GENERATING CELLULAR DECOMPOSITIONS OF E^{3} AND THE NONEXISTENCE OF CERTAIN FINITE-TO-ONE MAPPINGS

L. F. McAuley and R. A. Johnson

1. Introduction

Some years ago, Hurewicz constructed monotone mappings m of compacta in E^{3} onto given compacta Y. The sets $m^{-1} m(x)$ for $x \in E^{3}$ are, of course, compact and connected, but without various other connectivity properties $\left(L C^{n}, l c^{n}, n-L C\right.$, etc., for $\left.n>0\right)$. It is difficult to use Hurewicz's technique (and, indeed, generally impossible) to construct cellular mappings from compacta in E^{3} onto certain 2-dimensional polyhedra.

We shall give conditions under which Hurewicz's technique can be modified to yield very nice cellular decompositions of E^{3} (closed mappings f defined on E^{3} with $f^{-1} f(x)$ cellular for each $x \in E^{3}$). It will be shown that it is impossible to use his technique (in some sense) to obtain certain special cellular decompositions of E^{3}. A surprising consequence is that certain finite-to-one mapping from the Cantor Space onto any n-cell do not exist.

Some interesting general questions arise.
Suppose that K^{n} is an n-dimensional polyhedron (more generally, an n-dimensional compactum). When does there exists a metric space (Y, d) and a closed cellular mapping f of E^{3} onto Y such that Y contains a homeomorphic copy of K^{n} ? What is the least natural number m such that for each metric space (Y, d) and each closed cellular mapping f of E^{3} onto Y, E^{m} contains a homeomorphic copy of Y ? Some related work is contained in $[1 ; 2 ; 3 ; 4 ; 5]$.

[^0]
2. Finite-to-one mappings on the Cantor Space

The existence of certain finite-to-one (continuous) mappings defined on the usual Cantor Space (contained in the closed interval $[0,1]$) imply the existence of very nice cellular decompositions of E^{3}. Consider the following.

Definition. Suppose that f is a continuous mapping from C (the Cantor Space) into a metric space (X, d). The collection $G_{f}=\left\{f^{-1} f(x) \mid x \in C\right\}$ is not properly situated on C if and only if for some $g \in G_{f}$ containing points a, b and c with $a<b<c$, there is a sequence $\left\{g_{i}\right\}$ in G_{f} such that there are points $a_{i}, c_{i} \in g_{i}$ with $a_{i}<c_{i}, \lim a_{i}=a$ and $\lim c_{i}=c$, but there is no sequence $\left\{b_{i}\right\}$ of points $b_{i} \in g_{i}$ such that $a_{i}<b_{i}<c_{i}$. Otherwise, G_{f} is properly situated on C. The mapping f is said to be admissible on C iff G_{f} is properly situated on C.

3. Generating cellular decompositions of E^{3} with each non-degenerate element being a simple polygonal arc

Theorem 1. Suppose that K is a compactum and that f is a finite-to-one admissible mapping of C onto K. Then there is a cellular decomposition G of E^{3} such that the decomposition space E^{3} / G contains a homeomorphic copy of K.
Proof. Let J be the join of the interval $A=[0,1]$ (containing C) with another copy $B=[0,1]$. Suppose that $g \in G_{f}$ lies in A. Let g^{\prime} denote the copy of g in B. Write $g=\left\{p_{1}, p_{2}, \cdots, p_{n}\right\}$ where $p_{i}<p_{i+1}$ for $i=$ $1,2, \cdots, n-1$. Similarly, write $g^{\prime}=\left\{p_{1}^{\prime}, p_{2}^{\prime}, \cdots, p_{n}^{\prime}\right\}$ where $p_{i}^{\prime}<p_{i+1}^{\prime}$. Now, in the join J construct a simple polygonal arc as follows. Connect p_{i} to p_{i}^{\prime} with a straight line interval with end points p_{i} and p_{i}^{\prime}. Also, connect p_{i} to p_{i+1}^{\prime} with a straight line interval with these points as end points for $i=1,2, \cdots, n-1$. The union of these straight line intervals in a simple polygonal arc, which we denote $g g^{\prime}$.

Let G be the collection of all such $g g^{\prime}$ for $g \in G_{f}$ and all singletons x in E^{3} not on one of these arcs.

