A NECESSARY AND SUFFICIENT CONDITION FOR $J(f,x_0,G)$ TO BE ISOMORPHIC TO $J(f,x_0)\times G$

MOO HA WOO AND SONG HO HAN

F.Rhodes [4] introduced the fundamental group $\sigma(X, x_0, G)$ of a transformation group (X, G) as a generalization of the fundamental group of a topological space X and showed a necessary condition for $\sigma(X, x_0, G)$ to be isomorphic to $\pi_1(X, x_0) \times G$, that is, if (G, G) admits a family of preferred paths at $e, \sigma(X, x_0, G)$ is isomorphic to $\pi_1(X, x_0) \times G$. B.J. Jiang [3] introduced the Jiang subgroup $J(f, x_0)$ of the fundamental group of a topological space X. The authors [8] introduced the extended Jiang subgroup $J(f, x_0, G)$ of the fundamental group of a transformation group as a generalization of the Jiang subgroup $J(f, x_0)$.

In this paper, we give a necessary and sufficient condition for $J(f, x_0, G)$ to be isomorphic to $J(f, x_0) \times G$.

Let (X, G, π) be a transformation group, where X is a path with connected space with x_0 as base point. Given any element g of G, a path f of order g with base point x_0 is a continuous map $f: I \longrightarrow X$ such that $f(0) = x_0$ and $f(1) = gx_0$. A path f_1 of order g_1 and a path f_2 of order g_2 give rise to a path $f_1 + g_1f_2$ of order g_1g_2 defined by the equations

$$(f_1+g_1f_2)(s)=\begin{cases} f_1(2s), & 0\leq s\leq 1/2\\ g_1f_2(2s), & 1/2\leq s\leq 1. \end{cases}$$

Two paths f and f' of the same order g are said to be homotophic if there is a continuous map $F: I^2 \longrightarrow X$ such that

$$F(s,0) = f(s), \ 0 \le s \le 1,$$

$$F(x,1) = f'(s), \ 0 \le s \le 1,$$

$$F(0,t) = x_0, \ 0 \le t \le 1,$$

$$F(1,t) = qx_0, \ 0 < t < 1.$$

Received March 30, 1992..

This work was supported by KOSEF 1990-1992.

The homotopy class of a path f of order g is denoted by [f:g]. Two homotopy classes of paths of different orders g_1 and g_2 are distinct, even if $g_1x_0 = g_2x_0$. F.Rhodes showed that the set of homotopy classes of paths of prescribed order with the rule of composition * is a group, where * is defined by $[f_1:g_1]*[f_2:g_2]=[f_1+g_1f_2:g_1g_2]$. This group is denoted by $\sigma(X,x_0,G)$ and is called the *fundamental group* of (X,G) with base point x_0 .

Let f be a self-map of X. A homotopy $H: X \times I \longrightarrow X$ is called a cyclic homotopy if H(x,0) = H(x,1) = f(x). In [3], this concept of a topological space was generalized as follows: A continuous map $H: X \times I \longrightarrow X$ is called an f-homotopy of order g if H(x,0) = f(x), H(x,1) = gf(x), where g is an element of G. In [8], an extended Jiang subgroup $J(f,x_0,G)$ was defined by $J(f,x_0,G) = \{[\alpha:g] \in \sigma(X,f(x_0),G)| \text{there exists an } f$ -homotopy of order g with trace g. In particular, the Jiang subgroup $f(f,x_0)$ [3] can be identified by $f(f,x_0,g)$ [6].

In [4], a transformation group (X,G) is said to admit a family of preferred paths at x_0 if it is possible to associate with every element g of G a path k_g from gx_0 to x_0 such that the path k_e associated with the identity element e of G is \hat{x}_0 which is the constant map such that $\hat{x}_0(t) = x_0$ for each $t \in I$ and for every pair of elements g, h the path k_{gh} from ghx_0 to x_0 is homotopic to $gk_h + k_g$.

