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ABSTRACT

This article is concerned with procedures for detecting one or more outliers or influential
observations in a linear regression model. A test procedure, based on recursive residuals is
proposed and developed

The power of the test procedure to identify one or more outliers is investigated through
simulation, and its relevance to the number and configuration of the outlier.

1. Introduction

Consider the standard form of the linear regression model

_'Y = Xﬁ +£
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A
where ¥ = (y,, -+, ¥,) is an # x 1 vector of observations on the dependent variable | X
= (x,", -, x,”) " is an nxp matrix of explanatory variables, possibly including the intercept
term ; fisa px1 vector of unknown parameters ; and ¢ = (¢, -, &,) "is an # x 1 vector of
independent normal random variables with mean 0 and unknown variance ¢°. For /§ ={X
X) X'y, the ordinary least squares(OLS) estimator of B, all information about outliers is
contained in the vector of regression residuals -

e=Y - X = I-H)Y,

where H = (h,;) = X1 X X)X and under the null hypothesis
e~ N(0,(I-H)d"),

a degenerate distribution, since the idempotent matrix (7—H ) hasrank n—p. One should
note that even though all information about outliers is contained in ¢, these ordinary residuals
do have some major defects they are not independent, and in general they do not all have the
same variance. This results in the effect of structural change, for example, being smeared
over all the residuals. It also implies that the distribution of the residual is dependent on the
particular design matrix under consideration.

A scaled varsion of ¢, can be defined as

. &
Cos(1-4,)

r

where s° = ¢’e /| (n--p) is the residual mean square estimate of ¢°>. The 7, is usually called
the studentized residal. Another version of the ¢, is often called the externally studentized

residual and is defined as

i— —. e‘_,_—__
AT

i=1 - n

where s°, is the residual mean square estimate of o° without the /th observation. Noting
that »* = [(n—p—1)/(n—p—r7>)]'" we see that »* is a monotonic transformation of r,.

While the above scaled versions of the residuals ¢, have approximately unit variance, they are

still correlated.
The detection and examination of outliers that are influential are the object of the outlier
detection procedures, since such outliers have a catastrophic effect on the regression.
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Outliers that are not influential may be retained in the data set without changing the
regression equation greatly. Of course, different observations may be influential in different
calculations. Cook’s D is a well-known measure of influence of the ith observation on the
center of the confidence ellipsoids or, equivalently, on f. Itis defined as

(BB (X X (B~pu)

D, = -
bs”

where E ; is the ordinary least squares estimate of § when the ith observation is omitted.

An alternative class of measures of the influence of the ith observation is based on the
change in the volume of the confidence ellipsoid when the 7th observation is omitted. Cn
the other hand, omitting an observation with a large residual will result in a large reduction
in the residual sum of squares, SSE. The influence of the ith observation can be measured
by combining these two ideas, one such measure is, suggested by Andrews and Pregibon
(1978),

_ SSE{;’) det(X(,)'X(,;) . det(Z(i),Z(:))

SSE det( X' X) det(Z’Z)

where the augmented matrix Z is formed by adding y to X. AP, measures the relative
change in det(Z'Z) due to the omission of the /th observation. Omitting an observation
that is far from the center of the data will result in a large reduction in the determinant and
thereby a large increase in the volume. Hence, small values of AP, are associated with

deviant or influential observations. Regardless of which is actually the case, it is desiratle
to isolate subsets of the observations producing small AP, for further scrutiny.

Recursive residuals have frequently been suggested for testing model fit and model
assumptions( see Brown, Durbin and Evans(1975), Hawkins(1980), Galpin and Hawkins
(1984) ) illustrate the use of plots of the CUSUMS of the recursive residuals and plots of the
CUSUMS of the square roots of the absolute values of the standardized recursive residuals to
check the model assumptions mentioned earlier, to investigate the effect of an omitted
variable and to detect outliers. A new procedure, introduced by Kianifard and Swallow
(1989), uses recursive residuals, calculated on observations that have been ordered according
to their studentized residuals, values of Cook’s D, or another regression diagnostic of the
user’'s choice. Like conventional regression diagnostics, Hawkins(1991) proposes analogous
single-case diagnostics for use with recursive fitting. Further more, since recursive fitting
focuses on the compatibility of various subregressions with the full regression, cumulative
measures that assess the leverage, mean compatibility, and influence of all excluded cases

—5/7—~
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have been suggested (Hawkins(1991)). The recursive residuals are defined in section 2,
where a simple interpretation of them is also given.