It is easy to see that G is an upper semicontinuous decomposition of E^{3}, since f is admissible on C. Consequently, the quotient mapping $p: E^{3} \rightarrow E^{3} / G$ is a closed cellular mapping with $p^{-1} p(x) \in G$ for each $x \in E^{3}$. Clearly, E^{3} / G contains a homeomorphic copy of K.

The dimension of K in the above theorem can not exceed three, since

Kozlowski and Walsh [7] have proved that cell-like mappings on 3-manifolds do not raise dimension.

It has been proved by Flores [5] that the complex K^{n} consisting of all faces of dimension less than or equal to n of a $(2 n+2)$-simplex cannot be embedded in $E^{2 n}$. Thus, the following corollary would reduce an oustanding question to one of finding an admissible finite-to-one mapping of the Cantor Space onto the 2 -skeleton K^{2} of a 6 -simplex σ^{6}.

Corollary. If there is a finite-to-one admissible mapping f of C onto the 2-skeleton K^{2} of a 6 -simplex σ^{6}, then there is a cellular upper semicontinuous decomposition G of E^{3} such that $E^{3} / G \times E^{1}$ is not homeomorphic to E^{4}.

Proof. Construct G as in Theorem 1. If $E^{3} / G \times E^{1}$ is homeomorphic to E^{4}, then K^{2} embeds in E^{4} contrary to the work of Flores. Consequently, $E^{3} / G \times E^{1}$ is not homeomorphic to E^{4}.

A result of Daverman and Preston [4] states that if G is a cell-like usc (upper semicontinuous) decomposition of E^{3} such that the image under the projection mapping $p: E^{3} \rightarrow E^{3} / G$ of the set $N_{G}=\left\{x \mid p^{-1} p(x) \neq\right.$ $x\}$ has $\operatorname{dim} \leq 1$, then $E^{3} / G \times E^{1}$ is homeomorphic to E^{4}. There are related results. However, the question of whether or not $E^{3} / G \times E^{1}$ is homeomorphic to E^{4} for each cell-like (or cellular) decomposition G of E^{3} remains unanswered.

The following theorem states that any one-dimensional compactum has a homeomorphic copy in some nice cellular decomposition of E^{3}.

Theorem 2. Suppose that K is a one-dimensional compactum. Then there is an usc decomposition G of E^{3} such that each non-degenerate element of G is a simple polygonal arc and E^{3} / G contains a homeomorphic copy of K.

Proof. There is a mapping f of C onto K such that $\left|f^{-1} f(x)\right| \leq 2$ for each $x \in C$. Note that f must be admissible. Construct G as in the proof of Theorem 1 .

Suppose that K is an n-dimensional compactum. Then there is a mapping f of C onto K such that $\left|f^{-1} f(x)\right| \leq n+1$ for each $x \in C$ and the collection $G_{f}^{n+1}=\left\{f^{-1} f(x) \mid f^{-1} f(x)\right.$ is exactly $n+1$ points $\}$ is countable. This follows easily from the covering dimension of K and the 0 -dimensionality of C. However, G_{f}^{n+1} may not be a null collection. Recall that G_{f}^{n+1} is null iff for each $\varepsilon>0$, at most a finite number of the
elements of G_{f}^{n+1} have diam $>\varepsilon$. We shall show that no such mappings f exist in some situations with G_{f}^{3} being a null collection. First, consider the following theorem.

Theorem 3. Suppose that K is a compactum and that f is a mapping of C onto K which is at most three-to-one. If G_{f}^{3} is a null collection then there is a cellular usc decomposition G of E^{3} such that E^{3} / G contains a homeomorphic copy of K.
Proof. Write $G_{f}^{3}=\left\{T_{i}\right\}$. Thus, diam $T_{i} \rightarrow 0$. For each i, let $T_{i}=$ $\left\{a_{i}, b_{i}, c_{i}\right\}$, where $a_{i}<b_{i}<c_{i}$. Let $H_{j}=\left\{f^{-1} f(x) \mid f^{-1} f(x)\right.$ is exactly j points \}. Then $H_{3}=G_{f}^{3}$.

For each i, construct a disk $D\left(T_{i}\right)$ bounded by three semi-circles with end points a_{i} and b_{i}, a_{i} and c_{i}, and b_{i} and c_{i}, all lying in the half-plane containing the x-axis making an angle of a_{i} with the $x y$-plane.

