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ON Mo-CONTINUOUS OPERATORS

YOUNG KOOK KIM

1. Intoduction

Throughout this paper X and Y are Banach spaces and Jl is Lebesgue
measure on [0, 1]. L I (JL) is a Banach space of all (classes of) Lebesgue
integrable functions on [0, 1] with its usual norm. A bounded linear
operator T : LI(JL) -t X is (Bochner) representable if there is a bounded
measurable function 9 : [0,1] -t X such that Tf = !rO,I] fgdJl for all f

in LI(Jl). A bounded linear operator D : LI(JL) -t X is a Dunford-Pettis
operator if D sends weakly compact sets into norm compact sets. A
bound linear operator T : L I (JL) -t X is nearly representable if T . D :
LI(JL) -t X is Bochner representable for every Dunford-Pettis operator
D: LI(JL) -t LI(JL). For this oprator the followings are well-known facts
[5].

Fact 1.1. Every representable operator T LI(Jl) -t X is nearly
representable. But the converse is not true.

Fact 1.2. Every nearly representable operator T LI(Jl) -t X is
Dunford-Pettis operator.

As a motive, the Volterra operator V : LI(Jl) -t e[o, 1] defined by

Vf(t) = f fdp, a ~ t ~ 1
J[O,t]

reveals many interesting properties. Bourgain showed that the Volterra
oprator is nearly representable but not representable [1]. To show this
he introduced the following Mo-norm.
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DEFINITION 1.3. The Mo-norm 111·1110 on L1 (J-L) is a real-valued func­
tion defined by

Illflllo = sup I f fdp.l, f E L1 (J-L)f if
where the supremum is taken over all subintervals Iof [0,1].

A sequence (fn) in L 1 (p.) is said to be Mo-convergent if it is convergent
in this Mo-norm.

DEFINITION 1.4. A bounded linear operator T : L1(p.) ~ X is Mo­
continuous if T is continuous for the Mo-norm on L 1(p.).

All the operators in this paper are assumed to be bounded and linear.
The notations and symbols not appeared here can be seen in [2] and [3].

2. Mo-continuous Operators

It is obvious that every Mo-continuous operator is continuous. And
it has intimate relations with nearly representable operators on L 1(p.).
We can see the following fact in [4].

Fact 2.1. Every Mo-continuous operator T : L 1(p.) ~ X is nearly
representable.

Since every nearly representable operator implies Dunford-Pettis op­
erator (Fact 1.2) the above fact tells us that every Mo-continuous op­
erator is Dunford-Pettis operator. But on weakly compact subset of
L 1(JL) these three operators are equivalent as we can see in the following
proposition.

PROPOSITION 2.2. Let K bea weakly compact subset of L 1(/1). If
T : L 1 (JL) ~ X is a Dunford-Pettis operator, then TK : L 1(p.) ~ X
defined by TK(f) = T(fXK) is Mo-continuous.

Proof. Let (fnXK) be an Mo-convergent sequence in K. Since on
weakly compact subset of L 1(p.) the Mo-norm agrees with the weak
topology of L 1 (JL), (jnXK) is weakly convergent in L 1(p.). Since T is
Dunford-Pettis operator T(jnXK) converges in norm. Thus T is Mo­
continuous.
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The Example 10 of [4] shows that not every Mo-continuous operator
on Ll (J-l) is representable. Since all the weakly compact operators on
Ll(J-l) is representable, this means that not every Mo-continuous operator
is weakly compact.

The proof of the following lemma can be seen in Theorem 9 of [4].

LEMMA 2.3. li T : Ll(J-l) -+ X is Mo-continuous operator, then T
can be factored through C[O, 1] with the Volterra operator.

The next proposition plays an important role in investigating repre­
sentability of bounded linear operators on C[O, 1] [3].

PROPOSITION 2.4. Let T : C[O, 1] -+ X be a bounded linear operator.
Then there exists a weak* countably additive measure G defined on the
Borel sets in [0,1] with values in X** such that

(a) G(·)x* is a regular countably additive Borel measure for each
x* E X* ,

(b) x*T(J) = fro,l] f d(x*G) for ~ch f E C[O,l] and each x* E X*
and

(c) IITII = IIGII([O, 1]).

It is well known that every weakly compact operator on L 1(p.) is repre­
sentable but the converse is not true. But some representable operators
are weakly compact. The following main theorem shows one criterion.

THEOREM 2.5. liT: Ll(J-l) -+ X is Mo-continuous and representable,
then T is weakly compact.

Proof. Since T is Mo-continuous, by Lemma 2.3 T can be factored
through C[O, 1] by Volterra operator V : Ll(J-l) -+ C[O, 1] and bounded
linear operator L : C[O, 1] -+ X as T = L . V. And the representability
of T guarantees the existance of agE Loo(p., X) such that

Let G be the representing measure of L, then by Proposition 2.4
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x* f Ig dp
1[0,1]

= f V(f)d(x*G)
1[0,1)

= f (f 1 dp)d(x*G)(t)
1[0,1) 1[o,t)

= f I(S)1 d(x*G)(t) dp(s),Vx* E X*.
1[0,1) [s,l]

Hence 1[0,1] Ig dp - frO,I] l(s)frs,I] dG(t)dp(s) for every 1 E LI(p).
Thus

g(s) = 1 dG(t) a.e.[p]
[s,l)

in X**. Now let's show that A = {g(s)ls E [0, I]} is relatively weakly
compact subset of X**. Let (g(sn» be a sequence in A. Since (sn)
is a sequence in [0,1], (sn) has a convergent subsequence (sn .. ). Let
(sn.. ) converges to S E [0,1]. Since X*g(sn) = frSn,I] d(x*G) and x*G is
bounded regular from Proposition 2.4,

X[Sn .. ,1) -+ X[s,I) a.e.[x*G].

So (1[sn .. ,1] dx*G) converges to frs,I) dx*G. i.e., x*g( sn.. ) -+ x*g(s)
for all x* E X*. This implies g(sn.. ) -+ g(s) weak* in X**. Hence
g(sn) -+ g( s) weakly in X. Thus 9 has essentially relatively weakly
compact range. This implies the weakly compactness of T: LI(p) -+ X
[3].

REMARK 2.6. IT we think of a quotient map T: LI(p) -+ £1, then T
is representable [3]. But since T is not weakly compact the Theorem 2.5
shows that T is not Mo-continuous. i.e., there exists a representable oper­
ator which is not Mo-continuous. Combined with this fact the Example
10 of [4] shows that there are no ~mplications between Mo-continuous
operators and representable operators on LI(p).
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