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NUMERICAL SOLUTIONS OF

THE PLATEAU PROBLEM

BY FINITE DIFFERENCE METHODS

S. K. CHUNG

1. Introduction

The Plateau problem is one of the most interesting mathematical
problems. The problem is to construct a surface S of least area. Let
u(x, y) represent the height of S in a simply connected region D. Then
the surface area of S is equal to

(1.1 ) J(u) = JIn (1 + u; + u;)~ dx dy,

and the Plateau problem is to find a function u(x, y) which minimizes
the functional J(u) with satisfying the boundary condition

(1.2) u(x, y) = I(x, y), (x,y) E aD,

where 8.D is the boundary of the domain D.
Since the Euler-Lagrange equation of (1.1) which minimizes J(u) is

(1.3) (1 + u;)uxx - 2uxu yuxy + (1 + u;)uyy = 0,

the Plateau problem is equivalent to s,olve the partial differential equa­
tion (1.3) with boundary condition (1.2). This implies that the solution
u(x,y) of (1.1) must be a single valued function with continuous second
partial derivatives.

The existence and uniqueness of the problem (1.1)-(1.2) has been
studied by Stepleman [8] and numerical solutions of the Plateau prob­
lem have been studied by Greenspan [6] and Concus [3] by using finite
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difference methods. But their methods can be applied only to the prob­
lems with single valued boundary conditions., In 1974, Hin~ta, Shimasaki
and Kiyono [7] used a finite element method to solve the Plateau prob­
lem with multiple valued problems. They converted the multiple valued
problems to free boundary value problems to overcome the restriction
on boundary conditions. Tschuchiya [9] has also studied the Plateau
problem in parametric form and used finite element methods to obtain
numerical solutions.

In this paper, a computational method to solve the Plateau problem
with multiple valued boundary conditions by finite difference methods
will be presented. In the following section, the multiple valued boundary
conditions will be changed into single valued free boundary conditions
along the idea of [7]. In section 3, to use finite difference methods in a
non-rectangular domain we imply a transformation to obtain a rectan­
gular domain. And we discretize the transformed minimizing functional.
Finally, some numerical experiments are given. In [9], they used the
largest eigenvalue of Hessian matirx of (1.1) in SOR, but it may cause
the difficulty to find the largest eigenvalue if the size of Hessian matrix
is large. We used the maximum value of the second derivatives in place
of the largest eigenvalue of SOR which is used in [9], so we don't have
to calculate the largest eigenvalue of the Hessian matrix.

2. Free Boundary Value Problem

We consider the Plateau problem of finding a twice continuously dif­
ferentiable function u(x, y) which minimizes the surlace area functional
J(u) with boundary conditions

oy =0 LOx ' x = 0, 0 ~ u ~ ,

L
(2.1) x=rsin8, y=O, 0~u~2'

x 2 + (y + r cos8)2 = r 2
, u = 0, °~ x, 0 ~ y,

~: = 0, u = 0, 0 ~ y ~ H,

where r and L are the given positive real numbers and H is an unknown
distance from the u-axis to the free boundary at u = t.



Plateau Problems

u

L

...... ----- .....

x

69

Figure 2.1
Since the problem (1.1) and (2.1) has multiple valed boundary con­

ditions, it cannot be solved numerically by the methods introduced by
Greenspan [6] and Concus [3]. But it can be changed into a free bound­
ary value problem with single valued boundary conditions. This free
boundary value problem is obtained by rotating axes. By the symmetry
with respect to u = t, the problem becomes to find a function x(y,u)
which minimizes the functional on the rotated domain V

(2.2) J(x) ~ JL(1 + x; + x;)1 dydu,

with boundary conditions

(2.3)

L
x=rsinO, y=O, 0~u~2'

x2+(y+rcosO)2=r2, u=O, O~x, O~y,

ax L
au = 0, u = 2' 0 ~ y ~ H,

ay = 0 x = 0, 0 < u < L.ax' - - 2
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3. A Discrete Area Functional

Let M and N be positive integers and b.y = r(1-~os9) ,b.u = /"N' Let
YM j be the largest boundary value on the free boundary in Y component
at Uj = jb.u. And define the interior points Yij of the rotated domain
as

YiOYMj
Yij = ,i = 0,1, ... , M, j = 0,1, ... , N.

YMO

Since the domain is not rectangular, it is not easy to apply finite
difference methods for approximations of (1.1) and (2.1). But by the
transformation T defined by

{

~( ) - YYMO
Llu 'b. < (. 1)b.T . ~ Y, U - (u-Uj )(YMH1 -YMj )+Llu YMj ' J U - U < J + u,

1](Y, u) = U, °~ U ~ t,
then the transformed domain T(D) becomes a rectangular one.
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Figure 3.1
Using the forward difference schemes for xe and x1J' we obtain a dis­

crete area functional

(3.1)
M N

J8 (X) = L L {Y~j + Y~o[Xi+l~e Xi
j

]2

i=l j=l

+ [Xi+1 j - Xij -ei(YMHl - YMj) + YMj Xij+l - Xij]2}~_1_f)..ef)...,.,.
~e f)..""YMj f)...,., YMO

Thus we obtain the following reduced problem:
Find a stationary point of functional

(3.2) F(X) = J8 (X) : Rn
-+ R,

where n

XMN+l,·.·,Xn
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are the values of the unknown boundary.