There exist pairwise disjoint intervals $I\left(a_{1}\right), I\left(b_{1}\right)$ and $I\left(c_{1}\right)$ in $[0,1]$ such that:
(1) $a_{1} \in I\left(a_{1}\right), b_{1} \in I\left(b_{1}\right)$ and $c_{1} \in I\left(c_{1}\right)$;
(2) $\left[I\left(a_{1}\right) \cup I\left(b_{1}\right) \cup I\left(c_{1}\right)\right] \cap C=A_{1}$ is an open and closed subset of C; and
(3) for $i>1, T_{i} \cap I(p) \neq \emptyset$ for at most one of $p=a_{1}, b_{1}$ or c_{1}.

Let $S_{1}=\left\{g \mid g \in H_{2} \cup H_{3}, A_{1} \supset g\right.$, and g is not contained entirely in one of $I\left(a_{1}\right), I\left(b_{1}\right)$ and $\left.I\left(c_{1}\right)\right\}$. Note that S_{1}^{*} is closed (where M^{*} denotes the union of the elements of the collection M). Also, $T_{1} \in S_{1}$ and $T_{i} \notin S_{1}$ for $i>1$.

Let h_{1} denote an order-preserving homeomorphism of $I\left(b_{1}\right) \cap C$ into $I\left(a_{1}\right)$ such that $h_{1}\left(b_{1}\right)=a_{1}$ and $h_{1}(x) \notin I\left(a_{1}\right) \cap C$ for $x \in I\left(b_{1}\right) \cap\left(C-b_{1}\right)$.

Now, if $g \in S_{1}$ and $g=\{x, y\}, x<y$, then construct a semi-circle $C(g)$ with end points x and y lying in the half-plane containing the x-axis and making either an angle of x with the $x y$-plane if $x \in I\left(a_{1}\right)$ or an angle of $h_{1}(x)$ if $x \in I\left(b_{1}\right)$.

Consider $T_{2}=\left\{a_{2}, b_{2}, c_{2}\right\}$. Construct pairwise disjoint intervals $I\left(a_{2}\right), I\left(b_{2}\right)$ and $I\left(c_{2}\right)$ in $[0,1]$ such that:
(1) $a_{2} \in I\left(a_{2}\right), b_{2} \in I\left(b_{2}\right)$ and $c_{2} \in I\left(c_{2}\right)$;
(2) $\left[I\left(a_{2}\right) \cup I\left(b_{2}\right) \cup I\left(c_{2}\right)\right] \cap C=A_{2}$ is an open and closed subset of C;
(3) $A_{2} \cap S_{1}^{*}=\emptyset$;
(4) each interval has length $<1 / 2^{2}$; and
(5) if $i>2$, then $T_{i} \cap I(p) \neq \emptyset$ for at most one of $p=a_{2}, b_{2}$ or c_{2}.

Let h_{2} denote an order-preserving homeomorphsim of $I\left(b_{2}\right) \cap C$ into $I\left(a_{2}\right)$ such that $h_{2}\left(b_{2}\right)=a_{2}, h_{2}(x) \notin I\left(a_{2}\right) \cap C$ for $x \in I\left(b_{2}\right) \cap\left(C-b_{2}\right)$,
and $h_{2}(x) \neq h_{1}(y)$ for any x and y.
Let $S_{2}=\left\{g \mid g \in H_{2} \cup H_{3}, A_{2} \supset g\right.$, and g is not contained entirely in one of $I\left(a_{2}\right), I\left(b_{2}\right)$ and $\left.I\left(c_{2}\right)\right\}$. Note that S_{2}^{*} is closed. Also, $T_{2} \in S_{2}$.

If $g \in S_{2}$ and $g=\{x, y\}, x<y$, then construct a semi-circle $C(g)$ with end points x and y lying in the half-plane containing the x-axis and making either an angle of x with the $x y$-plane if $x \in I\left(a_{2}\right)$ or an angle of $h_{2}(x)$ if $x \in I\left(b_{2}\right)$.