In this article, we propose a procedure based on recursive residual for identifying outliers
or influential observations in a linear regression model. The procedure is presented in
section 3, and its properties investigated in a simulation study described in section 4
Finally, conclusions and summaries are listed in section 5.

2. Recursive Residuals

Let b, be the least squares estimate of f§ based on the first » observations. Let X and ¥
be partitioned accordingly, so that X,” = (X,, -, X,)and Y,” = (y,, -, »,). Assume that
X, X, is non-singular. Then b, = (X,"X,) ' X,’Y,, and the recursive residuals can be

defined as in two algebraically equivalent forms

y. - %0,
W, = S s y = p +1, n
VI4x, (X, X, ) 'x,
and
y,—x,b,
w, =
\/l—g,’(X,’X,.) x,
Recursive residuals are not defined for cases 1, ---. p since the reduction the sample to

fewer than p points would give a singular design matrix. Brown, Durbin and Evans suggest
using the first p data points as the base set, but this is by no means the only sensible choice.
One could, in fact, calculate them using any % of the » observations as a basis. The
name recursive residual derives from the fact that w, can be obtained from w, ., by means of
an updating formula.

On the assumptions that the errors are identically and independently distributed as N(0), o°
the recursive residuals are also independently and identically distributed as N (0, ¢%) so that
if the model assumptions are satisfied, the normal probability plot should show a straight line
through the origin.

The calculation of the recursive residuals may appear to be a time-consuming operation,
involving the fitting of # —p regressions, but the computations are performed much more
efficiently using the following updating formulas( Brown et. al., 1975) :
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(X, X)) = (X, X,.) —dd’[(1+X,d),
b, =b,+ (X, X,) " x,(3-xb-)
Sr =Sy—] +wr2s r:p+1’ “.’n

whered = (X,.,"X, ) 'x, and S, is the residual sum of square based on  observations.

It makes their use so attractive that the interpretation of the recursive residuals as
showing the effect of successively deleting points from the data set, in addition to their
propert of independence. Because of this interpretation, recursive residuals are very
flexible, and they can be used directly as the basis for diagnostics. If there are any misfits
from the model assumptions, then all of the ordinary residuals may be affected by it. If the
misfits from model is confined to the portion of the data set, then all other irrelevant
recursive residuals will not be affected by the departure. This may be a base-line for
recursive residuals to be able to be used to detect any model misspecifications that may be
hard to identify with diagnostics based on the OLS residuals. And, they would be seen to
have potential for the study of outliers, although on progress on this front is evident. There
i1s a major difficulty in that the labelling of the observations is usually done at random or in
relation to some concomitant variable rather than adaptively in response to the observed
sample values.

Recursive residuals have been used by Brown et. al., (1975) in testing for structural change
over time, and by Harvey and Collier (1977) in testing for possible model misspecifications.
Galpin and Hawkins(1984) proposed the use of recursive residuals in graphical procedures in
checking the model assumptions of normality, homoscedasticity and so on. Du Toit, Steyn
and Stumpf (1986) provided programs for calculating and plotting recursive residuals : they
uses PROC MATRIX and PROC PLOT in SAS. Kianifard and Swallow (1989) suggested
using recursive residuals, calculated on adaptively-ordered observations for the detection of
outliers. More recently, Hawkins(1991) proposes single-case diagnostics analogous to
conventional regression case diagnostics for use with recursive fitting. Further more,
cumulative measures that a ssess the leverage, mean compatibility, and influence of all
excluded cases are also defined and researched by him.

