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SLICE MAPS FOR THE CROSSED

PRODUCTS OF C*-ALGEBRAS

SEUNG-HYEOK KYE AND SA GE LEE

1. Introduction

Whenever we consider tensor products of complete objects such as
Banach spaces, Banach algebras, C*-algebras or von Neumann algebras,
we should define a suitable norm on the algebraic tensor product and
take the completion. Although there are so many possibilities to define
norms to get the same objects, we usually have a typical norm under
which the following property holds:

(1.1)

Even if we take the tensor product with the above property, there are
so many pathological phenomena in view of algebraic tensor products.
The question of exactness for C*-algebras is one of the typical examples
among them. It is well known that the minimal C*-tensor product sat­
isfies the condition (1.1) and we denote by A 0 B for the minimal tensor
product of C*-algebra A and B.

Wassermann [19, 20] showed that the following sequence

(1.2)

need not to be exact. We say that a C*-algebra B is exact if the sequence
(1.2) is exact for any C*-algebra A and its two-sided norm-closed ideal
1. The class of exact C*-algebras is very important among C*-algebras
which includes strictly nuclear C*-algebras, and is stable under forming
C*-subalgebras, inductive limits, C*-quotients [1, 10, 12]. There are so
many equivalent conditions for C*-exactness [8, 9, 11] and the notion
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of C*-exactness plays a role in the theory of C*-algebras independent
of tensor products. For recent developments, we refer to [2, 7, 21, 22]
for examples. Note that the maximal C*-tensor product satisfies the
condition (1.2) although it does not satisfy (1.1) [6].

It has been turned out that the notion of slice maps are very useful
to deal with the sequence (1.2) [8, 16, 19]. For eaCh 4> E B*, we can
define a bounded linear map Rq, : B ® A -t A, said to be the right slice
map associated with 4>, satisfying

(1.3) RtP(b ® a) = <p(b)a

for bE B and a E A. The Fubini product F(B,I) is defined by

(1.4) F(B, I) = {x E B ® A : Rq,(x) E I for all 4> E B*}.

Then, it is easy to see that F(B,1) is exactly the kernel of the *­
homomorphism B ® A --+ B ® A/I, and so the question of exactness
of the sequence (1.2) is reduced to the question when the Fubini product
F(B, I) coincides with the ordinary minimal tensor product B ® I. The
notions of slice maps and Fubini products may be defined for the spatial
tensor products of O'-weak closed operator spaces or the Haagerup tensor
products of operator spaces [13, 15].

In this note, we consider the same question of exactness for the crossed
product of C*-algebras. Let G be a locally compact group and G' an
action of G on a C*-algebra A. If I is a norm-closed two-sided ideal of
A which is invariant under the action G' then G' also acts on the quotient
C*-algebra A/1. Our question is whether the sequence

(1.5) 0 -t G ~ar I -t G ~ar A --+ G ~ar A/I -t 0

is exact or not, where G ~ aT A denotes the reduced crossed product of
A and G. This question has been considered by Zeller-Meier [23] for
discrete groups. If G' is the trivial action, then our question becomes
whether the reduced group C*-algebra C;(G) is exact or not. It is well­
known that if G is an amenable group or G is the free group on two
generators then C:(G) is exact [1]. Very recently, the authors heard
that several authors showed that reduced group C*-algebras C;(G) are
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exact for various classes of discrete groups. Nevertheless, the authors do
not know whether the sequence (1.5) is exact or not in general. We will
define the slice map and Fubini product in this case, and examine the
relation with the sequence (1.5).

2. Dual spaces of reduced group C*-algebras

In this section, we review the definition of crossed product of C*­
algebras together with the dual spaces of reduced group C·-algebras to
get a motivation. Let G be a locally compact group and a a continuous
action of G on a C*-algebra A, that is, a continuous homomorphism of G
into the group Aut(A) of *-automorphism of A equipped with the topol­
ogy of pointwise convergence. The set K(G, A) of continuous functions
from G into A with compact supports is a *-algebra under the operations

y*(t) = 6C)-lat(y(C1»*
(y x z)(t) = Ly(s)as(z(s-lt»dS,

for y,z E K(G,A), where ds is the left-invariant Haar measure on G
and 6 denotes the modular function of G. Denote by Ll(G,A) the
completion of K(G,A) with respect to the norm

for y E K(G, A).
For a representation 1r of A on a Hilbert space H, we define the

representation Ind1r of Ll(G,A) on L2(G,H) by

for y E Ll(G,A) and eE L2(G,H). Note that Ind1r is associated with
the covariant representation (if, >., L2(G, H» given by