Continuing in this manner, we construct, for each i, pairwise disjoint intervals $I\left(a_{i+1}\right), I\left(b_{i+1}\right)$ and $I\left(c_{i+1}\right)$ in $[0,1]$ such that:
(1) $a_{i+1} \in I\left(a_{i+1}\right), b_{i+1} \in I\left(b_{i+1}\right)$ and $c_{i+1} \in I\left(c_{i+1}\right)$;
(2) $\left[I\left(a_{i+1}\right) \cup I\left(b_{i+1}\right) \cup I\left(c_{i+1}\right)\right] \cap C=A_{i+1}$ is an open and closed subset of C;
(3) $A_{i+1} \cap\left[\cup_{k=1}^{i} S_{k}^{*}\right]=\emptyset$, where $S_{k}=\left\{g \mid g \in H_{2} \cup H_{3}, A_{k} \supset g\right.$, and g is not contained entirely in one of $I\left(a_{k}\right), I\left(b_{k}\right)$ and $\left.I\left(c_{k}\right)\right\}$;
(4) each interval has length $<1 / 2^{i+1}$; and
(5) if $k>i+1$, then $T_{k} \cap I(p) \neq \emptyset$ for at most one of $p=a_{i+1}, b_{i+1}$ or c_{i+1}.

For each i, there is an order-preserving homeomorphism h_{i} of $I\left(b_{i}\right) \cap C$ into $I\left(a_{i}\right)$ such that:
(1) $h_{i}\left(b_{i}\right)=a_{i}$,
(2) $h_{i}(x) \notin I\left(a_{i}\right) \cap C$ for $x \in I\left(b_{i}\right) \cap\left(C-b_{i}\right)$, and
(3) $h_{i}(x) \neq h_{j}(y)$ for any x and y for $i \neq j$.

Note that S_{i}^{*} is closed and $T_{i} \in S_{i}$.
If $g \in S_{i}$ and $g=\{x, y\}, x<y$, then construct a semi-circle $C(g)$ with end points x and y lying in the half-plane containing the x-axis and making either an angle of x with the $x y$-plane if $x \in I\left(a_{i}\right)$ or an angle of $h_{i}(x)$ if $x \in I\left(b_{i}\right)$.

If $\{x, y\}=g \in H_{2}$ where $g \notin S_{i}$ for any i, then construct a semi-circle $C(x, y)$ in the half-plane containing the x-axis and making an angle of $-x$ with the $x y$-plane. Thus, $C(x, y)$ lies below the $x y$-plane whereas the other disks and semi-circles constructed thus far lie above the $x y$-plane.

Let H denote the collection of the various disks and semi-circles constructed in this manner. Let G denote the collection consisting of the elements of H together with the singletons in E^{3} which do not belong to an element of H. It follows that G is a cellular (point-like) usc decomposition of E^{3}. Furthermore, the decomposition space E^{3} / G contains a homeomorphic copy of K.
The proof of Theorem 3 can be easily adapted to prove the following
theorem.
Theorem 4. Suppose that f is an at most three-to-one mapping of the Cantor Space C onto a compactum K. Furthermore, $G_{f}^{3}=\left\{\left\{a_{k}, b_{k}, c_{k}\right\} \mid k=\right.$ $1,2,3, \cdots\}$ is countable, and, for each i and each $\varepsilon>0$, there exist pairwise disjoint closed intervals $I\left(a_{i}\right), I\left(b_{i}\right)$ and $I\left(c_{i}\right)$ containing a_{i}, b_{i} and c_{i}, respectively, such that:
(1) $\left[I\left(a_{i}\right) \cup I\left(b_{i}\right) \cup I\left(c_{i}\right)\right] \cap C=A_{i}$ is open and closed;
(2) $\operatorname{diam} I(p)<\varepsilon$ for $p=a_{i}, b_{i}$ and c_{i}; and
(3) if $T_{j}=\left\{a_{j}, b_{j}, c_{j}\right\}$ meets two of these intervals, then $A_{i} \supset T_{j}$. Then there is a cellular usc decomposition G of E^{3} such that E^{3} / G contains a homeomorphic copy of K.

4. The nonexistence of a three-to-one mapping of C onto a 2 -simplex

If there is a three-to-one (continuous) mapping f of C onto a 2 -simplex σ^{2} such that G_{f}^{3} is a null collection, then one can modify f so that for each y in a face (1 -simplex) of $\sigma^{2}, f^{-1}(y)$ is at most two points. It is not difficult to see that this would imply the existence of a mapping g onto the projective plane P such that g is at most three-to-one and G_{g}^{3} is a null collection. We now state the following:

Theorem 5. There is no mapping f of C (the Cantor Space) onto a 2simplex σ^{2} such that f is at most three-to-one and G_{f}^{3} is a null collection.

Proof. If the theorem is false, then construct (as indicated above) an at most three-to-one mapping g of C onto the projective plane P such that G_{g}^{3} is a null collection. By Theorem 3, there is a closed mapping Ψ of E^{3} onto a metric space (Y, d) where Y contains a homeomorphic copy Q of P.

