GENUS POLYNOMIALS OF DIPOLES

Jin Ho Kwak and Jaeun Lee

The genus distribution of a graph G is the sequence g_{0}, g_{1}, \cdots, where g_{m} is the number of different 2-cell embeddings of G into the closed orientable surface of genus m. J. L. Gross et al. computed the genus distribution for a bouquet of circles, and asked for the genus distribution for other interesting graphs. In this paper, we compute the genus distribution for dipoles; that is, the multigraph having 2 vertices and multiple edges joining them.

1. Introduction

Let G be a finite connected graph allowing loops and multiple edges with vertex set $V(G)$ and edge set $E(G)$, and let $|X|$ denote the cardinality of a set X. Convert G to a digraph by replacing each edge of G with a pair of oppositely directed edges. By $N(v)$, we denote the set of directed edges starting at $v \in V(G)$. An embedding of G into a closed surface S is a mapping $i: G \rightarrow S$ of G into S that corestricts to a homeomorphism $i: G \rightarrow i(G)$. If every component of $S-i(G)$, called a region, is an open disk, then the embedding $i: G \rightarrow S$ is called a 2 -cell embedding. Two embeddings $i: G \rightarrow S$ and $j: G \rightarrow S$ of a graph G into an oriented surface S are equivalent if there is an orientation-preserving homeomorphism h : $S \rightarrow S$ such that $h i=j$. A rotation scheme ρ for a graph G is a map which assigns a cyclic permutation $\rho(v)$ of $N(v)$ to each $v \in V(G)$. It is well known (see, for example, [3] or Chapter 3 of [6]) that every rotation scheme ρ for a graph G determines a 2 -cell embedding of G into an oriented surface S, and every 2 -cell embedding of G is determined by such a scheme; in fact, there is a one-to-one correspondence between the set of rotation

Received December 22, 1992.
This work was supported by grants from KRF \& TGRC-KOSEF.
schemes for G and the equivalence classes of 2-cell embeddings of G into an oriented surface S. Throughout this paper, all surfaces are closed and orientable, all embeddings of graphs into surfaces are 2-cell embeddings, and the number of embeddings means the number of equivalence classes of embeddings.

The genus distribution of a graph G is defined to be the sequence $\left\{g_{m}\right\}$ such that g_{m} is the number of embeddings of the graph G into the surface of genus m. The genus polynomial of the graph G is defined by

$$
g[G](x)=g_{0}+g_{1} x+g_{2} x^{2}+\cdots+g_{N} x^{N}
$$

where N is the highest genus in which G has a 2 -cell embedding. Since knowing the genus polynomial implies knowing the genus distribution, we aim to compute in this paper the genus polynomial of the dipole D_{n}, which consists of two vertices joined by n edges.

To get acquainted with the problem, we give an example of the embeddings of a particular dipole. Let $G=D_{3}$, which can be drawn as follows:

For each edge e_{i}, let e_{i}^{+}denote the edge e_{i} with the direction from v to w and e_{i}^{-}the inverse edge of e_{i}^{+}for $i=1,2,3$. We can easily construct two nonequivalent embeddings of D_{3} into the sphere S^{2} :

These two embeddings i and j are determined by the rotation schemes

$$
\rho_{i}(v)=\left(\begin{array}{ll}
e_{1}^{+} & e_{3}^{+}
\end{array} e_{2}^{+}\right), \quad \rho_{i}(w)=\left(e_{1}^{-} e_{2}^{-} e_{3}^{-}\right),
$$

and

$$
\rho_{j}(v)=\left(e_{1}^{+} e_{2}^{+} e_{3}^{+}\right), \quad \rho_{j}(w)=\left(e_{1}^{-} e_{3}^{-} e_{2}^{-}\right),
$$

respectively. Note that these two embeddings are actually planar. The following figures show two different embeddings of D_{3} into the torus T.

