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GENERATING CELLULAR DECOMPOSITIONS 
OF E3 AND THE NONEXISTENCE OF 

CERTAIN FINITE-TO-ONE MAPPINGS 

L. F. McAuley and R. A. Johnson 

1. Introduction 

Some years ago, Hurewicz const ructed monotone mappings m of com 
pacta in E3 onto given ∞mpaιta Y. T he sets m-1m(x) for x E E3 are, 
of course, compact and connected, but without various other connectiv­
ity properties (LCn , Ic칸i 一 LC, etc., for n > 이. It is difficult to use 
Hurewicz’s technique (and, indeed , generally impossible) to construct cel­
lular mappings from compacta in E 3 onto certain 2-dimensional polyhedra . 

We shall give conditions under which Hurewicz’s technique can be 
modified to yield very nice cellular decomposi tions of E 3 (closed mappings 
f defined on E 3 with f-l f (x) cellular for each x E E3). It will be shown 
that it is impossible to use his technique (in some sense) to obtain certain 
special cellular decompositions of E 3

. A surprising consequence is t hat 
certain finite-to-one mapping from the Cantor Space onto any n-cell do 
not eXlst. 

Some interesting general questions arise. 
Suppose that J(n is an n-dimensional polyhedron (more generally, an 

n-dimensional compactur미and a closed cellular mapping f of E 3 onto Y such that Y contains a 

homeomorphic copy of J(n? What is t he least natural number m such 
that for each metric space (Y, d) and each closed cellular mapping f of E 3 

onto Y , Em contains a homeomorphic copy of Y? Some related work is 
conta.ined in [1; 2; 3; 4; 5] . 
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2. Finite-to-one mappings on the Cantor Space 

The exjstence of certain fin ite-to-one (continuous) mappings defined 
on the usual Cantor Space (contained in tbe closed interval [0, 1]) imply 
tbe ex.istence of very nice cellular decornpositions of E 3 Consider the 
following. 

D efinit ion. Suppose tbat J is a continuous rnapping frorn C (the Cantor 
Space) into a rnetric space (X , d). Tbe collection Gf = U- 1 J(x)lx E C} 
is nol prop erlν situated on C if and only if for some 9 E G f containjng 
points a, b and c wi tb a < b < c, tbere is a sequence {g;} in Gf such tbat 
there are p이nts a; , c; E g; witb a‘ <c“ lim ai = a and lirn Ci 二 c, but there 
is no sequence {b;} of p이nts b; E g; such that ai < bi < c;. Otherwise, G f 
is properly situated on C. The rnapping J is sa id to be admissible on C 
iπ Gf is properly situated on C. 

3 . G e nerating cellula r d ecompos it ions of E 3 with 
each non-de g e nerate ele m ent b e ing a s imple polygo ­
nal a r c 

Theor em 1. Sμppose that J( is a compactμm and thal J is a jìnit e-to- one 
admissib le mapping oJ C onto J(. Th en th e1'e is a cellular decomposition G 
oJ E3 such that the decomposition space E 3 j G conlains a homeomorplμc 
copy oJ J(. 

Proof Let J be tbe join of the inter때 A = [0,1] (containing C) with 
another copy B = [0,1]. Suppose that 9 E Gf lies in A. Let g' denote 
the copy of 9 in B . Wri te 9 = {Pl ,P2 ,' ‘ ,Pn} wbere p‘ < Pi+I for i = 
1,2, .. . , n - 1. Sirnilarly, write g' = {찌 , 야， - , pL} where p; < p;+I Now , 
in the join J construct a sirnple polygonal arc as follo \Vs. Conned p; to 
Jf; with a straigbt line interval with end points p; and pi. Also, connect 
Pi to pi+I with a strajght line interval witb tbese points as end points fOI 
i 1,2, ' “ , n - 1. The union of these straight line intervals in a sirnple 
polygonal arc, whicb we denote gg' 

Let G be the collection of all such gg’ for 9 E G f and all singletons x 
in E3 not on one of tbese arcs . 

