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0. Introduction

In this paper we prove a monotonicity inequality and apply it to study
regularity for energy minimizing unit vector fields on a Riemannian man-
ifold. This study is motivated by the liquid crystal theory, where liquid
crystals can be regarded as a vector field with fixed length.

If the tangent bundle is trivial like orientable compact 3-folds, unit
vector fields may be regarded as a map to the sphere. This shows a
strong relationship between the study of energy minimizing unit vector
fields and that of energy minimizing maps into the sphere. Schoen and
Uhlenbeck developed a regularity theory for minimizing harmonic maps
into Riemannian manifolds, where they used the monotonicity inequality
as a starting point [5]. Thus proving the monotonicity inequality leads
finally to a regularity theory via Morrey’s Lemma with some efforts.

Let M be an n-dimensional Riemannian manifold with metric g. We
may assume that M is isometrically embedded in Euclidean space R¥. We
define our function space as

H¥M,1) = {ue H}(M,R*): [u(z)| =1 ae. z € M},
where H?(M,R¥) is the Sobolev space of functions f with |V f| in L2.

Let u € H}(M,1) be a unit vector field on M. The energy Wy (u, g) of
uon U C M is defined as

1
Wy(u,g) = "2*/U|Vu|2,

where the connection is induced from g¢.
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A unit vector field u is called energy minimizing on U C M if for any
unit vector v with ulsy = v]sy the energy Wy(u,g) is smaller than or
equal to Wy (v,¢). A unit vector field u is called an energy minimizer
on the manifold M if u is energy minimizing on any precompact subset

UcCM.

1. The Euler-Lagrange equation and monotonicity inequality

We compute the first variation of W, for which we take u¢(z) = (u(z)+
té(x))/|u(z) + tg(x)| as a one-parameter variation through u, where ¢ €
H?(M,R*) is compactly supported, and obtain;

LEMMA 1. If u is energy minimizing on M and |u] = 1 a.e., the u
satisfies the following equation in weak sense;

(1) Au+ |Vulfu =0

For a point p € M, let By{(p, p) € M be a ball of radius p centered at p
and let Ezp, : T,M — M be the exponential map. We can take uniformly
p which is so small that Ezp, is a diffeomorphism from Br, (0, p) to
Bpm(p, p). Denote the set Br,m(0,p) by B(0.p) = B, and pull back the
metric from M using Fzp,. On B, this metric is of the form ds® =
dr? + dA(r)? where dA(r)? is the metric restricted to the sphere of radius
r. We may assume that u is defined on B,. We consider the blow-up
sequence of vector fields u, on By with norm 1 with respect to the pull-
back metric. More precisely for ¢,(-) = Ezp,(p-) : By — By(p,p) € M
let u, = dé,”"(u), which is an energy minimizer with respect to the pull-
back metric if u 1s one on M.

We denote the energy of a unit vector field u on a set U with respect
to the Euclidean metric as Ey(u).

On B, the pull-back metric ds* = (gag) satisfies gag = 6ap and for
some A > 0

(2) >

a, 8,7

(3]

oz

<A

Jop

We denote Ga the set of all Riemannian metrics on B satisfying (2) and
of the form ds? = dr? + dA(r)%.
We use this inequality to estimate Wpg_ (v) by Ep,(v) and vice versa.
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Let W, and E, denote Wg, and Ep,. We have
|Ep(u) — W(w)| <cA(pE,(u) + p"2E,(w)!/? + Ap")

3
$§CA(pEp(“) + pn-—l)
provided Ap < 1. Consequently for p € (0, 1] we have
(3) (1 —cAp)Ey(u) — cAp" ™! < Wy(u) < (14 cAp)Ey(u) + cAp™!

provided cA < 1. This shows that the topology of HZ(B,, N) is well
defined regardless of the metric on B, provided A is sufficiently small.
We now prove:

PROPOSITION 2. (Monotonicity inequality) If u is energy minimizing,

then we have
o2 "W, (u) € p2 "W, ().

fore < p<1.

Proof. For almost all o € (0, 1] we have fi=|=" |Vul*dé < oo where £ is
a variable on the sphere. Introduce the comparison map

(@) { u(z), 2120

parallel translate of u(fﬁ) through raidal direction, |z| < o.

Since the result is trivial for n = 2, we assume n > 2. Denote by |Vu|?
the tangential energy along the spheres |z| = r, so that |Vu|? = |Veu|? +
|8u/dr|? holds since g € Go. We compute
Wo(u)
SWo(va)

=(n-2)"1¢ /l i IV eul?dé

d Ou
=(n-"1o| —W, - |2
=(n-2) a( =W (u) /mz__uta,_lde).