3. The Test Procedure

For a given set of n observations, there are »/ [p/ different sets of recursive residuals.
Which set is actually computed depends on the result of two connected decisions. The first
concerns which p observations should be used to form the basis : the second concerns now
the remaining » — p observations should be ordered.
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The recursive residual w; provides a measure of outlyingness but for formal assessment

needs to be studentized. By studentizing it using s,_,, Hawkins (1991) suggests the measure

w;

t =
Sioy

for the detection of outliers where s,_,’ is the usual error mean square estimate of ¢° based on
the first 7 —1 observations. The measure ¢, follows a ¢-distribution with 7 —p —1 df and the
test based on ¢, is optimal for the compatibility of case i with its predecessors ( Hawkins
1980). To remedy different degrees of freedom{df) of the measure f,, he proposes a

measure

P gz—i—%—(vloge (1+t7 /o))"

by use of an approximating normalizing transformation, where v = 1—p—1 is the df of s, ,
and u; takes the sign of ¢;. The fact that «, approximates N (0, 1) distribution closely
provides an easy check for the detection of outliers from the regression of its predecessors.

We suggest the following procedure for ordering the observations, and for calculating
recursive residuals and test statistics :

1. Compute values of a proper regression diagnostic(e. g., the studentized residual or

Cook’s D) for each of the » observations, when fitted the regression model to the data.

2. Order the observations according to the values of the chosen diagnostic.

3. Use the first p observations in the ordered set to from the basis.

4. Compute recursive residuals w; for j = p +1, -, n.

5. Compute the statistics w, / s,.,, for 7 = p +2, -, n.

6. Calculate the statistics u#;, 7 = p +2, ---, n, comparing the computed values with values

of N(0,1)

The recursive residuals w; are 7d N (0, ¢°) random variables. Hence the statistics w . / s, |
would have an exact ¢ distribution because s,.,, an estimate of ¢°, was independent of w,.
However, when the observations are adatively ordered by the ordering variable which is not
independent of the recursive residuals, the normality of them will be voided.

We point out here two important aspects in regard to ordering the observations. First,
outliers or influential observations can be expected to appear late in the sequence of
recursive residuals, so the w, for data points that precede them will not be affected by them,
reducing the potential for masking and swamping. Second : by ordering the observations
adaptively, outliers will not appear among the first p ordered observations, that is, the
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ordering yields a clean basis set for calculating recursive residuals.

We consider three diagnostics according to which the observations could be ordered
These diagnostics represent different classes of regression diagnostics. The studentized
residual, »;,, was picked up because it is more widely used through statistical packages
Cook’s D and AP, are well known, but represent a different class of diagnostics. (Kianifard
and Swallow 1989).

4. Simulation Results

We now present simulation results ( i ) to illustrate the gains in power with ordering, and
(i) to evaluate the performance of the proposedtest procedure with three alternative
ordering variables. We adapted a simple linear regression model vy, = 8, + B,x; + & with »
= 25 in all simulations discussed here. Of course, the residuals are not influenced by the
particular values of §, and 8, used : we set f,=0, B,=1. The x’s were generated as uniform:
(0, 1) variables multiplied by 15. The errors ¢; were generated as N (0, 1) random variables
We made necessary modifications according to various magnitude and location of outliers as
described below. All results are based on 1,000 simulated samples of #»=25 each, with the x':
are based ¢'s regenerated after every 100 samples to avoid possible periodicity of those
variables. The same 10 sets of x’s and ¢'s are used throughout all simulations. For a given
case, alternatives are compared with the same set of 1,000 samples. The size of the test is
« = 0.05 throughout.

4.1 Gains in Power with Ordering

In Table 1, the performance of the recursive procedure is summarized according to
whether or not the observations are ordered by a diagnostic measure. In case the sample
was to be not ordered, a single outlier, two or three outliers were created as follows. Three
random observation numbers were selected from number 3—25. If there were two outliers
in the data set, for example, the first two random observation numbers would be used. This
ensured that the outliers would be tested, not be part of the bases set. An amount § was
then added to the two generated x-values for that observations, respectively in place of a
simulated error term : so using é = (3, 3), for example, is equivalent to placing the two
outliers 3 standard deviations above the line. In cases where the data set would be ordered
by a diagnostic measure, the two outliers, for example, were created by adding & to the 24th
and 25th generated x-value in place of a simulated error.
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Table 1.