It is easy to see that G is an upper semicontinuous decornposition 
of E 3 , since J is adnússible on C. Consequently, the quotient rnapping 
p : E 3 • E 3 jG is a closed cellular rnapp ing ‘.vith p-lp(X) E G for each 
x E E 3

. Clearly, E 3 jG contains a borneornorphic copy of J(. 

The dirnension of J( in the above theorern can not exceed three, since 
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I<ozlowski and Walsh [7] ha、re proved tha t cell-like mappings on 3-manifolds 
do not raise dimension 

It has been proved by Flores [5] t hat t he complex ](n consisting of all 
faces of dimension less than or equal to n of a (2n + 2)-simplex cannot be 
embedded in E2n ‘ Thus, t he fo llowing coro llary wou ld reduce an oustand­
ing question to one of fi nding an adrrùss ible finite-to-one mapping of the 
Cantor Space onto tbe 2-skeleton ](2 of a 6-simplex 17

6 

C orolla ry. Jf Ihere is a finite -Io-one admissible mapping f of C onlo Ihe 
2-skelelon ](2 of a 6-simplex 17

6 , Ihen Ihe l'e is a cellula ,' uppeT semiconlin­
uous decomposition G of E 3 such that E 3jG x E' is not homeom01'phic 
10 E4

, 

Proof Const ruct G as in Theorem 1. If E 3/G x E' is homeomorpbic to 
E 4 , t hen ](2 embeds in E 4 contrary to the work of F'lores. Consequently, 
E3 /G X E 1 is not homeomorphic to E'’ 

A resu lt of Daverman and Preston [4] states lhat if G is a cel l-like usc 
(upper semicontinuous) decomposition of E 3 such that t he image uncler 
thc projection mapping p : E 3 • E 3/G of the seL Nc 二 {.T lp-l p(:r) # 
x} has d im ~ 1, t hen E 3/G x E ' is homeomoq써c to E 4

. T here are 
relatecl res ults , I-Iowever , t he quest ion of whet lLer or not E3 /G x E1 is 
homeomorphic to E 4 f0 1" each cell-like (0[" ccll ular) clecornposi tion G of E 3 

remains unanswerecl 

The fo llowing theorem states that any one-climcns ional compactum has 
a homeomorphic copy in some nice cellu lar clecomposit ion of E3 

T heorem 2. SUI'Pose Ihnt ]( is a one-dimens'ío n.o.l coml'actmn. Then. 
the l'e is an usc decomposition G of E3 sllch lhal each 1l0n-degellemle ele­
ment of G is a siml' le I'olygonal a.'c and E 3/ G conlains a homeOmOTl'hic 
copν of JC 

Proof Tbere is a mapping f of C onto ]( such thal 11- 1 f(x)1 ~ 2 for 
each x E C , Note that f musl be aclmissible , Construct G as in the proof 
of Theorem L 

SlI ppose tbat ]( is an n-climensional compactum. Then there is a 
mapping f of C onto J( such that If-'f(x)1 ~ n + 1 for each x E C 
ancl tbe collection G'j+ l U- 1 f(x )l f - 'f(x) is exact ly n + 1 points} 
is cOllntable. This fo llows easily from t he covering climension of J( ancl 
t he O-cl imensionali ty of C , I-Iowever, G't1 m때 nol be a n ul/ col/ection 

Recall that G';+l is nllll iff for each F; > 0, at most a fin따 nll뼈 
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elements of Gj+1 bave diam > ~. We sball sbow tbat no such mappings 
f exist in some situations witb G} being a null collection. First , consider 
the following theorem 

Theorem 3 . Suppose that J( is a compactum and that f is a mapping of 
C onto I( which is at most three-to-one. lf G} is a null collection then 
there is a cellu/ar usc decomposition G of E3 such that E3 / G contains a 
homeom07-phic copy of J( 

Proof Write G} = {Ti}. Thus, diam 인 • O. For each i, let T; = 
{a‘ ,b‘’ c;} , where ai < bi < Ci. Let Hj = {j -1 f(x)lf-lf(x) is exactly j 
points }. Then H3 = G} . 