This implies

(4) 0< o /|=|-- u-ggszdg < ;15’; [0~ "Wo(u)]

Since W, (u) is a nondecreasing function, we can integrate this inequality
from o to p.

o2 " Wo(u) < P2nnwp(u)
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2. Partial regularity

Using this monotonicity inequality we can prove that a blow-up of an
energy minimizer converges. Let py(z) = Ar : By — B). We set u) =
uopy for A € (0,1]. Then if u is W( , g)-minimizing, so is uy for the metric
g induced by the map py, and

Wl(u,\,g,\) = AQ“"W,\(u, ,(])

This and the monotonicity inequality show that Wj(uy,ga) is uniformly
bounded for A <1, so is E;(u) by (2) and therefore there is a convergent
subsequence with limit ug € H?(B;,R"). Furthermore we have:

LEMMA 3. We can find a sequence (k) € (0, 1] converging to 0, such
that ux(k) converges weakly in H}(By,1) to a map up € HE(B,,5" 1)
with Oue/Or = 0 a.e. in B;. Furthermore uy is energy minimizing as a
map from B, to sphere in the Euclidean metric.

Proof. We integrate (4) from 0 to A with respect to the radial direction
Ju

to get
2—-n
r
IR

Thus by a change of variables we have

. - 5UA . —
hm ri-n = lim péon
A~} B, A () B,

or
This shows that Oug/0r = 0 a.e.
The last statement follows from Proposition 5.1 in [3] and the fact that
the metric induced by the map py converges to the Euclidean one as A
goes to 0.

< AW (u) — lim a? T W, (u)

Ju

e = 0.

Here we state the regularity theorem due to Schoen and Uhlenbeck. Let
u : B} — N be an energy minimizing map into a Riemannian manifolds
with its image in a compact set Ny ¢ N with respect to a metric ¢ € G,.

REGULARITY ESTIMATE. [5] There exists ¢ > 0 depending only on n
and Ny such that if u is energy minimizing, and A < £, then u is Holder
continuous on By, and satisfies [u(x) — u(y)| < clx — y|* for 2,y € By,
where ¢, @ > 0 depends only on n, Ny.

To prove this for our situation we need some modification of the original
proof such as the projection II from neighborhood of N to N replaced by
II: v — v/|v|, since in our case there is no fixed manifold N.
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From this we can infer by using the covering argument that the n — 2-
dimensional Hausdorff measure of singular set is zero and that the singular
set is discrete if n = 3 [5].

Furthermore adapting the original proof by Liao [4] we can prove the
following;

REGULARITY OF MAPS WITH SMALL ENERGY. [4] Let u be an energy
minimizing unit vector field which is smooth on B—0. There is a constant
¢ > 0 independent of u such that 0 is a removable singularity if E(u) < €.

3. Two and three dimensional cases

For some 2-dimensional Riemannian manifolds, it makes no sense saying
about energy minimizing unit vector field.

PROPOSITION 4. On an oriented compact surface with non-zero genus,
every unit vector field has infinite energy.

Proof. If it has finite energy, it must be smooth. But topological con-
straint prohibits it.

It is well known that the tangent bundles of 3-dimensional oriented
compact manifolds are trivial. So we may ask a question.

QUESTION. On 3-dimensional oriented compact manifolds, are there
smooth energy minimizing unit vector fields?

Of cause, if a 3-fold has a boundary and if we ask whether there is a
smooth energy minimizing vector field satisfying given boundary condi-
tion, the answer is negative {1].

PROPOSITION 5. Let go be the metric on S% induced from the Eu-
clidean one of R*. There is a constant ¢ such that if a metric g on S*
satisfies ||g — goljs < ¢ then there is a smooth energy minimizing unit
vector field on (S*,g).

Proof. (52, go) has a metric compatible Lie group structure so that at a
point(identity as a point in a Lie group) a vector can be parallel-translated
to any point in unique way giving a parallel smooth vector field v on $3.
Thus the energy of v is 0 in metric go.

Let g be a Riemannian metric on $%. Since W(-,¢) is coercive and
weakly lower semi-continuous on H? ((53,¢),1) # @ with respect to H;}
((52,9),R®) W(-,g) attains its minimum in H} ((5°,¢),1). Denote a
minimizing unit vector field as w.
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Then using (3) and W(w) < W(v), it can be shown that W (w) is small
if ||g — golls £ ¢ for small c. Therefore by regularity of maps with small
energy w is smooth.

At the singular points of an energy minimizer u, using Lemma 3 we can
show that the blow-up of u at the point i1s a minimizing tangent map to
the sphere 5% . Thus we have by [2];

PROPOSITION 6. For an energy minimizing vector fleld on a 3-fold, at
the singular points, its topological degree is +1.
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