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AN EXAMPLE OF SUBREGULAR GERMS
FOR 4 x4 SYMPLECTIC GROUPS*

YANG-KOHN KIM

Dept. of Mathematics, Chonbuk National University, Chonbuk 560-765, Korea.

We found Shalika’s unipotent regular germs in the case of G=Spy(F)
for p-adic fields F. Next, subregular germs were also found in part for a
particular elliptic torus.

The rest of these have to be found explicitly, although they are not so
easily obtainable as before.

0. Introduction

Assume that G is the set of F-points of a connected semi-simple alge-
braic group defined over a p-adic field F' with its ring of integers A whose
maximal ideal is P with residual characteristic greater than 2, that T is a
Cartan subgroup of G, and that T denote the set of regular elements in
T. Letting dg be a G-invariant measure on the quotient space T\G and
C°(G) be the set of smooth functions, we know that for any f € C°(G)
and t € T' the orbital integral fT\G f(g~1tg)dg is convergent. Now, let Su
be the set of unipotent conjugacy classes in G and dry be a G-invariant
measure on 0 € Su. It is also known that Ag(f) = [ fdzo is convergent
for any f € C>(G).

Shalika’s theorem (see [15], p. 236) says that for any ¢t € T' sufficiently
colse to the identity there exist germs Iy(t) satisfying

/. AT = T ToAo(f)
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Recently Repka J. has found regular and subregular germs for p-adic
GL,(F) and SL,(F). [5] and [6] say about the regular germs for p-adic
Sp4(F). [7] says about a part of subregular germs in p-adic Spy(F).

Now this paper intends to find the rest of these subregular germs. Most
conventions shall be those used in [7].

1. Unipotent Orbits in Sp,(F).

G = Sps(F) acts on itself by conjugation, thus in particular on the
set of all unipotent elements in G. Refering to [5] §3, we may obtain the
following.

PROPOSITION 1.0. Any unipotent orbit meet the set of all elements of
the form

1l =z «a B
(1.1) 8 : B P with o, B, and z € F.
0 0 — 1

If z # 0in (1.1), we see that the associated unipotent orbits meet
the set of non-regular unipotent matrices or the set of regular unipotent
matrices which as a G-set has representatives of the form

11 0 a
(1.2) P a with a € F* J(F*)%.
0 0 -1 1

If z = 0, it is not a regular unipotent element. Hence (1.2) represents the
orbits of the G-set consisting of all the regular unipotent elements of G.
According to (7], the subregular unipotent matrices are represented by the
form

i@, y) = with @, 5 € F*/(F*)* and |&| > |7| > 1,

OO O -
o0 = O
o = o R
O 2D

some of which are conjugate. The number of subregular conjugacy calsses
ranges from 6 to 8.
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_ Now let S(a@,9) = {g € K : g = 4(@,7) mod P}. Any element of
S(a, ) is conjugate to the form

14211 212 a 0
Lz 14200 0 #
a s
(1.3) 1z, las 10 for some z;; € P.
>212 sz22 0 1

For later purpose, we let S3(&,7) be the set of all such last matrices of
the form (1.3), and P be the composite map of conjugations which make
any element of S(@&,¥) reach to the form (1.3).

2. Determining Integrands for subregular germs.

According to [7] Proposition (3.0), we see that for representative pairs
T = (&%) with —£ ¢ (F*)? the unipotent orbit of @(z) intersect 3(§)
if and only if T = §. Now assume 6 to be a nonsquare in F* and put
E® =F(V9). Let E® ={a+bv/0:a,be F and a® — 96 =1}.

Assuming that T is the set of all matrices of the form

a 0 b 0
0 a 0 B
b, 0 a 0
0 ﬂaz 0 «

with 8; € FX\(F*)? and a? — b%6; = a? — 326, = 1, we see easily that
T as an elliptic torus is isomorphic to Ef tx Ef ?* both algebraically and
topologically. According to the Shalika’s theorem as we have mentioned
before, we have a kind of expansion

N .
(2.0) / s =310 / g T

=1

where {u; } is a finite set of representatives of the unipotent orbits, f €
C(G), and t is any regular element ¢t € T sufficiently close to the id.
Here the functions I'; called Shalika’s germs do not depend on f, but
depend on a maximal torus 7. We want to calculate the functions I'y(z)
corresponding to the element @(Z) of [1] by putting f = xg(;), which is the
characteristic fuction of S(Z) defined in §2. According to [7] proposition
(3.0), the integrals on the right hand side of (2.0) all vanish in the case of
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f = X5(z) with £ = (&,%) and —-—i‘,} ¢ (F")2 except for that corresponding
to u(Z).

This makes us compute some subregular germs easily, which was done in
[7]. But it is not so easy as expected to do for the pairs with —2 € (F x )2
since at least two terms on the right hand side appear.

