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ABSTRACT

Variables, x and y are said to have a linear relation if y = 8, + 8, », and g, and B, are
constants. The relationship is called a structural relationship if x has positive variance(i e ,
x is not fixed) and only error-prone measurements of x and y can be obtained. This paper

+1/2

derives (to order = } an approximate distribution of the Studentized test statistic for

testing hypotheses about the slope parameter, 8, in a simple linear structural model. A
simulation study suggests our approximate distribution is more accurate approximation to the
exact distributions of the Studentized statistic than is the limiting distribution.
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1. Introduction

Regression methodology is one of the most widely used tools for inferences about
underlying structures of quantifiable natural and social phenomena. Most such phenomena
are measured with error. Standard regression theory does not take into account these errors
of measurement, i.e., the usual assumption is that explanatory variables are measured
without error. In various cases explanatory variables are measured with error. For an
example, root length density(L ; cm root/cm® soil) measurements are important for
developing and testing many water extraction equations in grain production. For its
explanatory variable counts of roots are used at the wall of horizontally instalied
minihizotrons which is clear tubes that allows continuous and nondestructive observations of
rooting ( Bland, W.L. and Dugs, W.A., 1988).

Measurement error models(MEM’S! explicitly take into account errors of measurement.
We define a generic simple linear MEM with errors in the equation as :

(X, Y,) = (x,») +lewl), t =1, n, [1)]

where vy, = (1 x,) B and BT =(f, B,). The vector( X, Y,) is the vector of observed
random variables, (x, y,) is the vector of true unobserved random variables, and(e, u, is
the vector for measurement errors masking the vector of true random variables. Errors u,
and e, are independent random variables with mean zero and finite positive variances o« and

6... We can assume either that the x,'s are fixed(i.e., a ‘functional’ model; or that the »/’s

are independent identically distributed random variables(i.e., a ‘structural’ model). Since,
in functional models the number of parameters increases with sample size, problems of
inconsistency of maximum likelihood estimators arise for parameters of functional models.
The problems associated with an increasing number of parameters have been discussed by
Anderson and Rubin (1949, 1950).

The simple ‘functionall model with known measurement error variance ratio was
investigated by Tsukuda(1985). Building upon the work of Tsukuda, Ollivier (1986) applied
Konishi’s (1981) transformation to the Studentized test statistic. Extensive coverage cf the
MEM literature can he found in Fuller (1987’ and references cited therein. This provides
comprehensive treatment of estimation and large sample inference for linear MEM's.
Although exact inferences can be made in a few specific cases, exact small sample inference
procedures generally do not exist for MEM’s. An alternative to the seemingly intractadle
problem of deriving exact distributions of test statistics for parameters of MEM's is to derive
higher-order approximations to the distribution (and/ or density) functions of test statistics.

This paper derives a higher-order approximation to the distribution function of the
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Studentized test statistic for #, in a simple linear ‘structural’ model. The model assumes

that the ratio of error variances is known, or equivalently that

Ouu = Opp = 6" (2]

2. An asymptotic expansion of the distribution of the studentized test
statistic

Random variables x, and y, are assumed to be under the model with [1]and [2]. That is,
(X, Y, and (¢, u,) are, respectively, the ¢ th error prone measurement of (x, ¥,) and the ¢
th vector of measurement errors. Additionally, we assume that (x, %, ¢,). =1, -, un, are

distributed as independent trivariate normal random vectors with mean (u, 0 0) and
variance Diag (o,, ¢° v°), where Diag means a matrix with its diagomal elements ¢xx ¢° 4%
and its remaining elements 0. Further, all x/s, #/s, and ¢/s, are assumed to be mutually
independent. For convenience we shall call [1] —{ 2] with the associated assumptions the

2

structural model witho ., = 7, = ¢°.
Large sample inference concerning 8, under our model can be made using the Studentized

statistic
T = (B, — ) V(g2 (3)

where §,, the maximum likelihood estimator of §, and VI B.), a consistent estimator of the

variance of the limiting distribution of »'/* Bl are given by Fuller (1987) :

