A MONOTONICITY INEQUALITY FOR UNIT VECTOR FIELDS

GIE-HYUN PARK

Dept. of Mathematics, Cheju National University, Cheju 690-756, Korea.

0. Introduction

In this paper we prove a monotonicity inequality and apply it to study regularity for energy minimizing unit vector fields on a Riemannian manifold. This study is motivated by the liquid crystal theory, where liquid crystals can be regarded as a vector field with fixed length.

If the tangent bundle is trivial like orientable compact 3-folds, unit vector fields may be regarded as a map to the sphere. This shows a strong relationship between the study of energy minimizing unit vector fields and that of energy minimizing maps into the sphere. Schoen and Uhlenbeck developed a regularity theory for minimizing harmonic maps into Riemannian manifolds, where they used the monotonicity inequality as a starting point [5]. Thus proving the monotonicity inequality leads finally to a regularity theory via Morrey's Lemma with some efforts.

Let M be an n-dimensional Riemannian manifold with metric g. We may assume that M is isometrically embedded in Euclidean space \mathbb{R}^k . We define our function space as

$$H_1^2(M,1) = \{ u \in H_1^2(M,\mathbb{R}^k) : |u(x)| = 1 \text{ a.e. } x \in M \},$$

where $H_1^2(M, \mathbb{R}^k)$ is the Sobolev space of functions f with $|\nabla f|$ in L^2 . Let $u \in H_1^2(M, 1)$ be a unit vector field on M. The energy $W_U(u, g)$ of u on $U \subset M$ is defined as

$$W_U(u,g) = \frac{1}{2} \int_U |\nabla u|^2,$$

where the connection is induced from g.

Received October 13, 1992.

This paper was supported by NON DIRECTED RESEARCH FUND, Korea Research Foundation, 1991.

A unit vector field u is called energy minimizing on $U \subset M$ if for any unit vector v with $u|_{\partial U} = v|_{\partial U}$ the energy $W_U(u,g)$ is smaller than or equal to $W_U(v,g)$. A unit vector field u is called an energy minimizer on the manifold M if u is energy minimizing on any precompact subset $U \subset M$.

1. The Euler-Lagrange equation and monotonicity inequality

We compute the first variation of W, for which we take $u_t(x) = (u(x) + t\phi(x))/|u(x) + t\phi(x)|$ as a one-parameter variation through u, where $\phi \in H_1^2(M, \mathbb{R}^k)$ is compactly supported, and obtain:

LEMMA 1. If u is energy minimizing on M and |u| = 1 a.e., the u satisfies the following equation in weak sense;

$$(1) \Delta u + |\nabla u|^2 u = 0$$

For a point $p \in M$, let $B_M(p,\rho) \in M$ be a ball of radius ρ centered at p and let $Exp_p: T_pM \to M$ be the exponential map. We can take uniformly ρ which is so small that Exp_p is a diffeomorphism from $B_{T_pM}(0,\rho)$ to $B_M(p,\rho)$. Denote the set $B_{T_pM}(0,\rho)$ by $B(0,\rho) = B_{\rho}$ and pull back the metric from M using Exp_p . On B_{ρ} this metric is of the form $ds^2 = dr^2 + dA(r)^2$ where $dA(r)^2$ is the metric restricted to the sphere of radius r. We may assume that u is defined on B_{ρ} . We consider the blow-up sequence of vector fields u_{ρ} on B_1 with norm 1 with respect to the pullback metric. More precisely for $\phi_{\rho}(\cdot) = Exp_p(\rho \cdot): B_1 \to B_M(p,\rho) \in M$ let $u_{\rho} = d\phi_{\rho}^{-1}(u)$, which is an energy minimizer with respect to the pullback metric if u is one on M.

We denote the energy of a unit vector field u on a set U with respect to the Euclidean metric as $E_U(u)$.

On B_1 the pull-back metric $ds^2=(g_{\alpha\beta})$ satisfies $g_{\alpha\beta}=\delta_{\alpha\beta}$ and for some $\Lambda>0$

(2)
$$\sum_{\alpha,\beta,\tau} \left| \frac{\partial}{\partial x^{\tau}} g_{\alpha\beta} \right| \leq \Lambda.$$

We denote \mathcal{G}_{Λ} the set of all Riemannian metrics on B_1 satisfying (2) and of the form $ds^2 = dr^2 + dA(r)^2$.

We use this inequality to estimate $W_{B_a}(v)$ by $E_{B_a}(v)$ and vice versa.