For each i, construct a disk D(인) bounded by three s않em때n띠l1 -C디1rκ띠c이l낭얹 w뻐lπt 

end po이m따t성s a따‘ a때n벼d bκ"’ a따i and c;, and bi and c‘ ’ all lying in the half-plane 
containing the x-axis making an angle of ai with the xy-plane 

There exist pairwise disjoint intervals I ( atl ,I( bl ) and I ( ctl in [0,1] 
such that 

(1) a1 E I (atl ,bl E l (b1) and C1 E l (cd; 
(2) [I(atl U I(bl ) U l (ctl] n C = A1 is an open and closed subset of C; 

and 
(3) for i > 1, T; n I(p) ￥ ø for at most one of p = al , 이 or Cl' 
Let SI = {glg E H2 U H3 , Al ::l g, and 9 is not contained entirely in 

one of I(a t),I (bl ) and I(Cl)}' Note that 5i is closed (wbere M. denotes 
the union of the elements of the collection M). Also, T, E 51 and T; rf. 5 1 
for i > 1. 

Let h1 denote an order-preserving homeomorphism of l ( btl n C into 
I(atl such that h,(b1) = al and h1 (X) rf. I (a1) nC for x E l (bl ) n (C - bd. 

Now, if 9 E 51 and 9 = {x , ν} ， x < y, then construct a semÎ-circle C(g) 
wi th end points x and y lying in the half-plane containing the x-axis and 
making either an angle of x with the xy-plane if x E I ( atl or an angle of 
hl (X) if x E l(bl ). 

Consider T2 = {a2 ， ~ ， C2}. Construct pairwise disjoint intervals I(a2) ，I(~) 
and I (c2) in [0, 1] such that: 

(1) a2 E I (a2) , b2 E l (b2) and C2 E I (c2); 
(2) [I( a2) U I(아) U l ( C2)] n C = A2 is an open and closed subset of C; 
(3) A2 n 5j = 0; 
(4) each interval has length < 1/22; and 
(5) if i > 2, then Ti n l (p) ￥ ø for at most one of p = a2 , 야 or C2 ‘ 

Let h2 denote an order-preserving homeomorphsim of l(b2 ) n C into 
I(a2) such that h2(b2) = a2 , h2(X ) rf. I(a2) n C for x E I (b2) n (C - b2), 
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and h2(x) ￥ h1 (y) for any x and y 
Let S2 = {glg E H 2 U H 3 , A2 :J g, and 9 is not contained entirely in 

one of l (a2),I(b2) and l(c2 )}' Note that S2 is closed. Also, T2 E S2 
If 9 E S2 and 9 = {x , y }, x < y , then construct a semi-circle C(g) 

with end points x and ν lying in the half-plane containing the x-axis and 
making e뻐er an angle of x wi t h t he xy-p lane if x E l (a2) or an angle of 
h2(X) if x E 1(ι). 

Continuing in this manner, we construct, for each i , pairwise disjoint 
intervals l (ai+d ,I(bi+1) and 1(c,+d in [0,11 such that: 

(1) ai+1 E l (a i+I )' bi+1 E l (b‘+d and c‘+1 E I (Ci+ 1); 
(2) [1(ai+ 1 )U J (b써) U1(c‘+d1 n C = Ai+1 is an open and closed subset 

of C , 
(3) Ai+1 n [Uk= IS;1 = ø, where Sk = {g lg E H2 U lh , Ak 그 g, andgis 

not contained entirely in one of J(ak) ,I(bk) and I (ck)}; 
(4) each interval has length < 1/2'+1 ; and 
(5) if k > i + 1, then Tk n l (p) i 0 for at most one of p = ai+1 , bi+1 or 

Ci+l 
For each i , there is an order-preserving homeomorphism hi of I (bi)nC 

into 1(마) such that: 

(1 ) 시(b;) = a‘’ 
(2) hi(x) rf J(a‘) n C for x E J ( b‘) n (C - bi), and 
(3) hi(x) ￥ hj(y) for any x and ν for i i j. 

Note that Si is closed and 낀 E Si . 
If 9 E 5 i and 9 {x , y }, x < y, then construct a semi-circle C(g) 

with end points x and y lying in t he half-plane containing t he x-axis and 
making either an angle of x with t he xy-plane if x E f (ai) or an angle of 
lμ (x) if xE 1(κ). 