B = [ —(Mxx - Myy) + {{Mxx — Myy)* + 4 Mxv*}'"*} /] (2Mxvy) [4)

and V() = (o) ox)’ + (o' [ aux) (14 B2) [ (n—=2) + (6° ] au)? B2/
{(n—1)(n—-2)} (5]

WhCrEYZ=EXf/n, ?:ZYt/n;
=1 =1

(X, - X)(Y,-Y)/(n-1),

19
[\/]:s

Mxx= 3 (X, - X))/ (n-1), Mxy-=

7

1

I

1

Myy=l\;(y, -Vl (n-1), (6]
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5xx = Mxyx — o', and o? = (Myy — 2[}1 Mxy + [}}ZMXX) /(1 + [}12).

When we ignore the last term in (5) because it is 0(#*?) and so it is trivial, a canonical
representation of (3), derived by Tsukuda(1985) is :

T = (n=2)"" (1=pp*) Vy | {det(V) }'? (7]

whereVz( Vi Viz) =(n-1) QTMQ
V, V.

21

Q= (1+p% " ( ; ) M= ( s Mre )

and f* = [~ (Vi = V) +1(Vy = Vi)' +4V 121 (2V,) = (B, — B /(1 +B,5,). The
following steps ( i ) —iv) are used to expand 7" : Steps ( i —iii) are obtained using Taylor's
expansion ( Technical details and derivation of the expressions for N,, N,, D,, D,, t,, t,. and
U, have been relegated to Chang(1990)) :

{ i ? The expansion of m“2(1~/3ﬁﬂ*)Vlz is
m (1=BB*)Vy =m{N,+ m " N + 0,(m*))},

where Ny = U, N = =g U/ ¢ HUUy la+UpUy |8}/ 3, (UnU,Uy) " is normally
distributed with mean (0, 0, 0) and variance-covariance matrix Diag(24?, ab, 2b6*),a= 1 +
Bl o, + o', b=¢" andc =a — ¢°.

(ii) The expansion of {det(V)}" *is, using Nel's(1978) formula,
fdet(V)} 'V : = [V Vy = ViV P =m{D,+m*D, +0,(m™)},
where D, ={a o°}' “,and D, ={aU,, + ¢* U}/ (2D,).
(ii1) The expansion of T is
T={(n—21"" (1-BB*) V[ {det(V)}'?

m{N,+m'’* N+ O,(m")}

ey =ty +m 7t + 0, (m"
miD,+m™"* D+ 0,(m*™")} o T m ! p(m™),

wheret, =U, /{a o'} 7,
t, = {Ull L’lz /‘ (3a) + U[g ng / ‘3b) _U122ﬁ1 / C}/ {a 0'2 }1/2 - UIZ ( aUZZ + GZUI >
[2((1 0_2) :1,’2},
and the term ¢, is a standard normal random variable.
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{iv) The conditional expectation of #, given ¢, is used to express the approximate
characteristic function of 7" in terms of ¢/,. This conditional expectation is E(#,|¢,) = —{a

a’}'"7" Bt/ C. The characteristic function of 7T is formally expanded as

It

Cri8) = Elexp(i8T)} = E[exp |i0(t, + m "*t, + O,(m™')) )

exp{ —t#*) — K**( —i0)E{tlexp(ifty)}/ m ' 4+ O(m™)

where K** = —{a ¢*!"*B,/c,anda = (1 + B,)o,, + o°.

(v) The approximate cumulative distribution function of 7" is obtained by applying the
inverse Fourier transformation of C+(8) of step(iv) :

Pr(T <¢] = j i ﬁfﬂoexp(ﬁ —i0x) Cr(0)d0dx

b

= &) ~K*>*E¢Em ™+ 0lm*) (8]

where @ and ¢ are the cumulative distribution function and the probability density function,
respectively, of a standard normal random variable, (we need Tsukuda’s(1985) formulas for

(v - v)).