PROCORR and PROINC when up to three outliers were planted at distances é; from the true line, and
the observations not ordered, and ordered by the Studentized residuals, or Cook’s D or AP,.

Descending
Outlier Not ordered Studentized D, AP;
i pattern — . o N
(8;sy | PROCORR PROINC PROCORR PROINC PROCORR PROINC PROCORR PROINC
[ (25 | 547 .034 .895 226 876 216 910 176 |
(3) 742 .031 986 226 .980 217 985 173
’ (4) .883 027 1.000 223 1.000 219 1.000 165
E (3, 3) .592 .023 947 217 .909 .203 .954 .159
(3,3, -3) 533 016 924 .214 .872 .201 932 145

The entries in Table 1 and Table 2 are defined as follows :
PROCORR = the proportions of correctly identified outliers,
PROINC the proportions of good observations (inliers) incorrectly identified as outliers.

i

The results show that when ordering is used, both the power to detect outliers and
PROINC increase highly for the cases shown. Of course, if we had not prevented
outliers in unordered data from falling into the basis set where they would have been
untested and thus undetected, the increase in PROCORR with ordering would have been far
larger. Also it is worth noting when ordering is used, the test statistic is very sensitive to
the detection of outliers shown.

4. 2 Power under Outlier Patterns and the Choice of Ordering Variables

Figure 1 shows various outlier patterns that might be of interest. Inliers are assumed to
lie in a box represented by the parallelogram, and the symbol (x) points out an outlier. Table
2 summarizes the results of the simulations for each configuration of data set in Figure 1 in
turn. Each outlier is created by adding a quantity é to the x-values indicated in Figure 1.
The performance of the recursive procedure is then summarized in Table 2 for increasing &.

The entries in the table were as defined before.

In Figure 1(a), the outlier occurs near the center of the independent variable. It is worth
nothing that the power of the test procedure gets nearly close to 1 for 4 as small as 3 and
PROINC also increases highly for the cases shown. Figure 1(b) has both outliers at the
center of the range and with the same values of 5. This causes serious masking effect. In
the cases considered in Figure 1(a)—1(b), the choice of the ordering variable does not make
an appreciable difference in the power of the recursive procedure. It also has to be pointed
out that the procedure is very sensitive to detecting outliers and nearly avoids the joint
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effects of groups of observations.

In practice, any one of the ordering statistics can be used to reorder the observations
before computing recursive residuals.

Y Y
x XX
X X
0 75 15 0 75 15
ary=75+4+46 b)y=75+6

c)y =7495+ 6

Figure 1. Outlier Patterns for Table 2

Table 2.
Descending
Outlier Studentized D, AP,
pattern -
(8/5) PROCORR PROINC PROCORR PROINC PROCORR PROINC
(a) 25 945 227 .982 .209 931 77
3 998 227 .998 195 996 172
4 983 .226 1.000 217 998 .166
(b) (2.5, 2.5) 824 217 909 .192 796 .165
(3,3 a7 218 .979 .202 .966 .160
(4, 4) 1.000 210 1.000 .200 1.000 .143

5. Summary and Conclusions

Recursive estimation is a technique for updating estimates of regression coefficients with
addition of each observation and produces recursive residuals that are uncorrelated with zero
mean and constant variance. They are particularly effective for diagnosis when the
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assumptions of the regression model do not hold for the full data set but hold for the data set
except the outliers. The test procedure uses the diagnostic, proposed by Hawkins (1991 for
use with recursive fitting. The key to using recursive residuals is an ordering such that
departures from the model are confined to the cases near one end of the data set.

The power of the test procedure is investigated through simulation. The proposed
procedure are compared with alternative forms of various outlier patterns. It is shown that
when ordering is used, the use of recursive residuals increases power significantly and nearly
covers the masking effect when multiple outliers are present.
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