Let $X=\Psi^{-1}(Q)$, a compactum in E^{3}, and let $\Theta=\left.\Psi\right|_{X}$. Using the integers Z for coefficients, the second cohomology group $H^{2}(Q)$ of Q is isomorphic to Z_{2} (integers mod 2). By a Vietoris-Begle theorem [8], Θ induces an isomorphism on Čech cohomology. Hence, $\check{H}(X)$ is isomorphic to Z_{2}. By Alexander duality $[8], \breve{H}(X) \simeq \breve{H}_{0}\left(E^{3}-X\right) \simeq Z_{2}$. However, this is impossible. Hence, the theorem is proved.

We are indebted to Ross Geoghegan for suggesting this proof.
For similar reasons there is no admissible mapping f of C onto the
projective plane P.
Question. For what compacta K are there admissible mappings f from the Cantor Space C onto K ?

5. Certain k-to-1 mappings, $k \geq 3$, raise dimension by at most $k-2$.

A well-known theorem of Hurewicz [6, p.91] states that if f is a closed mapping of a separable metric space (X, d) onto a metric space (Y, ρ) and $\operatorname{dim} X-\operatorname{dim} Y=k>0$, then there is a point $y \in Y$ such that $\operatorname{dim} f^{-1}(y) \geq$ k. A kind of dual of this theorem states that if $\operatorname{dim} Y-\operatorname{dim} X=k>0$, then there is at least one point $y \in Y$ such that $\left|f^{-1}(y)\right| \geq k+1$.

It is also well-known that if Y is a k-dimensional compactum, then there is a mapping f of the Cantor Space C onto Y such that for each $y \in Y,\left|f^{-1}(y)\right| \leq k+1$. The question of the dimensionality of the image Y of C under a continuous mapping f such that for each $y \in Y,\left|f^{-1}(y)\right| \leq k$ seems not to have been answered (and, maybe, not asked).
Notation. Suppose that f is a finite-to-one mapping of X onto Y. Let $N(x, f)=\left|f^{-1} f(x)\right|$ for $x \in X$. Let $N(f)=\sup \{N(x, f) \mid x \in X\}$. Let $H_{i}(f)=\left\{y \mid y \in Y\right.$ and $N(x, f) \geq i$ for $\left.x \in f^{-1}(y)\right\}$.

In a letter, John J. Walsh gave a short easy proof that if f is a continuous mapping of C onto a compactum Y such that $N(f)=3$, $H_{3}(f)=\left\{y_{1}, y_{2}, \cdots,\right\}$ is countable and $\left\{f^{-1}\left(y_{i}\right)\right\}$ is a null sequence, then $\operatorname{dim} Y \leq 1$. We were able to find a proof of a much more general result which is given below. It is an interesting result which seems to have been overlooked by dimension theorists.

Theorem 6. Suppose that each of (X, d) and (Y, ρ) is a separable metric space and that f is a continuous mapping of X onto Y such that $f^{-1} f(x)$ is finite for each $x \in X$. If $k \geq 3, H_{k}(f)=\left\{y_{1}, y_{2}, \cdots\right\}$ and $\left\{f^{-1}\left(y_{i}\right)\right\}$ is a null sequence, then $\operatorname{dim} Y \leq \operatorname{dim} X+k-2$.
Proof. The sequence $\left\{f^{-1}\left(y_{i}\right)\right\}$ is a null sequence. Thus, there are closed neighborhoods V_{i} of y_{i} such that $f^{-1}\left(V_{i}\right)=U_{1}^{i} \cup U_{2}^{i} \cup \cdots \cup U_{j_{i}}^{i}$ where each U_{t}^{i} is closed, $U_{s}^{i} \cap U_{t}^{i}=\emptyset$ if $s \neq t$, each U_{t}^{i} contains exactly one point of $f^{-1}\left(y_{i}\right)$, and, if $y \neq y_{i}$ and $f^{-1}(y)$ meets at least two of the sets U_{t}^{i}, then $\left|f^{-1}(y)\right| \leq k-1$. Note that the set $K_{i}=\left\{y \mid f^{-1}(y)\right.$ meets at least two of the sets $\left.U_{t}^{i}\right\}$ is closed. Let $L_{i}=\left\{y| | f^{-1}(y) \mid>1\right.$ and $f^{-1}(y)$ is a subset of some $\left.U_{t}^{i}\right\}$. Now, for each natural number i and each natural number n,
let $L_{i}(n)=\left\{y \mid y \in L_{i}\right.$ and $\left.\operatorname{diam} f^{-1}(y) \geq 1 / n\right\}$. Thus, $L_{i}(n)$ is closed for each i and n. The set $W_{i}(n)=\operatorname{int}\left(V_{i}-L_{i}(n)\right)$ is an open set.