If {x, y} = 9 E H 2 where 9 rf 5i for any i, then construct a semi-circle 
C(x , y) in the half-plane containing the x-axis and making an ang le 0이f -x 

‘”‘v…, 
disks and semi-ci rcles cons잉stru‘'uκc야te려d tμ미h띠lU벼s far“lie above the xy-plane. 

Let H denote the collect ion of the various disks and semi-ci rcles con 
structed in tllis manner. Let G denote lhe colledion consisting of the 
elements of H togelher with the singletons in E3 which do not belong to 
an element of H. It follows th at G is a cellular (poin t- like) usc decom• 

position of E 3 . Furt hermore, the decomposition space E 3 /G contains a 
homeomorphic copy of J( 

The proof of Theorem 3 can be eas ily adapted to prove the following 
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theorem 

Theorem 4. Suppose that f is an at most three-to-one mapping of the 
Cantor Space C onto a compaclum J(. Fu1"lhermore, G} = {{ ak , bk, cdlk = 
1,2,3, .. . } is countable, aπd， for each i and each é: > 0, there exist pair­
wise disjoint c/osed intervals I (ai) ,I(bi) and I (ci) coηtaining ai, bi and Ci, 
respectively, such tha l: 

(1) [I (ai)U I (ι ) U I (C; )] n C = A; is open and ciosed, 
(2) diam I (p) < é: for p = ai , b; aηd C;; and 

(3) σ되 = {a j , bj , Cj } m ee ts two of these intervals, then Ai 그 피 , 
Then there is a cellular usc decom position G of E3 such that E3 jG con­
tains a homeomoψhic copy of f{ 

4. The none x istenc e of a t hree-to - one mapping of c' 
onto a 2-s imple x 

lf there is a t hree-to-one (cont inuous) mappi ng f of C onto a 2-s implex 
(7' such that G} is a null collection, then one can moclify f so that fOl 

each y in a face ( l -simplex) of (7', f- I (ν) is at most two points. It is not 
clifficult to see that this woulcl im ply the existence of a ma pping 9 onto 
t he p미ro앤) 
collection. We no아、w state tμ미he fιo이110아lιw씨‘v씨’1까1n마1냐g E 

T heorem 5 . Th ere is no mapping f of C (the Cantor Space) onto a 2-
sirnplex (7' such that f is at rnost three-to-one and G} is a null colleclio 

P1"Oof If the tbeorem is false, t hen construct (as inclicatecl above) an at 
most three-to-one mapping 9 of C onto t he projective plane P such that 
G; is a null co llect ion. By T beorem 3, tbere is a closecl mapping ψ o[ E3 
onto a metric space (Y, d) where Y contai ns a homeomorphic copy Q o[ 

P ‘ 

Let X = ψ - 1(Q ) ， a compactum in E3, ancl let e 때 K. Using t he 
integers Z for co e태 cient s ， t he seconcl cohomology group H ' (Q) o[ Q is 
isornorphic to Zι， (Í1삐l 

induces an isomorphism on Cech cohomology. Hence, ff (X) is isomorphic 
to Z, . By Alexancler cluali ty [8 ], fI (X ) ~ fIo( E3 - X ) ~ Z, . However, 
this is impossible. Hence, the theorem is provecl 

We are inclebtecl to R.oss Geoghegan fo r suggest ing this proof. 

For similar reasons there is no admissible ma pping f of C onto the 
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projective plane P 

Question. For what compacta J( are there admissible mappings f from 
the Cantor Space C onto J(? 

5. C e rtain k-to-l mappings , k 즈 3, raise dime n s ion 
by at most k - 2. 

A well-known theorem of Hurewicz [6, p.91J states that if f is a closed 
mapping of a separable metric space (X, d) onto a metric space (Y, p) and 
dim X -dim Y = k > 0, then tbere is a point y E Y such tbat dim f - ' (ν) 즈 
k. A kind of dual of this theorem states t hat if dim Y - dim X = k > 0, 
then there is at least one point y E Y such that If-'(y) 1 으 k + l 

It is also well-known that if Y is a k-dimensional compactum, then 
there is a mapping f of the Cantor Space C onto Y such that for each 
Y E Y , If-'(y)1 ~ k+ 1. The ques tionofthedimensionality oftheimageY 
。f C under a continuous mapping f sucb t bat for each y E Y , If - 1(y) 1 ~ k 
seems not to have been answered (an d, maybe, not asked). 