DEFINITION 1. A family K of preferred paths at $f(x_0)$ is called a family of preferred f-traces at x_0 if for every preferred path k_g in K, $k_g \rho$ is the trace of f-homotopy of order g.

THEOREM 2. Let (X, G, π) be a transformation group. If (G, G) admits a family of preferred paths at e, then (X, G) admits a family of preferred f-traces at x_0 for any self map f of X.

Proof. Let H be a family of preferred paths at e in (G,G). Define $K = \{k_g | k_g(t) = h_g(t)(f(x_0)), h_g \in H\}$. Let $F: X \times I \longrightarrow X$ be the map such that

$$F(x,t)=\pi(f(x),h_g\rho(t)), \rho(t)=1-t.$$

So,

$$F(x,0) = \pi(f(x), h_g(1)) = h_g(1)f(x) = f(x),$$

$$F(x,1) = \pi(f(x), h_g(0)) = h_g(0)f(x) = gf(x)$$

and

$$F(x_0,t) = \pi(f(x_0), h_g \rho(t)) = h_g \rho(t) f(x_0) = k_g \rho(t).$$

Thus, F is a f-homotopy of order g with trace $k_g \rho$. So, K is a family of preferred f-traces at x_0 .

LEMMA 3. Let (X,G) be a transformation group and let $f:X \longrightarrow X$ be a self map. If k is a trace of a f-homotopy of order g, then for every loop α at x_0 , $f\alpha$ is homotopic to $k + gf\alpha + k\rho$. In particular, if f is a homeomorphism and α is a loop at $f(x_0)$, α is homotopic to $k + g\alpha + k\rho$.

Proof. Let $H: X \times I \longrightarrow X$ be a f-homotopy of order g with trace k and α be a loop at x_0 . Define $F: I \times I \longrightarrow X$ by

$$F(x,t) = \begin{cases} k(4s), & 0 \le s \le t/4 \\ H(\alpha((4s-t)/(4-2t)),t), & t/4 \le s \le (4-t)/4 \\ k\rho(4s-3), & (4-t)/4 \le s \le 1. \end{cases}$$

Then F is well defined and

$$F(s,0) = H(\alpha(s),0) = (f\alpha)(s),$$

$$F(x,1) = (k + gf\alpha + k\rho)(s).$$

In particular, suppose that f is a homeomorphism. Define $F: X \times I \longrightarrow X$ by

$$F(x,t) = \begin{cases} k(4s), & 0 \le s \le t/4 \\ H(f^{-1}\alpha((4s-t)/(4-2t)),t), & t/4 \le s \le (4-t)/4 \\ k\rho(4s-3), & (4-t)/4 \le s \le 1. \end{cases}$$

Then
$$F(s,0) = H(f^{-1}\alpha(s),0) = f(f^{-1}\alpha(s)) = \alpha(s)$$
.

$$F(s,1) = \begin{cases} k(4s), & 0 \le s \le 1/4 \\ H(f^{-1}(\alpha((4s-1)/2)), 1), & 1/4 \le s \le 3/4 \\ k\rho(4s-3), & 3/4 \le s \le 1, \end{cases}$$

$$= \begin{cases} k(4s), & 0 \le s \le 1/4 \\ gff^{-1}(\alpha((4s-1)/2)), & 1/4 \le s \le 3/4 \\ k\rho(4s-3), & 3/4 \le s \le 1, \end{cases}$$

$$= \begin{cases} k(4s), & 0 \le s \le 1/4 \\ g\alpha((4s-1)/2), & 1/4 \le s \le 3/4 \\ k\rho(4s-3), & 3/4 \le s \le 1, \end{cases}$$

$$= (k+g\alpha+k\rho)(s).$$

Therefore α is homotopic to $k + g\alpha + k\rho$.

THEOREM 4. A transformation group (X, G) admits a family of preferred f-traces at x_0 if and only if $J(f, x_0, G)$ is a split extension of $J(f, x_0)$ by G.

