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GENERATING CELLULAR DECOMPOSITIONS
OF E°* AND THE NONEXISTENCE OF
CERTAIN FINITE-TO-ONE MAPPINGS

L. F. McAuley and R. A. Johnson

1. Introduction

Some years ago, Hurewicz constructed monotone mappings m of com-
pacta in E® onto given compacta Y. The sets m™'m(z) for z € E? are,
of course, compact and connected, but without various other connectiv-
ity properties (LC",Ic*,n — LC, etc., for n > 0). It is difficult to use
Hurewicz’s technique (and, indeed, generally impossible) to construct cel-
lular mappings from compacta in £ onto certain 2-dimensional polyhedra.

We shall give conditions under which Hurewicz’'s technique can be
modified to yield very nice cellular decompositions of E? (closed mappings
f defined on E® with f='f(z) cellular for each € E?). It will be shown
that it is impossible to use his technique (in some sense) to obtain certain
special cellular decompositions of E*. A surprising consequence is that
certain finite-to-one mapping from the Cantor Space onto any n-cell do
not exist.

Some interesting general questions arise.

Suppose that K™ is an n-dimensional polyhedron (more generally, an
n-dimensional compactum). When does there exists a metric space (Y, d)
and a closed cellular mapping f of E® onto Y such that Y contains a
homeomorphic copy of K™? What is the least natural number m such
that for each metric space (Y, d) and each closed cellular mapping f of E>
onto Y, E™ contains a homeomorphic copy of Y7 Some related work is
contained in [1;2; 3;4; 5].
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2. Finite-to-one mappings on the Cantor Space

The existence of certain finite-to-one (continuous) mappings defined
on the usual Cantor Space (contained in the closed interval [0,1]) imply
the existence of very nice cellular decompositions of E3. Consider the
following.

Definition. Suppose that f is a continuous mapping from C (the Cantor
Space) into a metric space (X,d). The collection Gy = {f~! f(z)|z € C}
is not properly situated on C if and only if for some g € Gy containing
points a,b and ¢ with a < b < ¢, there is a sequence {g;} in G such that
there are points a;, ¢; € g; with a; < ¢;, lime; = a and lim ¢; = ¢, but there
is no sequence {b;} of points b; € g; such that a; < b; < ¢;. Otherwise, Gy
is properly situated on C. The mapping f is said to be admissible on C
iff Gy is properly situated on C.

3. Generating cellular decompositions of E° with
each non-degenerate element being a simple polygo-
nal arc

Theorem 1. Suppose that K is a compactum and that f is a finite-to-one
admissible mapping of C' onto K. Then there is a cellular decomposition G
of E* such that the decomposition space E*]/G contains a homeomorphic
copy of K.

Proof. Let J be the join of the interval A = [0,1] (containing C') with
another copy B = [0,1]. Suppose that ¢ € G lies in A. Let ¢’ denote
the copy of g in B. Write ¢ = {py,p2, -, pn} where p; < p;y; for i =
1,2,---,n—1. Similarly, write ¢’ = {p},p},-- -, p,,} where p} < pl,,. Now,
n t,he join J construct a simple polygonal arc as follows. Connect p; to
p: with a straight line interval with end points p; and p!. Also, connect
p; to pi,, with a straight line interval with these points as end points for
it =1,2,---,n — 1. The union of these straight line intervals in a simple
polygona] arc, which we denote gg'.

Let G be the collection of all such gg' for ¢ € G, and all singletons z
in E? not on one of these arcs.

It is easy to see that G is an upper semicontinuous decomposition
of E>, since f is admissible on C. Consequently, the quotient mapping
p: E® - E*/G is a closed cellular mapping with p~!p(z) € G for each
x € E>. Clearly, E*/G contains a homeomorphic copy of K.

The dimension of K in the above theorem can not exceed three, since
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Kozlowski and Walsh [7] have proved that cell-like mappings on 3-manifolds
do not raise dimension.

It has been proved by Flores [5] that the complex K™ consisting of all
faces of dimension less than or equal to n of a (2n + 2)-simplex cannot be
embedded in E?". Thus, the following corollary would reduce an oustand-
ing question to one of finding an admissible finite-to-one mapping of the
Cantor Space onto the 2-skeleton K? of a 6-simplex o°.

