CHARACTERIZATIONS OF COMMUTATIVE BCI-ALGEBRAS

YOUNG-BAE JUN AND EUN-HWAN ROH

Dept. of Mathematics Education, Gyeongsang National University, Chinju 660-701, Korea.

In [4], J. Meng and X. L. Xin introduced the concept of commutative BCI-algebras and discussed the structure of such algebras. The aim of this paper is to obtain a characterization of commutative BCI-algebras.

Recall that a BCI-algebra is a non-empty set X with a binary operation * and a constant 0 satisfying the axioms

- (1) $(x*y)*(x*z) \leq z*y$,
- $(2) \quad x * (x * y) \le y,$
- $(3) \quad x \leq x,$
- (4) $x \le y$ and $y \le x$ imply x = y,
- (5) $x \leq 0$ implies x = 0,

where $x \leq y$ is defined by x * y = 0. Further if $x \geq 0$ for all x, then X is a BCK-algebra. Any BCK-algebra is a BCI-algebra [2]. A BCK-algebra is commutative if it satisfies the identity x * (x * y) = y * (y * x). In this case $y * (y * x) = x \wedge y$, the greatest lower bound of x and y.

In a BCI-algebra the following properties hold:

- (6) (x * y) * z = (x * z) * y.
- (7) x*(x*(x*y)) = x*y.

DEFINITION 1 ([4]). A BCI-algebra X is said to be commutative if whenever $x \leq y$ then x = y * (y * x) for all $x, y \in X$.

DEFINITION 2 ([1]). Let X be a BCI-algebra and let $x \in X$. Then the set

$$A(x) = \{y \in X | y \le x\}$$

is called the initial section of x.

DEFINITION 3 ([3]). An element a of a BCI-algebra X is called an atom if z*a=0 implies z=a for all $z\in X$. The set of all atoms of X is denoted by L(X). For any atom a of X, the set $V(a)=\{x\in X|a\leq x\}$ is called a branch of X.

Obviously $0 \in L(X)$ and $V(0) = X_+$, the p-radical of X.

Received April 6, 1993.

LEMMA 1 ([2]). A BCI-algebra in which x * (x * y) = y * (y * x) holds for any x, y is a BCK-algebra.

LEMMA 2 ([4]). Let X be a commutative BCI-algebra. Then for any atom a and all x and y of V(a), we have x * (x * y) = y * (y * x).

THEOREM 1. Let X be a BCI-algebra satisfying $A(x) \cap A(y) = A(x \wedge y)$ for all $x, y \in V(a)$, $a \in L(X)$. Then X is a commutative BCK-algebra.

Proof. Note that $A(x \wedge y) = A(y \wedge x)$ for every $x, y \in V(a), a \in L(X)$. Since A(x) = A(y) if and only if x = y, it follows that $x \wedge y = y \wedge x$, i.e., x * (x * y) = y * (y * x). Hence by Lemma 1, X is a commutative BCK-algebra.

THEOREM 2. If a BCI-algebra X is commutative then for all $x, y \in V(a), a \in L(X)$, we have $A(x) \cap A(y) = A(x \wedge y)$.

Proof. Let $r \in A(x) \cap A(y)$; then $r \leq x$ and $r \leq y$. Since X is commutative, $r \leq y$ implies r = y * (y * r). Hence

$$r * (x \wedge y) = r * (y * (y * x))$$

$$= (y * (y * r)) * (y * (y * x))$$

$$\leq (y * x) * (y * r)$$

$$\leq r * x$$

$$= 0.$$

It follows that $r*(x \wedge y) = 0$, i.e., $r \leq x \wedge y$. Thus $r \in A(x \wedge y)$, showing that $A(x) \cap A(y) \subseteq A(x \wedge y)$. To prove the reverse inclusion, let $r \in A(x \wedge y)$. Then $r \leq x \wedge y$. Since $x \wedge y = y*(y*x) = x*(x*y)$ by Lemma 2, it follows from (2) that $x \wedge y \leq x$ and $x \wedge y \leq y$. As the relation \leq is transitive, we have $r \leq x$ and $r \leq y$, and so $r \in A(x)$ and $r \in A(y)$. This means that $r \in A(x) \cap A(y)$, so that $A(x \wedge y) \subseteq A(x) \cap A(y)$.

