ON A STRUCTURE SATISFYING AN ALGEBRAIC EQUATION $\overline{\bar{X}}=a^{2} X+\sum_{p=1}^{r} A_{p}(X) T^{p}$

Lovejoy S. Das

Differentiable manifolds with almost contact structures were investigated by W. M. Boothby - H. C. Wang [1], D. E. Blair [2], S. I. Goldberg - K. Yano [4], and among others. S. Sasaki [3] defined the notion of (ϕ, ξ, η, g)-structure on a differentiable manifold and showed that the structure is closely related to the almost contact structure. The purpose of this paper is to study a manifold with differentiable structure defined by an algebraic equation $\overline{\bar{X}}=a^{2} X+\sum_{p=1}^{\tau} A_{p}(X) T^{p}$ and obtain its integrability conditions. In particular this manifold reduces to an almost r-contact hyperbolic manifold.

The results of this paper have been announced by the author in Abstracts, American Mathematical Society [8].

1. Introduction

Let us consider an n-dimensional ($n=m+r$) real differentiable manifold M^{n} of class C^{∞}. Let there exist a C^{∞} function $F, r\left(C^{\infty}\right)$ contravariant vector fields $T^{1}, T^{2}, \cdots, T^{r}$ and $r\left(C^{\infty}\right) 1$-forms $A_{1}, A_{2}, \cdots, A_{r}$ satisfying the following conditions:

$$
\begin{equation*}
\overline{\bar{X}}=a^{2} X+\sum_{p=1}^{\tau} A_{p}(X) T^{p}, \tag{1.1}
\end{equation*}
$$

where a is any nonzero complex number. Let

$$
\begin{equation*}
\bar{X}=F(X) \tag{1.2}
\end{equation*}
$$

Received May 7, 1992.

$$
\begin{equation*}
\bar{T}^{p}=0, \text { for } p=1,2, \cdots, r \tag{1.3}
\end{equation*}
$$

$$
\begin{equation*}
A_{p} \bar{X}=0, \text { for an arbitrary vector field } X \tag{1.4}
\end{equation*}
$$

$$
\begin{equation*}
A_{p} T^{p}=-a^{2} \tag{1.5}
\end{equation*}
$$

Let M^{n} be endowed with the Riemannian metric tensor g such that

$$
\begin{gather*}
A_{q} X \stackrel{\text { def }}{=} g\left(T^{q}, X\right), \text { for } q=1,2, \cdots, r \tag{1.6}\\
g(\bar{X}, \bar{Y})=-a^{2} g(X, Y)-\sum_{p=1}^{r} A_{p}(X) A_{p}(Y),
\end{gather*}
$$

where g is a nonsingular metric tensor.
We suppose that F gives to M^{n} a differentiable structure defined by an algebraic equation (1.1). It is well known that a manifold is an almost r-contact metric manifold if it is of dimension $2 n+r$ and $a= \pm i$.

Let us define

$$
\begin{equation*}
{ }^{\prime} F(X, Y) \stackrel{\text { def }}{=} g(X, \bar{Y}) \tag{1.8}
\end{equation*}
$$

Barring X in (1.8) we obtain

$$
\begin{equation*}
{ }^{\prime} F(X, Y)=g(\overline{\bar{X}}, \bar{Y}) \tag{1.9}
\end{equation*}
$$

which in view of (1.1) and (1.6), yields

$$
\begin{equation*}
{ }^{\prime} F(\bar{X}, Y)=a^{2} g(X, Y)+\sum_{p=1}^{r} A_{p}(X) A_{p}(Y) \tag{1.10}
\end{equation*}
$$

Barring Y in (1.8) we obtain

$$
\begin{equation*}
{ }^{\prime} F(X, Y)=g(\bar{X}, \bar{Y}), \tag{1.11}
\end{equation*}
$$

which with the help of (1.7) yields

$$
\begin{equation*}
' F(X, \bar{Y})=-\left\{a^{2} g(X, Y)+\sum_{p=1}^{r} A_{p}(X) A_{p}(Y)\right\} \tag{1.12}
\end{equation*}
$$

Thus from (1.10) and (1.12) we get

$$
\begin{equation*}
F(X, \bar{Y})=-^{\prime} F(\bar{X}, Y) \tag{1.13}
\end{equation*}
$$

Replacing X by T^{q} in (1.8) and making use of (1.3), we get

$$
\begin{equation*}
{ }^{\prime} F\left(T^{q}, Y\right)=0 . \tag{1.14}
\end{equation*}
$$