Corollary. If there is a finite-to-one admissible mapping [ of C' onto the
2-skeleton K? of a 6-simplex 0%, then there is a cellular upper semicontin-
uous decomposition G of E* such that E*>/G x E' is not homeomorphic
to B4,

Proof. Construct G as in Theorem 1. If £*/G x E' is homeomorphic to
E*, then K? embeds in E* contrary to the work of Flores. Consequently,
I /G x E' is not homeomorphic to E*.

A result of Daverman and Preston [4] states that if G is a cell-like usc
(upper semicontinuous) decomposition of E® such that the image under
the projection mapping p : E* — E*/G of the set Ng = {z|p~p(z) #
x} has dim < 1, then E?/G x E' is homeomorphic to E*. There are
related results. However, the question of whether or not E3/G x E1 is
homeomorphic to E* for each cell-like (or cellular) decomposition & of E*
remains unanswered.

The following theorem states that any one-dimensional compactum has
a homeomorphic copy in some nice cellular decomposition of E?.

Theorem 2. Suppose that K is a one-dimensional compactum. Then
there is an usc decomposition G of E* such that each non-degenerate ele-
ment of G is a simple polygonal arc and E*/G contains a homeomorphic
copy of K.

Proof. There is a mapping f of C onto K such that |f~!f(z)| < 2 for
each € C. Note that f must be admissible. Construct ¢ as in the proof
of Theorem 1.

Suppose that K is an n-dimensional compactum. Then there is a
mapping f of C onto K such that [f~!f(z)] < n 4+ 1 for each z € C
and the collection G7*' = {f~'f(z)|f~'f(z) is exactly n + 1 points}
is countable. This follows easily from the covering dimension of K and
the 0-dimensionality of C. However, G?“ may not be a null collection.
Recall that G}‘“ is null iff for each £ > 0, at most a finite number of the
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elements of G'?‘H have diam > ¢. We shall show that no such mappings
f exist in some situations with G being a null collection. First, consider
the following theorem.

Theorem 3. Suppose that K is a compactum and that f is a mapping of
C onto K which is at most three-to-one. If G} is a null collection then
there is a cellular usc decomposition G of E® such that E*/G contains a
homeomorphic copy of K.

Proof. Write G3 = {T;}. Thus, diam T; — 0. For each 7, let T; =
{a;,b;,c;}, where a; < b; < ¢;. Let H; = {f~'f(z)|f~'f(z) is exactly j
points }. Then Hz = G3.

For each 2, construct a disk D(T;) bounded by three semi-circles with
end points a; and b;, a; and ¢;, and b; and ¢;, all lying in the half-plane
containing the z-axis making an angle of a; with the zy-plane.

There exist pairwise disjoint intervals I(a,),I(b) and I(¢;) in [0,1]
such that:

(1) ay € I(ay1),b; € I(by) and ¢; € [(cy);

(2) H(a1)UI(b)UI(e;)]NC = Ay is an open and closed subset of Cj
and

(3) for i > 1, T; N I(p) # O for at most one of p = ay, by or ¢;.

Let S; = {glg € H, U H3,A; D g, and ¢ is not contained entirely in
one of I(a1),I(b) and I(¢;)}. Note that Sy is closed (where M* denotes
the union of the elements of the collection M). Also, T} € 51 and T; € 5,
forz > 1.

Let h; denote an order-preserving homeomorphism of I(;) N C into
I(a;) such that h;(b1) = a; and hy(z) & I(ay)NC for z € I(b1)N(C —by).

Now, if ¢ € S; and ¢ = {z,y}, ¢ < y, then construct a semi-circle C(g)
with end points z and y lying in the half-plane containing the z-axis and
making either an angle of z with the zy-plane if z € I(a;) or an angle of

Consider T, = {az, by, c2}. Construct pairwise disjoint intervals I(az), I(b;)
and I(c;) in [0,1] such that:

(1) az € I(az),b; € I(b;) and ¢; € I(c2);

(2) [I(a2) U I(b)U I(c2)]NC = A3 is an open and closed subset of C;

(3) A2N 57 =0;

(4) each interval has length < 1/2%; and

(5) if ¢ > 2, then T; N I(p) # 0 for at most one of p = a,, by or cs.

Let h, denote an order-preserving homeomorphsim of 1(b;) N C into

I(as) such that ho(by) = a, ho(z) € I(az) N C for = € I(by) N (C = by),
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and ho(z) # hy(y) for any = and y.

Let S; = {g|g € Hy U H3, A; D g, and g is not contained entirely in
one of I{ag), I(b;) and I(c;)}. Note that S; is closed. Also, Ty € S,.