$k: D_{3} \rightarrow T$

$\ell: D_{3} \rightarrow T$

Their corresponding rotation schemes are

$$
\rho_{k}(v)=\left(e_{1}^{+} e_{2}^{+} e_{3}^{+}\right), \quad \rho_{k}(w)=\left(e_{1}^{-} e_{2}^{-} e_{3}^{-}\right),
$$

and

$$
\rho_{\ell}(v)=\left(e_{1}^{+} e_{3}^{+} e_{2}^{+}\right), \quad \rho_{\ell}(w)=\left(e_{1}^{-} e_{3}^{-} e_{2}^{-}\right)
$$

In fact, the only possible embeddings of D_{3} into any surface are the above four, as will be shown in Section 3.

2. Rotation schemes for the dipole D_{n}

For every rotation scheme ρ for G, let $r(G, \rho)$ and $g(G, \rho)$ denote the number of regions and the genus of the surface in the embedding of G determined by ρ, respectively. Then we have $g(G, \rho)=\frac{1}{2}(2-|V(G)|+$ $|E(G)|-r(G, \rho))$ by the invariance of the Euler characteristic. Thus, computing $g(G, \rho)$ is equivalent to computing $r(G, \rho)$ for a given graph G and a rotation scheme ρ for G. Moreover,

$$
g\left(D_{n}, \rho\right)=\frac{1}{2}\left(2-2+n-r\left(D_{n}, \rho\right)\right)=\frac{1}{2}\left(n-r\left(D_{n}, \rho\right)\right) .
$$

Hence, we get
Lemma 1. For any rotation scheme ρ for D_{n},

$$
r\left(D_{n}, \rho\right)=n-2 g\left(D_{n}, \rho\right)
$$

In particular, the numbers n and $r\left(D_{n}, \rho\right)$ are either both even or both odd.

Let Σ_{n} be the set of all cyclic permutations in the symmetric group S_{n}. For any $\sigma \in S_{n}$, let $j(\sigma)=\left(j_{1}, \ldots, j_{n}\right)$ be the cycle type of σ, i.e., j_{k} is the number of k-cycles occurring in the presentation of σ as the product of disjoint cycles.

Let e_{1}, \ldots, e_{n} be the edges of D_{n} and v, w the vertices of D_{n}. Let e_{i}^{+}be the edge with the direction from v to w and e_{i}^{-}the inverse edge of e_{i}^{+}for each $i=1, \ldots, n$. Let ρ be a rotation scheme for D_{n} viewed as a permutation on the directed edge sets of D_{n}, and let β denote the permutation $\left(e_{1}^{+} e_{1}^{-}\right) \cdots\left(e_{n}^{+} e_{n}^{-}\right)$of the directed edges of D_{n}. Then, the regions of the embedding associated with the rotation scheme ρ are given by the cycles of the permutation $\rho(v) \rho(w) \beta$. Moreover, the number $r\left(D_{n}, \rho\right)$ of regions of the embedding equals the number of disjoint cycles of $\rho(v) \rho(w) \beta$ (cf. Theorem 2.1 in [5]).

For each rotation scheme ρ for D_{n}, by writing $\rho(v)=\left(e_{1}^{+} e_{k_{2}}^{+} \cdots e_{k_{n}}^{+}\right)$ and $\rho(w)=\left(\begin{array}{lll}- & e_{1}^{-} & e_{\ell_{n}}^{-}\end{array}\right)$we can define $\bar{\rho}: V\left(D_{n}\right) \rightarrow \Sigma_{n}$ by $\bar{\rho}(v)=$ $\left(1 k_{2} \cdots k_{n}\right)$ and $\bar{\rho}(w)=\left(1 \ell_{2} \cdots \ell_{n}\right)$. To simply further computations, we identify a rotation scheme ρ for D_{n} with the map $\bar{\rho}: V\left(D_{n}\right) \rightarrow \Sigma_{n}$.