3. Simulation Results and Discussion

Monte Carlo experiments were performed to evaluate empirically quantiles of the
distribution function of the test statistic 7 in [3]. Let

To generate T, we need Mxx, Mxy, and Myy of expressions [3] —[5). The matrix (n—1)
M, is distributed as a Wishart distribution with »—1 degrees of freedom, variance-
covariance matrix Y, where

- ( oxxt o' Bioxx )
- Bioxx Bloxxt o’

(9]

we denote the distribution of (n—1) M,; by W{xn—1,3). Let U be the Cholesky
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decomposition of 3" such that ¥ = UTU. Then, since (#—1) (UT) ' M,,U ‘isW(n—1,1).
(n—1)(UT)™" M;zU ** can be represented as

V * |'/ *
ve=( v, me*)

which can be generated by the relations, @, = V,*, @ = Vo *(V*) 7V a, =V,* — a,t.
where a,, a,,, and a, are independently distributed as x*(»%—1), »#(0, 1), and X*(»-2"
random variables, respectively (Kshirsagar, 1972, p. 55), and N (0, 1) and x¥*(4f) denote a
standard normal distribution and a chi-square distribution with df degrees of freedom,
respectively. Hence, Mz can be expressed as : Mz; =UTV*U /(n—1). To generate X.
X.a,, d,,and a,, we use the Box-Miller method to generate N (0, 1) random variables and
the Cornish-Fisher approximation to generate chi-square random variables, respectively
Since expressions [ 7] and [9]) show that the distribution of 7 depends soley on the
parameter values #, §,, and the ratio 6xy / ¢° and we can assume with no loss in generality
that ¢° = 1, the set of parameters to be specifid in the Monte Carlo experiment is ( #. g,
oxx). For 12 sets of parameters (Table 1) we obtained the empirical cumulative
distribution functions of the test statistic T, generating 10000 7’s. Using these sets, we
examine the effects of #, §, and oy x on the distribution of the Studentized test statistic 7

{ Table 1. Sets of Parameter Values Simulation Study )

Case n  f oXxXx Case n 4 OXX Case n g OXX
1 20 0 4 5 20 1 2 9 40 1 4
2 20 05 4 6 20 1 4 10 60 1 1
3 20 2 4 7 40 1 1 1 60 1 2
4 20 1 1 8 40 1 2 12 60 1 4

There is no completely accurate way to check whether the empirical distribution is a
suitable proxy for the unknown exact distribution of 7. However, when 8, = 0, 7 has an
exact Student’s t distribution with »—2 degrees of freedom. We can check the error of the
empirical distribution for the case f, = 0. Tables 2 and 3 show the errors between the
empirical distribution and Student’s ¢ distribution with »—2 degrees of freedom, denoted by
t(n—2). Columns (2), (3), and (4) in Table 2, respectively, give the empirical distribution
values, the exact distribution values (#(18)), the errors of empirical distribution values
(column (2) —column (3)). (5) and (6) can be explained as : Letting x = 10000 p, x is
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distributed as binomial distribution with parameters 10000 and p with 10000 generated 7T's
where p = Prob [# < ¢] for Student’s £(18) random variable /. Then, the level—0.95
confidence interval for p is given by (p—1.96 {p (1—p) / 10000} /%, p + 196 {p (1—p) /
10000} '*. Thus, confidence intervals for p are in (6) when ¢ and p have specific values.
In Table 2 the maximum error is —0.0045, and we can see the probabilities in colum »(2) are
located in each corresponding interval in (6), respectively.

Columns (2), (3), and (4) in Table 3, respectively, represent empirical quantile values,
exact quantile values (£(18)), errors of empirical quantile values(column (2) —column (3) 1.
(5) is obtained as : After generating 10000 Student’s ¢ (18) random variable R's we construct
level —0.95 confidence intervals for quantile values for p = 0.01, » = 0.05, » =095, and
p =099, using a formula [ lower bound, upper bound ] == [ Rw), Rw)], where R, is the : th
order statistic of » R’s randomly generated, U and L are the integers obtained by rounding
U* and L* upward to the next higher integers, U * = np + 196 {np(1—p)}and L* = np --
196 {np(1—p)}, for given p ( Conover, 1980). Also, in Table 3 the maximum error is —0.079
and we can see the empirical quantiles in column (2) are located in each corresponding interval
(5), respectively. Hence, it is reasonable that we consider our empirical distribution to be a
suitable proxy distribution of the exact distribution.