Proof. Suppose (X,G) admits a family $K = \{k_g | g \in G\}$ of preferred f-traces at x_0 . Consider the sequence:

$$O \longrightarrow J(f,x_0) \stackrel{i_g}{\longrightarrow} J(f,x_0,G) \stackrel{i_G}{\longrightarrow} G \longrightarrow O,$$

where $i_G([\alpha]) = [\alpha:e]$ and $j_G[\alpha:g] = g$. Since i_G is a monomorphism, j_G is an epimorphism and Ker $j_G = \text{Im } i_G$, the sequence is a short exact sequence. Define $\psi: G \longrightarrow J(f, x_0, G)$ by $\psi(g) = [k_g \rho:g]$. Then ψ is a homomorphism. Indeed,

$$\begin{split} \psi(g_1g_2) &= [k_{g_1g_2}\rho:g_1g_2] \\ &= [(g_1k_{g_2} + k_{g_1})\rho:g_1g_2] \\ &= [k_{g_1}\rho + g_1k_{g_2}\rho:g_1g_2] \\ &= [k_{g_1}\rho:g_1] * [k_{g_2}\rho:g_2] \\ &= \psi(g_1) * \psi(g_2). \end{split}$$

By definition of ψ , we have $j_G \circ \psi = 1_G$. Thus $J(f, x_0, G)$ is a split extension of $J(f, x_0)$ by G.

Conversely, suppose $J(f, x_0, G)$ is a split extension of $J(f, x_0)$ by G. Then there is a monomorphism $\psi: G \longrightarrow J(f, x_0, G)$ such that $j_G \circ \psi = 1_G$. Let $H = \{\alpha_g | \alpha_g \rho \text{ is a representative path of } \psi(g)\}$. Since $\psi(e) = [\hat{f}(x_0): e]$ and $\psi(g_1g_2) = \psi(g_1) * \psi(g_2)$, α_g is a path from $gf(x_0)$ to $f(x_0)$ for each element g of G, $\alpha_e = \hat{f}(x_0)$ and $\alpha_{g_1g_2}$ is homotopic to $g_1\alpha_{g_2} + \alpha_{g_1}$. So, H is a family of preferred f-traces at x_0 . Therefore, a transformation group (X, G) admits a family of preferred f-traces at x_0 .

THEOREM 5. Let $f: X \longrightarrow X$ be a homeomorphism. A transfromation group (X,G) admits a family of preferred f-traces at x_0 if and only if there esixts an isomorphism $\phi: J(f,x_0,G) \longrightarrow J(f,x_0) \times G$ such that the diagram commutes

Proof. Let $K = \{k_g | g \in G\}$ be a family of preferred f-trace at x_0 . Define $\phi: J(f, x_0, G) \longrightarrow J(f, x_0) \times G$ by $\phi([\alpha:g]) = ([\alpha + k_g], g)$. Let $[\alpha:g]$ be an element of $J(f, x_0, G)$. Then there exists a f-homotopy $H: X \times I \longrightarrow X$ of order g such that H(x, 0) = f(x), H(x, 1) = gf(x) and $H(x_0, t) = \alpha(t)$, and $k_g \rho$ is a trace of f-homotopy $J: X \times I \longrightarrow X$ of order g.

Define $F: X \times I \longrightarrow X$ by

$$F(x,t) = \left\{ egin{array}{ll} H(x,2t), & 0 \leq t \leq 1/2 \ J(x,2(1-t)), & 1/2 \leq t \leq 1. \end{array}
ight.$$