Lemma 2. For each rotation scheme ρ for D_{n},

$$
r\left(D_{n}, \rho\right)=\sum_{k=1}^{n} j_{k},
$$

where $\left(j_{1}, \ldots, j_{n}\right)$ is the cycle type of $\bar{\rho}(v) \bar{\rho}(w)$.
Proof. Let $\left(e_{i}^{+} \ldots\right)$ be a cycle occurring in the presentation of $\rho(v) \rho(w) \beta$ as the product of disjoint cycles. Then the cycle $\left(e_{i}^{+} \cdots\right)$ is of the form

$$
\left(e_{i}^{+} \quad \rho(w)\left(e_{i}^{-}\right) \quad \rho(v) \beta\left(\rho(w)\left(e_{i}^{-}\right)\right) \quad \rho(w) \beta\left(\rho(v) \beta\left(\rho(w)\left(e_{i}^{-}\right)\right)\right) \quad \cdots\right)
$$

where every odd term is an edge from v to w and every even term is an edge from w to v. This cycle is completely determined by the subcycle consisting of their odd terms, and this subcycle corresponds to the cycle

$$
\left(\begin{array}{llll}
(i & \bar{\rho}(v) \bar{\rho}(w)(i) & (\bar{\rho}(v) \bar{\rho}(w))^{2}(i) & \cdots)
\end{array}\right.
$$

in $\bar{\rho}(v) \bar{\rho}(w)$. This correspondence is clearly one-to-one from the set of disjoint cycles of $\rho(v) \rho(w) \beta$ onto the set of disjoint cycles of $\bar{\rho}(v) \bar{\rho}(w)$. In particular, the number of disjoint cycles of $\rho(v) \rho(w) \beta$ is equal to that of $\bar{\rho}(v) \bar{\rho}(w)$. This completes the proof.
Remark. A region of the embedding associated with a rotation scheme ρ is given by a cycle of the permutation $\rho(v) \rho(w) \beta$. The number of sides of the region equals the length of the corresponding cycle in $\rho(v) \rho(w) \beta$, which is two times the length of the corresponding cycle in $\bar{\rho}(v) \bar{\rho}(w)$, as shown in the proof of the above lemma.

Let \bar{g}_{m} denote the number of embeddings of the graph D_{n} into the surface of genus m, or equivalently having $n-2 m$ regions, such that their corresponding permutation $\bar{\rho}$ satisfies $\bar{\rho}(v)=(12 \cdots n)$. Let

$$
\bar{g}\left[D_{n}\right](x)=\bar{g}_{0}+\bar{g}_{1} x+\bar{g}_{2} x^{2}+\cdots
$$

Then by the symmetry of D_{n} we have the following theorem.

Theorem 1.

$$
g\left[D_{n}\right](x)=(n-1)!\bar{g}\left[D_{n}\right](x) .
$$

We will compute $\bar{g}\left[D_{n}\right](x)$ in the following section by using D. M. Jackson's counting formula concerning the cycle structure of permutations ([7]).

3. Genus polynomials and Stirling numbers

Let σ denote the cycle $(12 \cdots n)$ throughout this section. In Section 2, we have seen that the number \bar{g}_{m} of embeddings of D_{n} into the surface of genus m with $\bar{\rho}(v)=\sigma$ equals the number of $\bar{\rho}: V\left(D_{n}\right) \rightarrow \Sigma_{n}$ such that $\bar{\rho}(v)=\sigma$ and the permutation $\bar{\rho}(v) \bar{\rho}(w)$ has exactly $n-2 m$ disjoint cycles. Hence, to compute $\bar{g}\left[D_{n}\right](x)$, we need to count the number of $\tau \in \Sigma_{n}$ with the property that $\sigma \tau$ has exactly k cycles for each fixed number k. Jackson denoted this number by $e_{k}^{(n)}(1)$; we write it as $e(n, k)$. Note that this number $e(n, k)$ means the number of embeddings of D_{n} into the surface having exactly k regions such that their corresponding permutation $\bar{\rho}$ satisfies $\bar{\rho}(v)=\sigma$, that is, $e(n, k)=\bar{g}_{\frac{n-k}{2}}$.

The Stirling numbers of the first kind $s(n, k)$, (say the Stirling numbers simply), are defined as the coefficients of

$$
x(x-1)(x-2) \cdots(x-n+1)=\sum_{k=0}^{n} s(n, k) x^{k} .
$$

Jackson computed the number $e(n, k)$ in terms of the Stirling numbers $s(n+1, k)$ as follows ([7], Theorem 5.4):

$$
e(n, k)=\frac{1}{n+1} \sum_{\ell=0}^{n-k} n^{\ell}\binom{\ell+k+1}{k} s(n+1, \ell+k+1) .
$$

We summarize our discussions as the following theorem.