Barring X in (1.13) and making use of (1.1) and (1.14) we get

$$
\begin{equation*}
{ }^{\prime} F(\bar{X}, \bar{Y})=-a^{2 \prime} F(X, Y) . \tag{1.15}
\end{equation*}
$$

Also barring Y in (1.7) and with the help of (1.3) and (1.4) we get

$$
\begin{equation*}
g(\bar{X}, Y)=-g(X, \bar{Y}) \tag{1.16}
\end{equation*}
$$

Thus from (1.8) and (1.16) we have

$$
\begin{equation*}
{ }^{\prime} F(X, Y)=-{ }^{\prime} F(Y, X) . \tag{1.17}
\end{equation*}
$$

Hence ' $F(X, Y)$ is skew symmetric.

2. COMPLETE INTEGRABILITY CONDITIONS OF DIFFERENTIAL MANIFOLD M^{n}

The Nijenhuis tensor for the $(1,1)$ tensor field F can be written as

$$
\begin{equation*}
N(X, Y)=[\bar{X}, \bar{Y}]+\overline{\overline{[X, Y]}}-\overline{[X, \bar{Y}]}-\overline{[\bar{X}, Y]} . \tag{2.1}
\end{equation*}
$$

Thus in view of (1.1), we have

$$
\begin{align*}
N(X, Y)= & {[\bar{X}, \bar{Y}]+a^{2}[X, Y]+\sum_{p=1}^{r} A_{p}([X, Y]) T^{p} } \tag{2.2}\\
& -\overline{[X, \bar{Y}]}-\overline{[\bar{X}, Y]}
\end{align*}
$$

Definition 2.1. The differentiable manifold M^{n} is completely integrable, if the Nijenhuis tensor vanishes.

Theorem 2.1. In order that a differentiable manifold be completely integrable, it is necessary that

$$
\begin{equation*}
\sum_{p=1}^{r} A_{p}([\bar{X}, \bar{Y}]) T^{p}=0 . \tag{2.3}
\end{equation*}
$$

Proof. Barring X in (2.2) and using (1.1) we get

$$
\begin{align*}
N(\bar{X}, Y)= & a^{2}[X, \bar{Y}]+\sum_{p=1}^{r} A_{p}(X)\left[T^{p}, \bar{Y}\right]+a^{2}[\bar{X}, Y] \tag{2.4}\\
& +\sum_{p=1}^{r} A_{p}([\bar{X}, Y]) T^{p}-\overline{[\bar{X}, \bar{Y}]}-a^{2} \overline{[X, Y]} \\
& -\sum_{p=1}^{r} A_{p}(X) \overline{\left[T^{p}, Y\right]}
\end{align*}
$$

Now barring the whole equation (2.4) and making use of (1.1), we obtain

$$
\begin{align*}
\overline{N(\bar{X}, Y)}= & a^{2} \overline{[X, \bar{Y}]}+\sum_{p=1}^{r} A_{p}(X) \overline{\left[T^{p}, \bar{Y}\right]}+a^{2} \overline{\bar{X}, Y]} \tag{2.5}\\
& -a^{2}[\bar{X}, \bar{Y}]-\sum_{p=1}^{r} A_{p}([\bar{X}, \bar{Y}]) T^{p}-a^{4}[X, Y] \\
& -a^{2} \sum_{p=1}^{r} A_{p}([X, Y]) T^{p}-a^{2} \sum_{p=1}^{r} A_{p}(X)\left[T^{p}, Y\right] \\
& -\sum_{p, q=1}^{r} A_{p}(X) A_{q}\left(\left[T^{p}, Y\right]\right) T^{q}
\end{align*}
$$

In consequence of equations (2.4) and (2.5) we have

$$
\begin{align*}
& \overline{N(\bar{X}, Y)}+a^{2} N[X, Y]=\sum_{p=1}^{r} A_{p}(X) \overline{\left[T^{p}, \bar{Y}\right]}-\sum_{p=1}^{r} A_{p}([\bar{X}, \bar{Y}]) T^{p} \tag{2.6}\\
& -a^{2} \sum_{p=1}^{r} A_{p}(X)\left[T^{p}, Y\right]-\sum_{p, q=1}^{r} A_{p}(X) A_{q}\left(\left[T^{p}, Y\right]\right) T^{q} .
\end{align*}
$$