Then F is a cyclic homotopy with trace $\alpha + k_g$, for

$$F(x,0) = H(x,0) = f(x), F(x,1) = J(x,0) = f(x),$$

$$F(x_0,t) = \begin{cases} H(x_0,t), & 0 \le t \le 1/2 \\ J(x_0,2(1-t)), & 1/2 \le t \le 1 \end{cases}$$

$$= (\alpha + k_a)(t).$$

Thus $[\alpha + k_g]$ belongs to $J(f, x_0)$. Let $[\alpha : g] = [\alpha' : g']$. Then α is homotopic to $\alpha', g = g'$ and $\alpha + k_g$ is also homotopic to $\alpha' + k_g$. Thus ϕ is well-defined. Suppose $\phi([\alpha : g]) = \phi([\alpha' : g])$. Then $\alpha + k_g$ is homotopoic to $\alpha' + k_g$. This implies that $\alpha(= \alpha + k_g + k_g \rho)$ is homotopic to $\alpha' = \alpha' + k_g + k_g \rho$. Therefore ϕ is injective.

For any element $([\alpha], g) \in J(f, x_0) \times G$, there exists a cyclic homotopy $H: X \times I \longrightarrow X$ such that H(x, 0) = f(x) = H(x, 1) and $H(x_0, t) = \alpha(t)$. Since $\{k_g | g \in G\}$ is a family of preferred f-traces at x_0 , there exists a f-homotopy $W: X \times I \longrightarrow X$ such that W(x, 0) = f(x), W(x, 1) = gf(x) and $W(x_0, t) = k_g \rho(t)$. Define

$$F(x,t) = \left\{ egin{array}{ll} H(x,2t), & 0 \leq t \leq 1/2 \ W(x,2t-1), & 1/2 \leq t \leq 1, \end{array}
ight.$$

then $F(x_0,t) = (\alpha + k_g \rho)(t)$. So, there exists an element $([\alpha + k_g \rho + k_g], g) = ([\alpha], g)$. Therefore, ϕ is surjective.

Next, we show that ϕ is a homomorphism. Let $[\alpha_1 : g_1]$ and $[\alpha_2 : g_2]$ be elements of $J(f, x_0, G)$. Then

$$\phi([\alpha_1:g_1]*[\alpha_2:g_2]) = \phi([\alpha_1 + g_1\alpha_2:g_1g_2])$$

= $([\alpha_1 + g_1\alpha_2 + k_{g_1g_2}], g_1g_2),$

while

$$\phi([\alpha_1:g_1]) \circ \phi([\alpha_2:g_2]) = ([\alpha_1 + k_{g_1}], g_1) \circ ([\alpha_2 + k_{g_2}], g_2)$$
$$= ([\alpha_1 + k_{g_1} + \alpha_2 + k_{g_2}], g_1 g_2).$$

Since $\alpha_2 + kg_2$ is a loop at $f(x_0)$ and $k_{g_1}\rho$ is a trace of a f-homotopy of order $g_1, \alpha_2 + k_{g_2}$ is homotopic to $k_{g_1}\rho + g_1(\alpha_2 + k_{g_2}) + k_{g_1}$ by Lemma 3. Therefore, we have

$$\begin{aligned} &\alpha_1 + k_{g_1} + \alpha_2 + k_{g_2} \sim \alpha_1 + k_{g_1} + k_{g_1} \rho + g_1(\alpha_2 + k_{g_2}) \\ + k_{g_1} \sim \alpha_1 + g_1(\alpha_2 + k_{g_2}) + k_{g_1} \sim \alpha_1 + g_1\alpha_2 + g_1k_{g_2} \\ + k_{g_1} \sim \alpha_1 + g_1\alpha_2 + k_{g_1g_2}. \end{aligned}$$

This implies that ϕ is a homomorphism.

Conversely, given a commutative diagram with exact rows and ϕ an isomorphism:

$$J(f,x_0,G)$$
 $i_G \nearrow \qquad j_G \searrow \ 0 \quad o \quad J(f,x_0) \qquad \downarrow \phi \qquad \qquad G \quad o \quad 0, \ i_1 \searrow \qquad \qquad \pi_2 \nearrow \swarrow i_2 \ J(f,x_0) imes G$

define $\psi: G \longrightarrow J(f, x_o, G)$ to be $\phi^{-1} \circ i_2$. Use the commutativity of the diagram to show $j_G \circ \psi = 1_G$. Then $J(f, x_0, G)$ is a split extension of $J(f, x_0)$ by G. By Theorem 4, (X, G) admits a family of preferred f-traces at x_0 .