Let W_{ρ} and E_{ρ} denote $W_{B_{\rho}}$ and $E_{B_{\rho}}$. We have

$$\begin{split} |E_{\rho}(u) - W_{\rho}(u)| \leq & c\Lambda(\rho E_{\rho}(u) + \rho^{n/2} E_{\rho}(u)^{1/2} + \Lambda \rho^{n}) \\ \leq & \frac{3}{2} c\Lambda(\rho E_{\rho}(u) + \rho^{n-1}) \end{split}$$

provided $\Lambda \rho \leq 1$. Consequently for $\rho \in (0,1]$ we have

(3)
$$(1-c\Lambda\rho)E_{\rho}(u)-c\Lambda\rho^{n-1} \leq W_{\rho}(u) \leq (1+c\Lambda\rho)E_{\rho}(u)+c\Lambda\rho^{n-1}$$
 provided $c\Lambda \leq \frac{1}{2}$. This shows that the topology of $H_1^2(B_{\rho}, N)$ is well defined regardless of the metric on B_{ρ} provided Λ is sufficiently small.

We now prove:

PROPOSITION 2. (Monotonicity inequality) If u is energy minimizing, then we have

$$\sigma^{2-n}W_{\sigma}(u) \le \rho^{2-n}W_{\rho}(u).$$

for $\sigma \leq \rho \leq 1$.

Proof. For almost all $\sigma \in (0,1]$ we have $\int_{|x|=\sigma} |\nabla u|^2 d\xi < \infty$ where ξ is a variable on the sphere. Introduce the comparison map

$$v_{\sigma}(x) = \begin{cases} u(x), & |x| \geq \sigma \\ \text{parallel translate of } u(\frac{\sigma x}{|x|}) \text{ through raidal direction, } |x| \leq \sigma. \end{cases}$$

Since the result is trivial for n=2, we assume n>2. Denote by $|\nabla_{\xi}u|^2$ the tangential energy along the spheres |x|=r, so that $|\nabla u|^2=|\nabla_{\xi}u|^2+|\partial u/\partial r|^2$ holds since $g\in\mathcal{G}_{\Lambda}$. We compute

$$\begin{aligned} &W_{\sigma}(u) \\ &\leq W_{\sigma}(v_{\sigma}) \\ &= (n-2)^{-1} \sigma \int_{|x|=\sigma} |\nabla_{\xi} u|^{2} d\xi \\ &= (n-2)^{-1} \sigma \left(\frac{d}{d\sigma} W_{\sigma}(u) - \int_{|x|=\sigma} |\frac{\partial u}{\partial r}|^{2} d\xi \right). \end{aligned}$$

This implies

(4)
$$0 \le \sigma^{2-n} \int_{|x|=\sigma} \left| \frac{\partial u}{\partial r} \right|^2 d\xi \le \frac{d}{d\sigma} \left[\sigma^{2-n} W_{\sigma}(u) \right]$$

Since $W_{\sigma}(u)$ is a nondecreasing function, we can integrate this inequality from σ to ρ .

$$\sigma^{2-n}W_{\sigma}(u) \leq \rho^{2-n}W_{\rho}(u)$$

2. Partial regularity

Using this monotonicity inequality we can prove that a blow-up of an energy minimizer converges. Let $\rho_{\lambda}(x) = \lambda x : B_1 \to B_{\lambda}$. We set $u_{\lambda} = u \circ \rho_{\lambda}$ for $\lambda \in (0,1]$. Then if u is $W(\cdot,g)$ -minimizing, so is u_{λ} for the metric g_{λ} induced by the map ρ_{λ} , and

$$W_1(u_{\lambda}, g_{\lambda}) = \lambda^{2-n} W_{\lambda}(u, g).$$

This and the monotonicity inequality show that $W_1(u_{\lambda}, g_{\lambda})$ is uniformly bounded for $\lambda \leq 1$, so is $E_1(u)$ by (2) and therefore there is a convergent subsequence with limit $u_0 \in H_1^2(B_1, \mathbb{R}^n)$. Furthermore we have:

LEMMA 3. We can find a sequence $\lambda(k) \in (0,1]$ converging to 0, such that $u_{\lambda}(k)$ converges weakly in $H_1^2(B_1,1)$ to a map $u_0 \in H_1^2(B_1,S^{n-1})$ with $\partial u_0/\partial r = 0$ a.e. in B_1 . Furthermore u_0 is energy minimizing as a map from B_1 to sphere in the Euclidean metric.

Proof. We integrate (4) from 0 to λ with respect to the radial direction to get

$$\left| \int_{B_{\lambda}} r^{2-n} \left| \frac{\partial u}{\partial r} \right| \le \lambda^{2-n} W_{\lambda}(u) - \lim_{\sigma \to 0} \sigma^{2-n} W_{\sigma}(u) \right|$$

Thus by a change of variables we have

$$\lim_{\lambda \to 0} \int_{B_1} r^{2-n} \left| \frac{\partial u_{\lambda}}{\partial r} \right| = \lim_{\lambda \to 0} \int_{B_{\lambda}} r^{2-n} \left| \frac{\partial u}{\partial r} \right| = 0.$$

This shows that $\partial u_0/\partial r = 0$ a.e.