(if(x)e)(t) = 1r(at-l(x»~(t)

(>.(s)e)(t) = ~(s-lt)
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for x E A,s E G and eE L2(G,H). The reduced crossed product of G
by a, denoted by G ~ar A, is the completion of Ll(G, A) with respect
to the norm

IIxll r = sup{II(Ind1l")(x)1I : 11" E RepA},

where Rep A is the set of all representations of A. For a detailed discus­
sion, we refer to [14, Chapter 7].

IT a is the trivial action then G ~ ar A is nothing but C;(G) 0 A,
where C;(G), the reduced group C*-algebra associated with G, is by
definition just G ~ar C with the trivial action a on the complex field C.
Hence, we should consider the dual space of C;(G) in order to modify
(1.3). To do this, we summarize parts of [3, 4, 5]. Note that a unitary
representation 11" of a locally compact group G corresponds to a non­
degenerate representation 11" (we use the same notation) of the Banach
*-algebra Ll(G) by the relation

1I"(x) = Lx(s)1I"(s)ds E B(H1r ),

for x E Ll (G). The full group C* -algebra C* (G) is defined by the
completion of Ll(G) with respect to the norm

IIxll c = sup{1I11"(x)1I : 11" runs unitary representations of G}.

Note that the restriction map from C*(G)~ into Ll (G)~ is one-to-one
onto. It is even norm-preserving because we can choose an approximate
identity {JLd both in C*(G) and L 1 (G) with IIJLillc = IIJLilh = 1 [5,
Lemma 1.4]. Now, if 4> E LOO(G) is considered as a positive functional
on Ll(G) then it is associated (in the sense of the relation (2.1) below)
with a unitary representation 11" of G and a vector ein L2(G). Indeed,
if ('71", e) is the GeHand-Naimark-Segal construction of £1(G) associated
with 4>, then we have

f 4>(s)x(s)ds = (cP,x) = (1I"(x)e, e) =f x(s){1I"(s)e,e)ds,

for each x E L1 (G), and so, it follows that

(2.1)
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Such a function tP is said to be a continuous positive definite function on
G, and they form the positive cone of C*(G)*, denoted by P(G).

Now, for each € E L2(G), we denote by tPe the continuous positive
definite function associated with the left regular representation .A and €
as follows:

tPe(s) = (.A(s)€,€) = J€(s-lt)€(t)dt.

Then, the positive cone Pr(G) of C;(G)* is the set of all continuous pos­
itive definite functions which are weakly associated with tPe's, or equiv­
alently, the limits of sums of tPe's, with respect to the compact-open
topology.

3. Slice maps for crossed products

By the above discussion, we know that every bounded linear func­
tional on C;(G) is essentially associated with a vector € E L2(G), and
so we associate a linear map Re : Ll (G, A) -+ A for each € E L2(G) as
follows:

(3.1) Re(Y) = JJ €(s-lt)€(t)at- 1 (y(s»dsdt, y E L1(G, A).

PROPOSITION 3.1. The map (3.1) can be extented to a bounded lin­
ear map Re : G ~Qr A -+ A, with II Rell :511€1I~.

Proof. It suffices to show that

II Re(x)1I :5 1I€1I~lIxllr'

for x E Ll(G,A). Let 1r be a representation of A on a Hilbert space H,
and TJl, TJ2 be unit vectors in H. Then, we have

(1r(Re(x) )TJ1, TJ2)

= JJ€(s-lt)€(t)(1r(at- 1 (X(S»TJ1' TJ2)dsdt

=f (J 1r(at- 1 (x(s »€(s-lt)TJlds, €(t)TJ2)dt

= J(Ind1r)(x)(€ Q9 TJt>(t), (€ Q9 TJ2)(t»)dt

= (Ind1r)(x)(€ Q9 TJl),€ Q9 TJ2).
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Hence, it follows that

1{1I"(Re(x»'71, '72)1 :5 II(Ind1l")(x)11 lie ® 7]1 II lie ® '7211

= lIell~II(Ind1l")(x)1I :5 lIell~lIxllr'

and so, we have
llRe(x)II :5 IIell~IIxllr.