{ Table 2. Errors of the Empirical Distribution Function of T )
(n: 20, ﬂ1 200')()(:4)

(1 (2) (3) (4) (5) (6)
g Empirical t(18) Errors P Confidence
Prob. Prob. (2)—(3) Interval for p
-4 0.0004 0.0004 0.0000 0.0004 » [ 0.0000, 0.0008 )
-3 0.0044 0.0038 0.0006 0.0038 [ 0.0026, 0.0050 )
-2 0.0334 0.0304 0.0030 0.0304 [ 0.0270, 0.0338 )
-1 0.1672 0.1653 0.0019 0.1653 [ 0.1580, 0.1726 }
0 0.4955 0.5000 —0.0045 0.5000 [ 0.4902, 0.5098 )
1 0.8324 0.8347 —{.0023 0.8347 [ 0.8274, 0.8420 )
2 0.9680 0.9696 —0.0016 0.9696 { 0.9662, 0.9730 ]

For remaining cases in Table 1 except (n =20, 8, = 0, oxx = 4), empirical quantiles, our
approximate quantiles, standard normal quantiles, and Student’s #(x—2) quantiles are
compared with a format similar with Table 3 (Chang, 1990, pp. 21-25). Almost our all
approximate quantiles are shown to have the least error values. Among the results, we
present a part of them in Table 4. Since we can see the least absolute error values in
parentheses in column (4) compared with other quantiles, we know our approximation is
more accurate than any other quantiles using standard normal and Student’'s ((#n--2)
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approximation with regard to at least our twoelve cases.

{ Table 3. Errors of the Empirical Quantiles of T )
(mn=20,8 =0 0xx=4)

(13 (21 (3) (4) (5)
¢ . Empirical +{18) Errors Confidence Interval
‘ Quantiles | Quantiles (2)-(3) | for Quantile Values
0.01 —-2.631 --2.552 -0.079 [ton, tawm ] = [ —2.775, —2.512 ]
0.05 —1.756 --1.734 -0.022 ( teassy, tr543> ] =[ —1.807, —1.694 ]
0.95 1.755 1.734 0.021 [ feoss, teosany ) = [ 1.686, 1.770 )
0.99 2.558 2.552 0.006 [ tr9881» teomey ] = [ 2.405, 2.591)
{ Table 4. Empirical Quantiles of T and Three Approximated Quantiles )
o)) ‘r (2 (3) (4) Our (5) Stan. (6) Stu.
; Empirical Approxi Normal tin—2)
| Prob ’ (n, [fl, oXX) Quantiles Quantlles Quantiles Quantile
0.01 | (20, 1, 4) —3.12 ~2.80 (0.3! —2.33(0.8) -2.55 (0.6)
i 0.05 (20, 1, 4) -2.01 -1.88 (0.1 —1.65(0.4) -1.73 (0.3)
1095 (20, 1, & 1.48 1.41 (0. ] ' 1.65 (0.2) 1.73 (0.3)
L0.99 (20, 1, 4 2.03 1 85 ( 2.33(0.3) 2.55 (0.5)
0.01 (20, 2, 4 -3.16 —-2.91{03 —2.33(0.8) —2.55 (0.6)
0.05 (20, 2, 4 -2.06 -194 (0.1 —1.65 (0.4) -1.73 (0.3)
0.95 (20, 2, & 1.41 1.35 (0.1 1.65(0.2) 1.73 (0.3)
0.99 (20, 2, 4) 1.93 1.74 (0.2. 233 0.4) 255 (0 6)
0.01 (40, 1, DI —-3.29 -3.09(0.2 —2.33(1.0) —2.43 (0. 9)
0.05 (40. 1. 1) —2.12 -2.03 (0.1 —1.65 (0.5 —1.69 (0.4)
0.95 (40. 1, D1 1.25 1.27 (0.0: 1.65 (0.4) 1.69 (0.4)
0.99 (40, 1, D 1.72 1.57 (0.2 2.33(0.6) 2.43 (0.7)