Theorem 2.

$$
g\left[D_{n}\right](x)=(n-1)!\sum_{m=0}^{\left[\frac{n-1}{2}\right]} e(n, n-2 m) x^{m},
$$

where

$$
e(n, n-2 m)=\frac{1}{n+1} \sum_{\ell=0}^{2 m} n^{\ell}\binom{\ell+n-2 m+1}{n-2 m} s(n+1, \ell+n-2 m+1) .
$$

To estimate the number $e(n, k)$, define

$$
f(x)=x(x-1)(x-2) \cdots(x-n) \quad \text { and } \quad g(x)=f(n-x),
$$

so that

$$
f(x)=\sum_{h=0}^{n+1} s(n+1, h) x^{h} .
$$

By taking the k-th derivative of $(-1)^{n+1} f(x)=g(x)$, we get

$$
(-1)^{n+1} f^{(k)}(x)=g^{(k)}(x)=(-1)^{k} f^{(k)}(n-x)
$$

and

$$
(-1)^{n-k+1} f^{(k)}(0)=(-1)^{k} g^{(k)}(0)=f^{(k)}(n) .
$$

But, $f^{(k)}(0)=k!s(n+1, k)$. Hence, we have
Lemma 3. For any k,

$$
f^{(k)}(n)=(-1)^{n-k+1} k!s(n+1, k) .
$$

Now, we state a formula for $e(n, k)$.

Theorem 3.

$$
e(n, k)=\left\{\begin{array}{cl}
\frac{-2}{n(n+1)} s(n+1, k) & \text { if } n-k \text { is even }, \\
0 & \text { if } n-k \text { is odd } .
\end{array}\right.
$$

Proof. From $f(x)=\sum_{h=0}^{n+1} s(n+1, h) x^{h}$, we have

$$
\begin{aligned}
f^{(k)}(x) & =\sum_{h=k}^{n+1} h(h-1) \cdots(h-k+1) s(n+1, h) x^{h-k} \\
& =k!s(n+1, k)+\sum_{h=k+1}^{n+1} h(h-1) \cdots(h-k+1) s(n+1, h) x^{h-k} \\
& =k!s(n+1, k)+\sum_{\ell=0}^{n-k}(\ell+2) \cdots(\ell+k+1) s(n+1, \ell+1+k) x^{\ell+1} .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \frac{1}{n} f^{(k)}(n) \\
& =\frac{k!}{n} s(n+1, k)+\sum_{\ell=0}^{n-k}(\ell+2) \cdots(\ell+k+1) s(n+1, \ell+1+k) n^{\ell} \\
& =\frac{k!}{n} s(n+1, k)+k!(n+1)\left(\frac{1}{n+1} \sum_{\ell=0}^{n-k}\binom{\ell+1+k}{k} s(n+1, \ell+1+k) n^{\ell}\right) \\
& =\frac{k!}{n} s(n+1, k)+k!(n+1) e(n, k) .
\end{aligned}
$$

Hence,

$$
e(n, k)=\frac{1}{k!n(n+1)}\left(f^{(k)}(n)-k!s(n+1, k)\right) .
$$

Now, Lemma 3 gives

$$
e(n, k)=\frac{1}{n(n+1)}\left((-1)^{n-k+1} s(n+1, k)-s(n+1, k)\right) .
$$

This completes the proof.
By using Theorem 3, we can rewrite Theorem 2 as follows.

Theorem 4.

$$
g\left[D_{n}\right](x)=\frac{-2(n-1)!}{n(n+1)} \sum_{m=0}^{\left[\frac{n-1}{2}\right]} s(n+1, n-2 m) x^{m}
$$

Corollary 1.

