak-
ing approach.

The Cost Assessment Aproach
This approach estimates the expected total
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cost of the inspection and determines ¢ that
minimizes the cost. The expected cost con-
sists of manual inspection cost, the cost of
inspecting a good lot(type I error), and the
cost resulted from a bad lot(type T error).
The total expected loss is obtainable if the
management can provide the monetary loss
caused by an under-shipment. In general,
the loss of an over-shipment is equivalent to
the number of excessive units times unit
production cost for each item. Assuming the
manual inspection cost is J;m,'x,c,- and there
are nc manual inspection errors, the total in-
spection cost (TIC) becomes,

TIC(e) = [é\{?(){)ﬁ{gﬁ(x;—m)c?

+Z'(n.-—x,-)c:‘f}]

1=l

a[P(XzN)é ne:|
+[ZP0 -5 B xei]

where L={i | x:>n;}, L={i | x<n}, ¢ is
the unit over—shipment cost of item i, c? is
the unit under-shipment cost of item i, and ¢,
is the unit inspection cost of item i. TIC(e)
is a monlinear function and, hence, one can
determine the optimal ¢ by minimizing TIC
(e} using any single variable optimization
method such as Golden section search (see
Reklaitis et al. {1983)}. Note that as £ ap-
proaches zero, TIC(z) approaches the cost of
100% manual inspection. This is possible
when ¢=0, although it is still possible that
£>0.

The Bicriterion Decision Making Ap
proach

When values of the cost factors are not
available or difficult tc obtain, the cost as-
sessment approach is not practical, in which

case we consider the problem as a
bieriterion decision making problem. Since
smaller &« and A values are preferred, the
problem can be formulated as,

Minimize a
Minimize B
Subject to ! 0=<e<epm

where £g., 1s an upper bound of €. £, is an
mput by the manager or can be set to a cer
tain fraction of the target weight of the lot.
The solution of the above problem seems
trivial when a graph of « and # over the en-
tire ¢ range can be constructed. However,
the construction of the graph requires an ex-
cessive computational effort. The manager
can determine a proper = value by using the
conflicting nature between « and 4. One sim-
ple decision procedure is to (1) generate a
pair of two error values corresponding to
two ¢ values within the range, (2} interact
with the manager for his preference between
the pair of two error values, and (3), de-
pending on his preference, eliminate a cer-
tain range of ¢ from further consideration.
The procedure is continued until either the
manager 1s satisfied with a solution or the
remaining region is very small (Sadagopan
and Ravindran (1982)). When a preferred a
or # value is prespecified by the manager,
the corresponding ¢ can be easily determined
by the bisection search (see Reklaitis et al.
{1983)).

When each lot consists of a large number
of items and the manager suspects high pos-
sibility in committing various misshipments
(i. e., k is large), computing £ is very time
consuming. Because of this one might criti-
cize the weighing inspection procedure as
being inapplicable to large systems. In this
case, one can divide the original lot inte sev-
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eral sub-lots. This can be easily (or some-
times automatically) done because a pallet
has a limiled capacity and the available
place for the manual inspection is limited as
well. Then the weighing inspection proce-
dure is applied to each of the sub-lots.

Another difficulty may arise when items
of two or more ivpes welgh the same
amount. In this case, even if the total weight
of these items are close to the target weight,
there is still a possibility of misshipment
(equal number of over and under-shipments
of these items). If this situation arises, the
efficiency of the weighing inspection process
can be increased by palletizing such items
appropriately.

5. CONCLUSION

In this paper, we proposed an alternative
inspection procedure for counting inspec-
tions at production lines or distribution cen-
ters. The idea is rather simple and the imple-
mentation of the weighing inspection is ex-
pected to be inexpensive. Also, management
can control the two types of errors of this
inspection by properiy determining the toler-
ance level. This research presented two ap-
proaches toc help the manager determine the
tolerance level.
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