Now in view of the equation

$$
\begin{equation*}
N\left(T^{p}, Y\right)=a^{2}\left[T^{p}, Y\right]+\sum_{p=1}^{r} A_{p}(X)\left[T^{p}, Y\right] T^{p}-\overline{\left[T^{p}, \bar{Y}\right]} . \tag{2.7}
\end{equation*}
$$

and (2.6) we obtain

$$
\begin{align*}
\overline{N(\bar{X}, Y)}+a^{2} N(X, Y)= & -\sum_{p=1}^{r} A_{p}(X)\left\{N\left(T^{p}, Y\right)\right\} \tag{2.8}\\
& -\sum_{p=1}^{r} A_{p}([X, Y]) T^{p}
\end{align*}
$$

For the complete integrabilty of the manifold M^{n}, the equation (2.8) reduces to (2.3).

Theorem 2.2. For a completely integrable manifold M^{n}, we have

$$
\begin{align*}
& \sum_{p=1}^{r} A_{p}(X)\left\{\left[T^{p}, \bar{Y}\right]-\overline{\left[T^{p}, Y\right]}\right\}+\sum_{p=1}^{r} A_{p}([\bar{X}, Y]) T^{p} \tag{2.9}\\
& =\sum_{p=1}^{r} A_{p}(Y)\left\{\left[\bar{X}, T^{p}\right]-\overline{\left[X, T^{p}\right]}\right\}+\sum_{p=1}^{r} A_{p}([X, \bar{Y}]) T^{p} .
\end{align*}
$$

Proof. Barring X and Y in (2.4) and using (1.1), we obtain respectively the following

$$
\begin{align*}
N(\bar{X}, Y)= & a^{2}[X, \bar{Y}]+\sum_{p=1}^{r} A_{p}(X)\left[T^{p}, \bar{Y}\right]+a^{2}[\bar{X}, Y] \tag{2.10}\\
& +\sum_{p=1}^{r} A_{p}([\bar{X}, Y]) T^{p}-\overline{[\bar{X}, \bar{Y}]}-a^{2} \overline{[X, Y]} \\
& -\sum_{p=1}^{r} A_{p}(X) \overline{\left[T^{p}, Y\right]} .
\end{align*}
$$

and

$$
\begin{align*}
& N(X, \bar{Y})=a^{2}[\bar{X}, Y]+\sum_{p=1}^{r} A_{p}(Y)\left(\left[\bar{X}, T^{p}\right]\right)+a^{2}[X, \bar{Y}] \tag{2.11}\\
& \quad+\sum_{p=1}^{r} A_{p}([X, \bar{Y}]) T^{p}-\overline{[X, Y]}-\sum_{p=1}^{r} A_{p}(X) \overline{\left[X, T^{p}\right]}-\overline{[X, \bar{Y}]} .
\end{align*}
$$

Thus from (2.10) and (2.11), we have

$$
\begin{aligned}
(2.12 N(\bar{X}, Y)-N(X, \bar{Y})= & \sum_{p=1}^{r} A_{p}(X)\left\{\left[T^{p}, \bar{Y}\right]-\overline{\left[T^{p}, Y\right]}\right\} \\
& +\sum_{p=1}^{r} A_{p}([\bar{X}, Y]) T^{p}-\sum_{p=1}^{r} A_{p}([X, \bar{Y}]) T^{p} \\
& \left.-\sum_{p=1}^{r} A_{p}(Y)\left\{\left[\bar{X}, T^{p}\right]-\overline{\left[X, T^{p}\right.}\right]\right\}
\end{aligned}
$$

Now putting $N(X, Y)=0$ in (2.12) we obtain (2.9).

3. NON UNIQUENESS OF THE ALGEBRAIC EQUATION

In this section we take C^{∞} manifold M^{n} admitting a C^{∞} tensor field f of the type $(1,1), r\left(C^{\infty}\right) 1$-forms ' $A_{1},{ }^{\prime} A_{2},{ }^{\prime} A_{3}, \cdots,{ }^{\prime} A_{r}$ and C^{∞} contravariant vector fields ' $T^{1},{ }^{\prime} T^{2}, \cdots,{ }^{\prime} T^{r}$ and we define the following relations:

$$
\begin{equation*}
\mu(f(X)) \stackrel{\operatorname{def}}{=} \overline{\mu(X)}-\sum_{p=1}^{r} \alpha(X) T^{p}, \tag{3.1}
\end{equation*}
$$

$$
\begin{align*}
& T^{p} \stackrel{\text { def }}{=} \mu\left(T^{p}\right), \text { for } p=1,2, \cdots, r, \tag{3.2}\\
& { }^{\prime} A_{p}(X) \stackrel{\text { def }}{=} A_{p}(\mu(X))-\alpha(f(X)) \tag{3.3}
\end{align*}
$$

where α is some scalar function and μ is a nonsingular vector valued function.