(1) The maximum and minimum genera of D_{n} are $\left[\frac{n-1}{2}\right]$ and 0 , respectively.
(2) There are exactly $(n-1)$! planar embeddings of D_{n}.
(3) There are exactly $\frac{1}{24}(n+1)!(n-1)(n-2)$ toroidal embeddings of D_{n}.
(4) The number of embeddings of D_{n} having only one region is

$$
(n-1)!e(n, 1)=\left\{\begin{array}{cl}
\frac{2((n-1)!)^{2}}{n+1} & \text { if } n \text { is odd }, \\
0 & \text { if } n \text { is even. } .
\end{array}\right.
$$

For example,

$$
\begin{aligned}
g\left[D_{2}\right](x) & =1 . \\
g\left[D_{3}\right](x) & =2(1+x) . \\
g\left[D_{4}\right](x) & =6(1+5 x) . \\
g\left[D_{5}\right](x) & =24\left(1+15 x+8 x^{2}\right) . \\
g\left[D_{6}\right](x) & =120\left(1+35 x+84 x^{2}\right) . \\
g\left[D_{7}\right](x) & =720\left(1+70 x+469 x^{2}+180 x^{3}\right) . \\
g\left[D_{8}\right](x) & =5040\left(1+126 x+1869 x^{2}+3044 x^{3}\right) . \\
g\left[D_{9}\right](x) & =40320\left(1+210 x+5985 x^{2}+26060 x^{3}+8064 x^{4}\right) .
\end{aligned}
$$

Finally, we show that the genus distribution of the dipole D_{n} is strongly unimodal.

A non-negative sequence $\left\{a_{n}\right\}$ is said to be unimodal if there exists at least one integer M such that

$$
a_{n-1} \leq a_{n} \quad \text { for all } n \leq M,
$$

and

$$
a_{n} \geq a_{n+1} \quad \text { for all } n \geq M .
$$

A sequence $\left\{a_{n}\right\}$ is called strongly unimodal if its convolution with any unimodal sequence $\left\{b_{n}\right\}$ is unimodal. Keilson and Gerber [8] proved that $\left\{a_{n}\right\}$ is strongly unimodal if and only if

$$
a_{n}^{2} \geq a_{n+1} a_{n-1} \quad \text { for all } n
$$

For a fixed n, the sequence $e(n, n), e(n, n-2), \ldots, e\left(n, n-2\left[\frac{n-1}{2}\right]\right)$ is finite. We want to show that

$$
e(n, n-2 k)^{2} \geq e(n, n-2 k-2) e(n, n-2 k+2)
$$

for $1 \leq k \leq\left[\frac{n-1}{2}\right]-1$. Since $e(n, n-2 k)=-\frac{2}{n(n+1)} s(n+1, n-2 k)$, it is sufficient to show that

$$
s(n+1, n-2 k)^{2} \geq|s(n+1, n-2 k-2)||s(n+1, n-2 k+2)| .
$$

But, it is known that

$$
s(n, k)^{2} \geq|s(n, k-1)||s(n, k+1)| \frac{k(n-k+1)}{(k-1)(n-k)}
$$

for $1<k<n$ (See [2] pp. 270-271). This implies that

$$
s(n, k)^{2} \geq|s(n, k-1)||s(n, k+1)| \quad \text { for } 1<k<n
$$

Thus,

$$
s(n+1, n-2 k)^{2} \geq|s(n+1, n-2 k-1)||s(n+1, n-2 k+1)|
$$

and

$$
\begin{aligned}
s(n+1, n-2 k)^{4} & \geq s(n+1, n-2 k-1)^{2} s(n+1, n-2 k+1)^{2} \\
& \geq|s(n+1, n-2 k-2)| s(n+1, n-2 k)^{2} \mid s(n+1, n-2 k+亡
\end{aligned}
$$

Hence,

$$
s(n+1, n-2 k)^{2} \geq|s(n+1, n-2 k-2)||s(n+1, n-2 k+2)| .
$$

The above discussion gives the following theorem.
Theorem 5. The genus distribution of the dipole D_{n} is strongly unimodal.