4. Summary and Future Research

This paper investigates small- sample inference concerning the slope parameter in a simple
Derivation of the exact distribution

linear structural model with known error variance ratio.
of the Studentized statistics appears to be intractable.

yvield inaccurate inferences.
and Fourier inverse transformation, this study proposes an expansion of the Studentized
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statistic. Simulation experiments show that approximations to the exact distribution of
the Studentized statistic based on our expansion are more accurate than are their limiting
distribution approximations.

Several important extentions of these results will be attempted. These include tha
following :

(i) We shall next consider the simple linear structural model with replicated observations
X, t=1,,myj=1 -, rand Yy,t =1, ,m; k=1, ,5,.

(1ii) In many experiments it is unrealistic to assume that measurement errors are
uncorrelated. Refined inference procedures can be developed for cases where 4,, = Cov

(t,,, 0,0 # 0.

Finally, because validity of the expansion [8] is moot, a task proving it remains on
mathematicians. However, we believe arguments similar to those presented in Morimune
and Kunitomo (1980} can be used to prove the validity. The results of this paper and Tskuda
(1985) support the validity empirically in simulation experiments.

—-179—



Asymptotic Expansion of the Distribution of a Studentized Test Statistic for the Slope Parameter
A

in a Simple Linear Structural Relationship 7 9]
REFERENCES
. Anderson, T. W. and Rubin, H. (1949), Transformations of Some Statistics in

“Estimation of the
Single Equation in a Complete System of

Parameters of a

Stochastic FEquations,” The Annals of
Mathematical Statistics, 20, pp. 46 —63 .

. Anderson, T. W. and Rubin, H. (1950),
“The Asymptotic Properties of Estimates
of the Parameters of a Single Equation

a Complete Svstem of Stochastic
Egquations,” The Annals of Mathematical
Statistics, 21, pp. 570 —582.

. Bland, W. L. (1988) and Dugas W. A,
“Root length Density from Minirhizotron

n

Observations,” Agronomy Journal, 80, 2,
pp. 271 -275.

.Chang, K. (1990), “ Asymptotic Expansions
of the Distributions of Studentized T est
Statistics for the Slope Parameter in
Simple Linear Structural Relationships,”
Ph. D. Dissertation Texas A & M Uni-
versity, Department of Statistics.

W. J. (1980), Practical
Nonparametric Statistics, New York,
John Wiley and Sons.

. Fuller. W. A (1987).

. Conover,

Measurement Error

Models, New York, John Wiley and
Sons.
.Konishi, S. (1981), “Normalizing

—180—

Multivariate Analysis,” Biometrika, 68.
pp. 647 —651.

. Kshirsagar, A. M. (1972), Multivariate
Analysis, New York, M. Dekker,

. Morimune, K. and Kunitomo, N. (1980},
“Improving the Maximum Likelihood
Estimate m Linear  Functional

Relationships for Alternative Parameter
Sequences,” Journal of the American
Statistical Association, 75, pp. 230 —237 .

10. Nel, D. G. (1978), *“Omn the Symmetric
Multivariate Novmal Distribution and
the Asymptotic Expansion of a Wishart
Matrix,” South African Statistical
Journal, 12, pp. 145—159.

11. Ollivier, V. (1986), “Improved Test Stat-
istics for the Slope Parameter in a
Sitmple Linear Functional Model,” M. S.
Thesis, A& M
Department of Statistics.

12. Tsukuda, Y. (1985,
Expansions of the Distributions of T zst
Statistics for the Slope in a Simple
Linear Functional Relationship,” Ph. D.

Texas University,

“ Asymyptotic

Dissertation, Texas A &M University.
Department of Statistics.