In order to find stationary points of F(X) numerically, we may use
the nonlinear successive overrelaxation(NSOR) method

(3.3)

h X k - ( k+1 k+I k k) I:1.(X) _ aF(X) I:1.. (X)were i-Xl ""'Xi_1'Xi,···,x n ,.I:'1 - ax;'.I:'u -

8
2:sq, and w is a relaxation parameter. However, if the denominator,

Fii(Xl) is small, w has to be chosen sufficiently small. We therefore
introduce a modified NSOR method. Let

(3.4)

(3.5)

-k+1 k Fi(Xl)
Xi = Xi - aik ,

mik
x~+l = X~ +w· (x~+l - X~)1 1 Ik 1 1 ,

where aik < 2 and mik = maxXEla IFii(X)I, Iik = {X E Dom(F)
F(X) :s; F(Xf)}. Then from the relations (3.4) and (3.5), we obtain

(3.6)
k+I k Fi(Xf)

xi = Xi - aikWik , i = 1,2, ... , n.
mik

Tschuchiya [9] used similar methods to get numerical solutions of the
Plateau problem by finite element methods. He used the largest eigen­
value of th~ Hessian matrix instead of mik.

Before we discuss the convergence of the sequence {Xk} generated by
(3.6), note that the functional F(X) is twice continuously differentible
strictly convex and bounded below. And assume that the domain of F is
convex and the set So = {X E Dom(F) : F( X) :s; F(XO)} is nonempty
and compact for some X O E Dom(F).

THEOREM 1. Assume that there exists a constant f3 > 0 such that
mik ~ f3 for every- X E So. Then the sequence generated by (3.6)
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converges to X* E So and X* is a stationary point of F(X) if we choose
Wik so tbat

for some positive real number hik.

Proof. It follows from the Taylor expansion of F(X) that
(3.7)

F(Xt+I) = F(Xf) + Fi(Xf)(Xik+I - X i
k) + %Fii(S)(Xt+I - xf?

k Fi(Xf)2 1 2 2 (~)Fi(Xf?
= F(Xi ) - (XikWik + -2(XikWikFii =. 2'

mik mik

where S = (el, 6, ... ,en) is a vector between xf and Xf+l and S = xf
execpt ei. Since F(X) is twice continuously differentiable on a compact
set So, we may choose a positive constant hik such that

IP'('=') - F.··(X~)I < t:. IFi(xf)III ~ II a _ Uak ,
mik

IFi(X[c)1
whenever IS - xli:::; 2 a.

mik

Since IS-Xfl :::; 21F~!)1 from (3.4) and (3.5), it follows from (3.6) and
hypothesis for hikWik that

Thus, from the process of obtaining {Xfh, the sequence {F(Xf)h is
decreasing for i = 1, ... , n. Since F(X) is bounded below, {F(Xf)}
converges.
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It follows from (3.7) that

F(Xf) - F(Xf+l) = mik (Xf+I - Xf)2 - -2
1 Fii(3)(Xf+l - Xf)2

aikWik

2:: (Xf+I - Xf?mik( 1 - .!.)
aikWik 2

2:: o.

Hence the sequence {Xk} converges to X* in So by the convergence of
{F(Xn}, and X* is clearly a stationary point of F(X).

We now give some numerical results for the problem (1.1) and (2.1)
with r = 1.0, (J = i1l'", M = 15, and d." = 0.05. For the maximum values
mik, in (3.6), we simply used max{lF;;(Xf) I, IF;;(Xf+I )I}. The itera­
tions were terminated when Ixt - x~+I1 $ 10-5 as in [7}. The following
table 1 and 2 show the numerical results of the problem obtained by
using algorithm (3.6) with initial values of a = 0.1 and 0.2, respectively.
The computation was carried out by using IBM 3090 at Seoul National
University.

L/2 no. of iterations H 1/4 of area
0.4 1589 1.80112 1.02277
0.5 2453 1.75213 1.26133
0.6 11278 1.59628 1.48180
0.7 :+:

* (diverges with a = 0.1)
Table!

L/2 no. of iterations H 1/4 of area
0.4 945 1.79072 1.02280
0.5 4267 1.71008 1.26044
0.6 *

* (diverges with a = 0.2)
Table 2
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The table 3 and 4 show the values of maximum relaxation factor o.kWk

for the calculation of x-values and the free boundary values. We used
0.1 and 0.2 for the initial values of 0., respectively.
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L/2 x-values boundary values
0.4 0.11358 0.19886
0.5 0.11599 0.13950
0.6 0.11184 0.13865
0.7 * *

* (diverges with °. = 0.1)
Table 3

L/2 x-values boundary values
0.4 0.22241 0.04205
0.5 0.22603 0.10782
0.6 * *

* (diverges with °. = 0.2)
Table 4

REMARKS. The method (3.3) with fixed W = 0.1 diverges when L/2 =
0.6, M = 15, and f:11J = 0.05 as in the table 1. NSOR method with
variable relaxation parameter has been studied in [1]-[2].
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