Since $g=\left.f\right|_{f^{-1}\left(K_{i}\right)}$ is a closed mapping and $N(x, g) \leq k-1$, except for x such that $f(x)=y_{i}$, it follows that $\operatorname{dim} K_{i} \leq \operatorname{dim} X+k-2$. (That $k \geq 3$ is needed here.) For $y \in W_{i}(n)-y_{i},\left|f^{-1}(y)\right| \leq k-1$. Thus, $W=\cup_{i=1}^{\infty}\left(\cup_{n=1}^{\infty} W_{i}(n)\right)$ is open, and $\operatorname{dim} W \leq \operatorname{dim} X+k-2$, since $\left.f\right|_{f^{-1}(W)}$ is closed and $W \supset H_{k}(f)$. If $y \notin W$, then $\left|f^{-1}(y)\right| \leq k-1$. Thus, $\left.f\right|_{\left(X-f^{-1}(W)\right)}$ is an at most $(k-1)$-to-one closed mapping on a closed set. This implies that $\operatorname{dim}(Y-W) \leq \operatorname{dim} X+k-2$. Since W is an F_{σ}-set and $Y-W$ is closed, $\operatorname{dim} Y \leq \operatorname{dim} X+k-2$. The theorem is proved.

Remarks. There is an obvious two-to-one mapping f of the Cantor Space onto the closed interval $[0,1]$ such that $H_{2}(f)$ is a countable set $\left\{y_{1}, y_{2}, \cdots\right\}$ and $\left\{f^{-1}\left(y_{i}\right)\right\}$ is a null sequence. Thus, the assumption that $k \geq 3$ is necessary. However, there is no two-to-one mapping of the Cantor Space onto the plane one-dimensional Sierpinski curve such that $H_{2}(f)$ is countable.

It would be interesting to classify those one-dimensional images of the Cantor Space under two-to-one mappings f such that $H_{2}(f)$ is a countable set $\left\{y_{1}, y_{2}, \cdots\right\}$ and $\left\{f^{-1}\left(y_{i}\right)\right\}$ is a null sequence. More generally, we may attempt to classify those spaces Y such that there is a (continuous) finite-to-one mapping f of X onto Y such that $k \geq 3, H_{k}(f)=\left\{y_{1}, y_{2}, \cdots\right\}$ is countable and $\left\{f^{-1}\left(y_{i}\right)\right\}$ is a null sequence. In some sense, these spaces Y which have $\operatorname{dim} Y \leq \operatorname{dim} X+k-2=m$ are "thinner" than some spaces of dimension m.

References

[1] Armentrout, Steve, On embedding decomposition spaces of E^{n} in E^{n+1}, Fundamenta Mathematicae, 61(1967), pp.1-21.
[2] Bowers, Philip L., Embedding E^{n} / G in Euclidean space, Topology and Its Applications, 17(1984), pp.173-187.
[3] Daverman, R.J., Products of cell-like decompositions, Topology and Its Applications, 11(1980), pp.121-139.
[4] Daverman, R.J. and Preston, D.K., Cell-like one-dimensional decompositions of S^{3} are 4-manifold factors, Houston Journal of Mathematics, 6(1980), pp.491-502.
[5] Flores, G., Uber n-dimensionale komplexe die im $E^{2 n+1}$ absolute selbstver schlungen sind, Ergebnisse Mathematicum Colloquium, 6(1934), pp.4-7.
[6] Hurewicz, W. and Wallman, H., Dimension Theory, Princeton University Press (1948).
[7] Kozlowski, G. and Walsh, J. J., The finite dimensionality of cell-like images of 3-manifolds, Topology, 22(1983), pp.147-151.
[8] Spanier, E. H., Algebraic Topology, McGraw-Hill (1966).

Department of Mathematical Sciences, State University of New York, Binghamton, New York, U.S.A.

Department of Mathematics and Computer Science, Indiana State University, Terre Haute, Indiana, U.S.A.

[^0]: Received January 4, 1992.