3. Computation of Jacobians.

Suppose that t is a regular element of T sufficiently close to identity and
t = z +id. In case that s € S3(a,¥) is any element with z;; # 0 and with
(a—a)? — 122, squares, there exists g € G satisfying t9 = s € §(z) for & =
(&) if and only if 522~ € NE"((E®*)*) and i € NE"((B*)™),

where

P:2—2a+zzg=a—~ai\/(a-a)2——g—zf2 and

Q=2-2a+ 2 =a—-ai:\/(a——a)2~— %2122‘
We constructed a composite mapping in [7] :

(T\G D) G(¢t) R S(z) B, Ss(a,7) x P7 2, pxp

which was bijective except at 23, = 0 and at z;; in the form (1.3) which
does not make (a — a)? — 122, squares. The modulus of this composite

map’s Jacobian was just |D(t)|3.

4. Computation of Orbital Integrals.
Now taking measures and notations as in [7] §5, we had

PROPOSITION 4.0.
(i) If 2% € NE" ((E®)) and 2£% € NE" ((E®)*), then

/T L Xste () = (XYY UK 0Y) x g7 XD

(i) If 2% € NE" (E*)*) and 22& ¢ NE"((E*)*), then

a—~a

/T XSt = A(X NPV N g™ x Do
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(iii) If 285 ¢ NE"* ((E%)%) and 2Pa ¢ NE"*((E®)*), then
/T 5 X9 (t9)dd = (X NY)U X NY')) x 47 x Do)+,
(iv) If 2% ¢ NE" ((E®)*) and 28& ¢ NE" ((E®)), then

/T XSG = m(X NF)U X N 7) x g7 x Do),

Now we have to look for the orbital integral over the conjugacy class of
u(@,¥). Also referring to [7] §5, we know that

/ X3(a,5) (8@, 7))dg = ¢~ 7.
Z(a(a,9)\G

Moreover, we got from this

THEOREM 4.1. In the case of -£ ¢ (F*)?, the Shalika’s unipotent

subregular germs are obtained case by case as follows :

(i) If & € NE" ((E*)*) and 28& € NE" ((E*)%), then
Taga,z = m(XNY)U(X'NY")) x [D(t)| "+,

(ii) If 2& ¢ NE" (E®)*) and 2£& ¢ NE"*((E®)*), then
Taa,y) =m(X NY)U (X' NY") x |D(t)|¢.

(iii) If 2% ¢ NE" ((E®)*) and 28& ¢ NE"*((E%)), then
Taga,n = m(XNY)U (X' NY") x |D(t)|~ 3.

(iv) If 2% ¢ NF" ((E®)*) and 22 ¢ NE"((E®)*), then

a-—o

Taam = m((X N¥)U (X' NT")) x |D(2)|~4.
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5. Subregular germs.

Let ——% ¢ (F*)” and put W(a,a) = {21, € P: \/—2z11 € F}. Then
it is not difficult to know that

[ Xstata (el = m(W(@,a) x 47",
Z(ug)\G
where u; are representatives of the form (1.2). By the way

/ f(g™"tg)dd = Tagany / o~ (@, 7)9)dg
™G Z(a(a,9)\G

+ > T Fla™ (uag)dg

ﬁepx/(Fx)Z Z(ua\G
= ¢ Taam + Y m(W(a,a)) x [D(t)|"* x ¢,

where f = x3¢a(a,3))- S0, if we consider proposition (4.0), we have imme-
diately

THEOREM 5.0. In the case of —% € (F*)°, the Shalika’s unipotent
subregular germs associated with a particular elliptic torus as in [2] hereof
are obtained case by case as follows :

(i) If 222 ¢ NE" ((E®)¥) and 222 € NE'*((E®)*), then

Tagas = {M(X NYYU(X'NY") = > m(W(a,a)} x [D(t)| 2.

(i) If 22& € NE" ((E®)*) and 222 ¢ NF" ((E®)%), then

Tagay = (X NT)U (X NT) =7 m(W(a,a)}) x D)4,

(i) B 228 ¢ NE' ((E%)*) and 222 ¢ NE"((E®)X), then

Tagap = 1((XNY)UE NY') = Y m(W(a a)} x |D@) 1.

(iv) If 22 ¢ NE" ((E®)*) and 222 ¢ NE" ((E)), then
Paa,y = {M(XNY)U(X'NY") =) m(W(a,a)} x |D(t)|"*.

a
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REMARK.
(A) Note that the form (1.3) is never conjugate @(a',7') unless z;2 = 0
in the case of \/—% € F*.

(B) It might not be conjectured easily that the subregular germs as-
sociated with any maximal torus in Spy(F) should be the same as those
in Theorem (5.0), although all Cartan subgroups are conjugate by some
elements in Sps(F).
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