The last statement follows from Proposition 5.1 in [3] and the fact that the metric induced by the map ρ_{λ} converges to the Euclidean one as λ goes to 0.

Here we state the regularity theorem due to Schoen and Uhlenbeck. Let $u: B_1^n \to N$ be an energy minimizing map into a Riemannian manifolds with its image in a compact set $N_0 \subset N$ with respect to a metric $g \in \mathcal{G}_{\Lambda}$.

REGULARITY ESTIMATE. [5] There exists $\varepsilon > 0$ depending only on n and N_0 such that if u is energy minimizing, and $\Lambda < \varepsilon$, then u is Holder continuous on $B_{1/2}$ and satisfies $|u(x) - u(y)| \le c|x - y|^{\alpha}$ for $x, y \in B_{1/2}$ where $c, \alpha > 0$ depends only on n, N_0 .

To prove this for our situation we need some modification of the original proof such as the projection Π from neighborhood of N to N replaced by $\Pi: v \to v/|v|$, since in our case there is no fixed manifold N.

From this we can infer by using the covering argument that the n-2-dimensional Hausdorff measure of singular set is zero and that the singular set is discrete if n=3 [5].

Furthermore adapting the original proof by Liao [4] we can prove the following;

REGULARITY OF MAPS WITH SMALL ENERGY. [4] Let u be an energy minimizing unit vector field which is smooth on B-0. There is a constant $\varepsilon > 0$ independent of u such that 0 is a removable singularity if $E(u) \leq \varepsilon$.

3. Two and three dimensional cases

For some 2-dimensional Riemannian manifolds, it makes no sense saying about energy minimizing unit vector field.

PROPOSITION 4. On an oriented compact surface with non-zero genus, every unit vector field has infinite energy.

Proof. If it has finite energy, it must be smooth. But topological constraint prohibits it.

It is well known that the tangent bundles of 3-dimensional oriented compact manifolds are trivial. So we may ask a question.

QUESTION. On 3-dimensional oriented compact manifolds, are there smooth energy minimizing unit vector fields?

Of cause, if a 3-fold has a boundary and if we ask whether there is a smooth energy minimizing vector field satisfying given boundary condition, the answer is negative [1].

PROPOSITION 5. Let g_0 be the metric on S^3 induced from the Euclidean one of \mathbb{R}^4 . There is a constant c such that if a metric g on S^3 satisfies $||g - g_0||_1 \le c$ then there is a smooth energy minimizing unit vector field on (S^3, g) .

Proof. (S^3, g_0) has a metric compatible Lie group structure so that at a point (identity as a point in a Lie group) a vector can be parallel-translated to any point in unique way giving a parallel smooth vector field v on S^3 . Thus the energy of v is 0 in metric g_0 .

Let g be a Riemannian metric on S^3 . Since $W(\cdot,g)$ is coercive and weakly lower semi-continuous on $H_1^2((S^3,g),1) \neq \emptyset$ with respect to $H_1^2((S^3,g),\mathbb{R}^3)$ $W(\cdot,g)$ attains its minimum in $H_1^2((S^3,g),1)$. Denote a minimizing unit vector field as w.

Then using (3) and $W(w) \leq W(v)$, it can be shown that W(w) is small if $||g - g_0||_1 \leq c$ for small c. Therefore by regularity of maps with small energy w is smooth.

At the singular points of an energy minimizer u, using Lemma 3 we can show that the blow-up of u at the point is a minimizing tangent map to the sphere S^2 . Thus we have by [2];

PROPOSITION 6. For an energy minimizing vector field on a 3-fold, at the singular points, its topological degree is ± 1 .

References

- F. J., Almgren and E. H., Lieb, Singularities of energy minimizing maps from the ball to the sphere: Examples, counterexamples, and bounds, Ann. Math. 128 (1988), 483-530.
- 2 H. Brezis, J. M. Coron, and E. H. Lieb, Harmonic maps with defects, Comm. Math. Phys. 107 (1986), 649-705.
- 3 R. Hart, D. Kinderlehrer, and F.-H. Lin, Stable defects of minimizers of constrained variational principles, Ann. Inst. Henri Poincare 5 (1988), 297-322.
- 4 G. Liao, A regularity theorem for harmonic maps with small energy, J. Diff. Geom. 22 (1985), 233-241.
- 5 R. Schoen and K. Uhlenbeck, A regularity theory for harmonic maps, J. Diff. Geom. 17 (1982), 307-335.
- 6 R. Schoen and K. Uhlenbeck, Regularity of minimizing harmonic maps into sphere, Invent. Math. 78 (1984), 89-100.