If g € S; and ¢ = {z,y}, ¢ < y, then construct a semi-circle C(g)
with end points z and y lying in the half-plane containing the z-axis and
making either an angle of z with the zy-plane if z € I(a;) or an angle of
hy(z) if z € I(he).

Continuing in this manner, we construct, for each 7, pairwise disjoint
intervals I(a;y1), I(b;iyy) and I(c;yq) in [0,1] such that:

(1) aiy1 € I(aiy1), bipr € I(biy1) and ciyy € I{ciya);

(2) [{(aip1)UI(biy1)UI(ciy1)]NC = Az is an open and closed subset
of C;

(3) Aipr N[UL_,St] = 0, where S, = {glg € Ho U H3, Ay D g, and g is
not contained entirely in one of I(ay), I(by) and I(cx)};

(4) each interval has length < 1/2*!; and

(5) if k > i+ 1, then Tp N I(p) # O for at most one of p = a;41, bijq or
Cit1-

For each 1, there is an order-preserving homeomorphism h; of I(b;)NC
into I(a;) such that:

(1) hi(bi) = a;,

(2) hi(z) & I(a;) N C for z € I(b;) N (C = b;), and

(3) hi(z) # h;j(y) for any z and y for 7 # j.

Note that S is closed and T; € S;.

If g € S;and g = {z,y}, ¢ < y, then construct a semi-circle C(g)
with end points  and y lying in the half-plane containing the z-axis and
making either an angle of z with the zy-plane if z € I(a;) or an angle of

If {z,y} = g € Hy where g ¢ S; for any ¢, then construct a semi-circle
C(z,y) in the half-plane containing the z-axis and making an angle of —z
with the zy-plane. Thus, C(z,y) lies below the zy-plane whereas the other
disks and semi-circles constructed thus far lie above the zy-plane.

Let H denote the collection of the various disks and semi-circles con-
structed in this manner. Let G denote the collection consisting of the
elements of H together with the singletons in E® which do not belong to
an element of H. It follows that G is a cellular (point-like) usc decom-
position of E*. Furthermore, the decomposition space FE*/G contains a
homeomorphic copy of K.

The proof of Theorem 3 can be easily adapted to prove the following
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theorem.

Theorem 4. Suppose that f is an at most three-to-one mapping of the
Cantor Space C onto a compactum K. Furthermore, G5 = {{ax, b, ci } |k =
1,2,3,---} is countable, and, for each i and each € > 0, there exist pair-
wise disjoint closed intervals I(a;), I(b;) and I(c;) containing a;,b; and c;,
respectively, such that:

(1) [I(a;) U I(b;) U I(e:)] N C = A; is open and closed,

(2) diam I(p) < ¢ for p = a;, b; and ¢;; and

(3) if T; = {a;, bj,c;} meets two of these intervals, then A; D 1.
Then there is a cellular usc decomposition G of E® such that E*/G con-
tains a homeomorphic copy of K.

4. The nonexistence of a three-to-one mapping of C
onto a 2-simplex

If there is a three-to-one (continuous) mapping f of C' onto a 2-simplex
o? such that G? is a null collection, then one can modify f so that for
each y in a face (1-simplex) of 02, f~!(y) is at most two points. It is not
difficult to see that this would imply the existence of a mapping ¢ onto
the projective plane P such that g is at most three-to-one and 7 is a null
collection. We now state the following:

Theorem 5. There is no mapping [ of C (the Cantor Space) onto a 2-
stmplexr o* such that f is at most three-to-one and G?( s a null collection.

Proof. 1f the theorem is false, then construct (as indicated above) an at
most three-to-one mapping g of C onto the projective plane P such that
Gg is a null collection. By Theorem 3, there is a closed mapping ¥ of £?
onto a metric space (Y, d) where Y contains a homeomorphic copy @ of
P.

Let X = ¥~1(Q), a compactum in E3, and let ©® = ¥|yx. Using the
integers Z for coefficients, the second cohomology group H*(Q) of () is
isomorphic to Z, (integers mod 2). By a Vietoris-Begle theorem [8], ©
induces an isomorphism on Cech cohomology. Hence, i (X)) is 1somorphic
to Zy. By Alexander duality [8], H(X) ~ Ho(E® — X) ~ Z,. However,
this is impossible. Hence, the theorem is proved.

We are indebted to Ross Geoghegan for suggesting this proof.