Theorem 3.1. In a differentiable manifold the algebraic equation defined by

$$
F^{2}(X)=a^{2} X+\sum_{p=1}^{r} A_{p}(X) T^{p}
$$

is not unique, if and only if (3.2) and (3.3) hold.
Proof. Putting $f(X)$ for X in (3.1) and making use of (1.1) and (3.1) we get

$$
\begin{aligned}
\mu(f(f(X)))= & \overline{\mu f(X)}-\sum_{p=1}^{r} \alpha(f(X)) T^{p} \\
= & a^{2} \mu(X)+\sum_{p=1}^{r} A_{p}(\mu(X)) T^{p}-\sum_{p=1}^{r} \alpha(X) \bar{T}^{p}, \\
& -\sum_{p=1}^{r} \alpha(f(X)) T^{p}
\end{aligned}
$$

which in view of (1.3) yields

$$
\mu(f(f(X)))=a^{2} \mu(X)+\sum_{p=1}^{r} A_{p}(\mu(X)) T^{p}-\sum_{p=1}^{r} \alpha(f(X)) T^{p} .
$$

Since μ is a nonsingular vector valued linear function, thus making use of (3.2) and (3.3) we obtain

$$
f(f(X))=a^{2} X+\sum_{p=1}^{r}\left\{A_{p}(\mu(X))-\alpha(f(X))\right\}^{\prime} T^{p}
$$

or

$$
f(f(X))=a^{2} X+\sum_{p=1}^{r} A_{p}(X)^{\prime} T^{p}
$$

Therefore, the algebraic equation defined by (1.1) is not unique.
Theorem 3.2. Let there be two algebraic equations satisfying (1.1) in M^{n} and related by (3.1) then we have

$$
\begin{equation*}
a^{2} \alpha(X)=A_{p} \mu(f(X)) \tag{3.4}
\end{equation*}
$$

$$
\begin{equation*}
\alpha\left({ }^{\prime} T^{p}\right)=0, \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha \not \neq^{\prime} A_{p} \tag{3.6}
\end{equation*}
$$

Proof. The proof of (3.4) follows in consequence of (3.3) and (1.1). Putting ' T^{p} for X in (3.4) we at once get (3.5). (3.6) follows immediately after putting ' A_{p} for α in (3.5), thus giving ' $A_{p}\left({ }^{\prime} T^{p}\right)=0$, which is not true because of (1.5) hence $\alpha \not \neq^{\prime} A_{p}$.

References

[1] W. M. Boothby and H. C. Wang, On contact manifolds, Ann. of Math., 68(1958), 721-734.
[2] D. E. Blair, The theory of quasi-Sasakian structures, Journal of Differential Geometry; 1(1967), 331-345.
[3] S. Sasaki and Y. Hatakeyama, Differentiable manifolds with certain structures which are closely related to almost contact structure II, Tohoku Math. J., Vol. 13 (1961), 281-294.
[4] S. I. Goldberg and K. Yano, Noninvariant hypersurfaces of almost contact manifolds, J. Math. Society, Japan; Vol. 22 (1970), 25-34.
[5] M. Prvanovic, Holomorphically projective transformation in a locally product space, Mathematica Balkanica, Vol. 1 (1971), 195-213.
[6] K. Yano, Differential Geometry on complex and almost complex spaces, Pergamon Press, New York (1965).
[7] A. Gray, Some examples of almost Hermitian manifolds, Illinoios J. Math, 10(1966), 353-366.
[8] L. Das, On a structure satisfying an algebraic equation $\overline{\bar{X}}=a^{2} X+\sum_{p=1}^{r} A_{p}(X) T^{p}$, Abstracts American Mathematical Society; Vol.II(1990), 513-514.
[9] L. Das, On derivations with almost r-contact metric manifold, Publications Mathematicae Debrecan, Hungary, Vol. 35 (1988).
[10] L. Das, On almost r-contact metric manifold, Comptes Rendus del' Academie Bulgare des Sciences, Vol. 32 (1979) 11-714.

Department of Mathematics, Kent State University, Tuscarawas Campus, New Philadelpiia, Oilio 44663, U.S.A.