This completes the proof with the relation llReIl :5 lIell~.

For e E L2(G) and '7 E H, define positive linear fun~tionals '11; and
4":Je,,, of A and G ~ar A, respectively, by

(a, '11~) = (1I"(a)7] ,7]), a E A

(x, <pe,,,) = «Ind1l")(x)(e ® '1), (e ® 7]»),

Then, we have

x E G ~arA.

(Re(x), '1':) = JJe(s-lt)e(t)(1I"(at-1 (x(s»'7,7])dsdt

= «Ind1l")(x)(~ ® 7]), (e ® '7»)

= (iP;''1' x)

for x E G ~ar A, by the same calculation as in the above proof of
Proposition 3.1. Because {iP;,~ : 11" E RepA, e E L2

( G), 7] E H} is a
separating subset of (G ~ar A) , we have

(3.2) x = 0

4. Fubini products for reduced crossed products

Now, we modify (1.4) to define the Fubini product F(G, C) for a­
invariant C·-subalgebra C of A as follows:

(4.1) F(G,C) = {x E G ~ar A: Re(x) E C for all e E L2(G)}.
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If a is the trivial action, then G ~ar A is nothing but the minimal tensor
product C;(G) ® A of C;(G) and A as mentioned before. In this case,
we have

R~(x) =if {(s-lt){(t)x(s)dsdt

= i (..\(s){,{)x(s)ds

= i 4>~(s)x(s)ds,

where 4>~(s) = (..\(s){, {) is the continuous positive definite function of
G associated with the left regular representation ..\ of G and { E L2(G),
which is a positive linear functional of C;(G) with 1I<p~1I = 1I{1I2 • Hence,
R~ is just the left slice map Rq,e : C;(G) 0 A -+ A associated with cp~.

Therefore, F(G, C) is just the Fubini product F(C;(G), C) of C;(G)
and C, and so our definition (4.1) is compatible with (1.4).

If G is a discrete group, then there were already the notions of slice
maps and FUbini products as follows: Zeller-Meier [23] showed that there
exists a unique bounded linear map Ra : G ~ ar A -+ A such that

(4.2) Ra(y) = yes),

for each s E G and the kernel of the *-homomorphism G ~ar A -+

G ~ or (AI I) coincides with the set

(4.3) {y E G ~or Aj Ra(y) E I for all s E G}.

There is an another approach to define the linear map (4.2) using a
positive faithful norm one projection from G ~ arA onto A [17, 18]. Note
that if G = Z and A = C then Z ~ar C is the C*-algebra C;(Z) = C(T)
of all continuous functions on the one-dimensional torus and the set
{Rn(f) : n E Z} is nothing but the usual Fourier coefficients of the
function f E C(T).

Now, for each y E /t (G, A), we have

R{(y) E C for every { E /2(G) <===} yes) E C for every s E G.
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A

Indeed, if e E i 2 (G) is defined by e(e) = A, e(a- I
) = p. and e(s) = 0 for

s =1= e, s '# a-I, then we have

By choosing suitable A and p., we can express y(a) as the linear combi­
nation of Re(Y)'s. Hence, our definition of Fubini products (4.1) is also
compatible with (4.3).

PROPOSITION 4.1. If I is an a-invariant closed two-sided ideal of A
then the kernel of the *-homomozphism G ~Qr A - G ~Qr A/I is just
F(G,I).

Proof. Consider the following commutative diagram:

i'
G ~QrA ---+1 G ~QrA/I

Rel
A/I

If x E G ~Qr A and ?f(x) = 0 then we have 1r(Re(x» = Re(?f(x») = 0 for
anye E L2(G). Hence, we have Re(x) E ker1l" = I for each eE L2(G)
and so x E F(G,I). If x E F(G,I) then Re(?f(x)) = 1l"(Re(x)) = 0 for
each eE L2(G) and so ;rex) = 0 by (3.2).
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