For similar reasons there is no admissible mapping f of C onto the
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projective plane P.

Question. For what compacta K are there admissible mappings f from
the Cantor Space C onto K7

5. Certain k-to-1 mappings, £ > 3, raise dimension
by at most k — 2.

A well-known theorem of Hurewicz [6, p.91] states that if f is a closed
mapping of a separable metric space (X, d) onto a metric space (Y, p) and
dim X—dimY = k > 0, then there is a point y € Y such that dim f~'(y) >
k. A kind of dual of this theorem states that if dimY —dim X =%k > 0,
then there is at least one point y € Y such that |f~'(y)| > k + 1.

It is also well-known that if ¥ is a k-dimensional compactum, then
there is a mapping f of the Cantor Space C onto Y such that for each
y €Y, |f"(y)| € k+1. The question of the dimensionality of the image YV’
of C under a continuous mapping f such that foreachy € Y, |f~(y)| < k
seems not to have been answered (and, maybe, not asked).

Notation. Suppose that f is a finite-to-one mapping of X onto Y. Let
N(z,f) = |f1f(z)| for z € X. Let N(f) = sup{N(z, f)|z € X}. Let
Hi(f) = {yly €Y and N(z,f) > i for € f'(n)}.

In a letter, John J. Walsh gave a short easy proof that if f is a
continuous mapping of C onto a compactum Y such that N(f) = 3,
Hi(f) = {y1,y2,- -+, } is countable and {f~'(y;)} is a null sequence, then
dimY < 1. We were able to find a proof of a much more general result
which is given below. It is an interesting result which seems to have been
overlooked by dimension theorists.

Theorem 6. Suppose that each of (X,d) and (Y, p) is a separable metric
space and that f is a continuous mapping of X onto Y such that f~' f(z)
is finite for each x € X. If k 2 3, H.(f) = {1, 92, -} and {fy:)} is a
null sequence, then dimY < dim X + &k — 2.

Proof. The sequence {f~'(y:)} is a null sequence. Thus, there are closed
neighborhoods V; of y; such that f='(V;) = U UUjU--- U U}, where each
Ul is closed, Ui N U} = 0 if s # t, each U} contains exactly one point of
f~Yw:), and, if y # y; and f~'(y) meets at least two of the sets U}, then
|f~'(y)| < k — 1. Note that the set K; = {y|f~(y) meets at least two of
the sets U} is closed. Let L; = {y||/~*(y)| > 1 and f~'(y) is a subset of
some U;}. Now, for each natural number ¢ and each natural number n,
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let Li(n) = {y|ly € L; and diam f~'(y) > 1/n}. Thus, L;(n) is closed for
each 7 and n. The set Wi(n) = int(V; — L;(n)) is an open set.

Since ¢ = f|;-1(k;) is a closed mapping and N(z,g) < k — 1, except
for z such that f(z) = y;, it follows that dim K; < dim X 4+ k£ — 2. (That
k > 3 is needed here.) For y € W;(n) — y;,|f"'(y)| < k — 1. Thus,
W = U2, (U;Z,Wi(n)) is open, and dim W < dim X 4+ k—2, since f|;-1(w)
is closed and W D Hi(f). If y ¢ W, then |f~'(y)] < k — 1. Thus,
flix-s-3(wy) is an at most (k — 1)-to-one closed mapping on a closed set.
This implies that dim(Y — W) < dim X + k — 2. Since W is an F,-set and
Y — Wis closed, dimY < dim X + k£ — 2. The theorem is proved.

Remarks. There is an obvious two-to-one mapping f of the Cantor Space
onto the closed interval [0, 1] such that H(f) is a countable set {y1,y2,-- -}
and {f~'(y;)} is a null sequence. Thus, the assumption that k£ > 3 is nec-
essary. However, there is no two-to-one mapping of the Cantor Space onto
the plane one-dimensional Sierpinski curve such that Hy(f) is countable.

It would be interesting to classify those one-dimensional images of the
Cantor Space under two-to-one mappings f such that Hy(f) is a countable
set {y1,y2,---} and {f~'(y;)} is a null sequence. More generally, we may
attempt to classify those spaces Y such that there is a (continuous) finite-
to-one mapping f of X onto Y such that £ > 3, Hi(f) = {y1,y2,--} is
countable and {f~'(y;)} is a null sequence. In some sense, these spaces Y’
which have dimY < dim X + k& — 2 = m are “thinner” than some spaces
of dimension m.
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