Since any commutative BCK-algebra is a commutative BCI-algebra [4], we have a characterization of commutative BCI-algebras.

COROLLARY 1. A BCI-algebra X is commutative if and only if

$$A(x)\cap A(y)=A(x\wedge y)$$

for all $x, y \in V(a), a \in L(X)$.

REMARK. In a non-commutative BCI-algebra X, the following result is not, in general, true:

(8) $x \le z$ and $z * y \le z * x$ imply $x \le y$ for any $x, y, z \in X$, as shown in the following example.

EXAMPLE. Let $X = \{0, a, b, c, d, e, f, g\}$ and * is defined by

*	0	a	b	c	d	e	f	g
	0							
\mathbf{a}	a	0	0	0	e	\mathbf{d}	d	d
b	b	b	0	0	f	f	\mathbf{d}	\mathbf{d}
c	c d	b	\mathbf{a}	0	g	f	\mathbf{e}	d
d	d	d	\mathbf{d}	d	0	0	0	0
e	e	\mathbf{d}	\mathbf{d}	d	a	0	0	0
f	f	f	\mathbf{d}	\mathbf{d}	b	b	0	0
g	g	f	e	d	c	\mathbf{b}	\mathbf{a}	0

Then X is a non-commutative BCI-algebra which does not satisfy (8), because $e \le f$ but $e \ne f*(f*e)$, and $e \le f$ and $f*d \le f*e$ but $e*d \ne 0$.

We now give a characterization of commutative BCI-algebras.

THEOREM 3. A BCI-algebra X is commutative if and only if it satisfies (8) $x \le z$ and $z * y \le z * x$ imply $x \le y$ for all $x, y, z \in X$.

Proof. Let X be a commutative BCI-algebra such that $x \leq z$ and $z * y \leq z * x$ for all $x, y, z \in X$. Then we have x = z * (z * x). Hence x * y = (z * (z * x)) * y = (z * y) * (z * x) = 0, which implies that $x \leq y$.

Conversely assume that $x \leq z$ and $z * y \leq z * x$ imply $x \leq y$ for all $x, y, z \in X$. Let $u \leq v$ for all $u, v \in X$. It is sufficient to show that $v*(v*(v*u)) \leq v*u$. But this is obvious by (7). Hence X is a commutative BCI-algebra.

L. H. Shi [5] characterized BCI-algebras as follows.

LEMMA 3. Let X be an abstract algebra of type (2, 0) with a binary operation * and a constant 0. X is a BCI-algebra if and only if it satisfies the following conditions:

- $(1) \quad (x*y)*(x*z) \leq z*y,$
- (4) $x \le y$ and $y \le x$ imply x = y,

(9)
$$x * 0 = x$$
.

By Lemma 3 and Theorem 3, a commutative BCI-algebra is characterized as follows:

THEOREM 4. An algebra X of type (2, 0) is a commutative BCI-algebra if and only if it satisfies:

- (1) $(x*y)*(x*z) \leq z*y$,
- (4) $x \le y$ and $y \le x$ imply x = y,
- (9) x * 0 = x,
- (8) $x \le z$ and $z * y \le z * x$ imply $x \le y$.

References

- 1. M. A. Chaudhry, Branchwise commutative BCI-algebras, Math. Japon. 37 (1992), 163-170.
- K. Iséki, On BCI-algebras, Math. Seminar Notes(presently Kobe J. Math.) 8 (1980), 125-130.
- 3. J. Meng and X. L. Xin, Characterization of atoms in BCI-algebras, Math. Japon. 37 (1992), 359-362.
- 4. J. Meng and X. L. Xin, Commutative BCI-algebras, Math. Japon. 37 (1992), 569-572.
- 5. L. H. Shi, An axiom system of BCI-algebras, Math. Japon. 30 (1985), 351-352.