COROLLARY 6. Let $f: X \longrightarrow X$ be a homeomorphism. A transformation group (X,G) admits a family of preferred f-traces at x_0 and G abelian if and only if $O \longrightarrow J(f,x_0) \longrightarrow J(f,x_0,G) \longrightarrow G \longrightarrow O$ is a split exact sequence of Z-module.

We show that the existence of a family of preferred f-traces on a transformation group does not depend on base point.

THEOREM 7. Let (X, G) be a transformation group. If λ is a path from x_0 to x_1 , then a family of preferred f-traces at x_0 gives rise to a family of preferred f-traces at x_1 .

Proof. Let $K = \{k_g | g \in G\}$ be a family of preferred f-traces at x_0 . For each element g of G, let $h_g = gf\lambda \rho + k_g + f\lambda$. Then $H = \{h_g | g \in G\}$ is a family of preferred f-traces at x_1 . Because, $h_e = f\lambda \rho + k_e + f\lambda \sim \hat{f}(x_1)$ and

$$\begin{split} h_{g_1g_2} &= (g_1g_2)f\lambda\rho + k_{g_1g_2} + f\lambda \\ &\sim (g_1g_2)f\lambda\rho + g_1k_{g_2} + k_{g_1} + f\lambda \\ &\sim (g_1g_2)f\lambda\rho + g_1k_{g_2} + g_1f\lambda + g_1f\lambda\rho + k_{g_1} + f\lambda \\ &\sim g_1(g_2f\lambda\rho + k_{g_2} + f\lambda) + (g_1f\lambda\rho + k_{g_1} + f\lambda) \\ &\sim g_1h_{g_2} + h_{g_1}. \end{split}$$

Since the induced isomorphism $(f\lambda)_*$ carries $J(f,x_0,G)$ isomorphically onto $J(f,x_1,G)$ by Theorem 8 in [8], $(f\lambda)_*[k_g\rho:g]=[f\lambda\rho+k_g\rho+gf\lambda:g]=[h_g\rho:g]$ belongs to $J(f,x_1,G)$ for any element $[k_g\rho:g]$ of $J(f,x_0,G)$. Thus $H=\{h_g|g\in G\}$ is a family of preferred f-traces at x_1 .

References

- D.H. Gottlieb, A certain subgroup of the fundamental group, Amer. J. Math. 87 (1965), 840-856.
- [2] D.H. Gottileb, Evaluation subgroups of homotopy groups, Amer. J. Math. 91 (1969), 729-756.
- [3] B.J. Jiang, Lectures on Nielsen fixed point theory, Contemp. Math. 14 Providence Amer. Math. Soc., 1983.
- [4] F. Rhodes, On the fundamental group of a transformation group, Proc. London Math. Soc. 16(3) (1966), 635-650.
- [5] M.H. Woo and Y.S. Yoon, Certain subgroups of homotopy groups of a transformation group, J. of Korean Math Soc. 20(2) (1983), 223-233.
- [6] M.H. Woo and K.Y. Lee Lee, Evaluation subgroups of the homotopy groups of a transformation group, J. of Korean Math. Soc. 1 (1986), 103-111.
- [7] M.H. Woo and K.B. Hwang, The base point of the fundamental group of a transformation group, J. Korean Math. Soc. 27(1) (1990), 111-117.
- [8] M.H. Woo and S.H. Han, An extended Jiang subgroup of fundamental group of a transformation gourp, C. Korean Math. Soc. 28 (1991).

Department of Mathematics Education Korea University Seoul 136-701, Korea and Department of Mathematics Kangweon National University Chuncheon 200-701, Korea