Notation. Suppose that f is a finite- to-one mapping of X onto Y . Let 
JλN、N이( :샤:1:，’ f끼) = Iμf- 1 f( :야x셰r 
H ‘(J) = {yly E Y and N(x ,J) 2: i for x E f - 1(y)} 

In a letter, John J . Walsh gave a short cλsy proof that if f is a 
cont inuous mapping of C onto a compactum Y such that N (J) = 3, 
H3 (J) = {YI 새2 ，' • • , } is countable and U-1 (y;)} is a null sequence , then 
di l1l Y ~ 1. We were able to find a proof of a l1luch more general result 
wbich is given below. It is an interesting resll lt wbich seems to have been 
overJooked by di l1lension tbeorists 

Theorem 6 . Suppose that each of(X,d) and (Y,p) is a separable metric 
space and that f is a continuous mapping of X onto Y such that f - l f(x) 
is fi.nite fo r each x E X . 1f k 2: 3, Hk (f ) = {yl' Y2 , " .} and U- 1 (y;)} is a 
nu l/ sequence, then di l1l Y ~ di l1l X + k - 2 

Proof The sequence U-1 (ν;)} is a nll ll sequence. ThllS, there are closed 
neighborhoods 끼 of yi sllch that f- l ( κ) = 띠 uu~u. ’ u U띠띠1.’ 、w、v써r 

U찌" is closed, u; n U; = 0 i f s ￥ t, each U; contains exact ly one point of 
f-l(y‘), and , if y 폼 y; and f - l (y ) meets at least two of the sets U; , then 
lf-l(y)1 ~ k - 1. Note t bat the set J(‘ = {ylf- 1 (y) meets at least t wo of 
t he sets U;} is closed ‘ Let L‘ = {yIW 1(y)1 > 1 and f- l (ν ) is a sllbset of 
some U;}. Now, for each natural nllmber i and each natural number n , 
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let L,(n) = {YIν E Li and diam f-l(y) ~ l/n}. Thus, Li(n) is closed for 
each i and n. The set W,(n) = int(끼 -L‘ (n)) is an open set 

Since g = fIJ-'(Ki) is a closed mapping and N(x ,g) :S k - 1, except 
for x such that f(x) = y‘’ it follows that dim f(, :S dim X + k - 2. (That 
k ~ 3 is needed here.) For y E Wi(n ) - y" If-l (y)1 < k - 1. Thus, 
W=u열1 (u얻lW，‘ (n)) is open , and dim W :S dim X + k-2 , since fIJ-' (W) 
is closed and W 그 H k(f) . lf y if. W , then If-l (y)[ :S k - 1. Thus, 
fl(X-J - ’ (W)) is an at most (k - l)-to-one closed mapping on a closed set 
This implies that dim(Y - W) :s dim X + k - 2. Sinæ W is an Fq-set and 
Y - W is closed , dim Y :s dim X + k - 2. The t heorem is proved 

Remarks. There is an obvious two- to-one mapping f of the Cantor Space 
onto t he closed interval [0, 11 such that H2(f) is a countable set { y l 써2 • . .. } 

and U-1(Yi)} is a null sequence. Thus, the assumption that k 즈 3 is nec­
essary. However, there is no two-to-one mapping of the Cantor Space onto 
the plane one-d imensional Sierpinski curve such that H 2(f) is countable. 

It would be interesting to classify those one-dimensional images of t he 
Cantor Space under two-to-one mappings f such that H 2(f) is a countable 
set {Yl'Y2 ' ... } and U-1 (y,)} is a null sequence. More generally, we may 
attempt to class파 those spaces Y such th at there is a (continuous) finit e­
to-one mapping f of X onto Y such that k ~ 3, H dfl = {Yl , Y2 , .. . } is 
countable and {f- l (Yi )} is a null sequence. ln some sense, these spaces Y 
which have dim Y :s dim X + k - 2 = m are “ th inner" than some spaces 
of dimension m. 
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