4. Further remarks

Let G be a connected graph and let ρ be a rotation scheme for G. Then ρ induces a multivariate monomial in the following manner. For each positive integer j, the exponent of the variable z_{j} equals the number of j-sided regions in the embedding. The sum of these monomials, taken over all embeddings, is called the embedding polynomial for the graph G. Recall that a rotation scheme ρ for D_{n} is identified with $\bar{\rho}: V\left(D_{n}\right) \rightarrow$ Σ_{n}. Let $\bar{\rho}(v)=\sigma$ and let $\bar{\rho}(w)=\tau$. Then the contribution of ρ in the embedding polynomial $\imath\left[D_{n}\right]\left[z_{j}\right]$ of D_{n} is the monomial $\prod_{k=1}^{n} z_{2 k}^{j k}$, where $j(\sigma \tau)=\left(j_{1}, \ldots, j_{n}\right)$. Let $\bar{\imath}\left[D_{n}\right]\left(z_{j}\right)$ denote the polynomial corresponding to the set $\left\{(\sigma, \tau) \mid \sigma=(12 \cdots n), \tau \in \Sigma_{n}\right\}$. Then we have the following theorem.

Theorem 6.

$$
\imath\left[D_{n}\right]\left(z_{j}\right)=(n-1)!\bar{\imath}\left[D_{n}\right]\left(z_{j}\right) .
$$

For example, if $n=4$ then the set $\left\{(\sigma, \tau) \left\lvert\, \sigma=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\right., \tau \in \Sigma_{4}\right\}$ has six elements.
If $\tau=\left(\begin{array}{lll}1 & 2 & 3\end{array} 4\right)$, then $\sigma \tau=\left(\begin{array}{ll}1 & 3\end{array}\right)(24)$.
If $\tau=\left(\begin{array}{ll}1 & 2\end{array} 43\right)$, then $\sigma \tau=\left(\begin{array}{ll}1 & 3\end{array}\right)(4)$.
If $\tau=\left(\begin{array}{ll}1 & 3\end{array} 24\right)$, then $\sigma \tau=\left(\begin{array}{lll}1 & 4 & 2\end{array}\right)(3)$.
If $\tau=\left(\begin{array}{ll}1 & 3\end{array} 42\right)$, then $\sigma \tau=\left(\begin{array}{ll}1 & 4\end{array}\right)(2)$.
If $\tau=\left(\begin{array}{ll}1423\end{array}\right)$, then $\sigma \tau=(1)(243)$.
If $\tau=\left(\begin{array}{ll}1 & 4 \\ 3\end{array}\right)$, then $\sigma \tau=(1)(2)(3)(4)$.
Thus, $\bar{\imath}\left[D_{4}\right]\left(z_{j}\right)=z_{4}^{2}+4 z_{2} z_{6}+z_{2}^{4}$, and $\quad{ }_{\imath}\left[D_{4}\right]\left(z_{j}\right)=6 z_{4}^{2}+24 z_{2} z_{6}+6 z_{2}^{4}$.

Acknowledgement. After this manuscript was completed, Prof. J. L. Gross informed the authors that the genus polynomial of a dipole was
independently obtained by Dr. R. G. Rieper in his Ph. D. thesis.

References

[1] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Amer. Elsevier, New York, 1976.
[2] L. Comtet, Advanced Combinatorics, D. Reidel, Boston, 1974.
[3] J. L. Gross and S. R. Alpert, The topological theory of current graphs, J. Combin. Theory, Ser. B 17 (1974), 218-233.
[4] J. L. Gross and M. L. Furst, Hierarchy for imbedding-distribution invariants of a graph, J. Graph Theory 11 (1987), 205-220.
[5] J. L. Gross, D. P. Robbins and T. W. Tucker, Genus distributions for bouquets of circles, J. Combin. Theory, Ser. B 47 (1989), 292-306.
[6] J. L. Gross and T. W. Tucker, Topological Graph Theory, John Wiley and Sons, New York, 1987.
[7] D. M. Jackson, Counting cycles in permutations by group characters, with an application to a topological problem, Trans. Amer. Math. Soc. 299 (1987), 785801.
[8] J. Keilson and H. Gerber, Some results for discrete unimodality, J. Amer. Statist. Assoc. 66 (1971), 386-389.
[9] J. H. Kwak and J. Lee, Enumeration of graph embeddings, to appear in Discrete Math.
[10] R. G. Rieper, Ph. D. Thesis, Western Michigan University (1987).

Department of Mathematics, Pohang Institute of Science and Tecinology, Pohang, 790-600 Korea.

