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PRIME SPECTRA OF FINITELY

GENERATED MODULES

SANG CHEOL LEE

In this paper, unless otherwise indicated, we shall not assume that
our rings are commutative, but we shall always assume that every ring
has an identity element. By a module, we shall always mean a unitary
left module.

DEFINITION. Let E be an R-module. Then a submodule A of E is
called an (resp. prime, radical) extended submodule if there exists an
(resp. prime, radical) ideal a in R such that A = aE.

LEMMA 1. Let E be a finitely generated R-module. Then every ex­
tended submodule of E is of the form aE, where a is an ideal of R
containing AnnRE.

Proof. This follows immediately from the fact that for every ideal I
of R, IE = (I + AnnR E)E.

DEFINITION. IT a is an ideal in a ring R and n is a positive integer,
the n-th radical of a in R is defined by

y'ii = {x E R I x n E a} .

.va = a. -\Iii is merely a subset of R contained in the radical viii of a
in R. However, if R is a commutative ring and is of prime characteristic
p, then {I'(i forms an ideal of R.

LEMMA 2. Let R be a commutative ring and E an R-module gener­
ated by n elements. H a is an ideal in R containing AnnR E, then

(Of course, if n = 1, the commutativity condition on R can be omitted.)
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In particular, if either E is cyclic or a is a radical ideal in R containing
AnnRE, then

AnnR(EjaE) = a.

Moreover, for every proper ideal a in R containing AnnR E, aE =J. E.

Proof. Use Theorem 75 of [K70].

THEOREM 3. Let E be a cyclic R-module. E satisfies the ascending
chain condition (resp. descending chain condition) on extended submod­
ules if and only if the residue class ring Rj AnnR E is Noetherian (resp.
Artinian).

Proof. The if part follows from Lemmas 1, 2, and the only if part
follows from Lemma 2.

THEOREM 4. Let R be a commutative ring and E a finitely generated
R-module which satisfies the ascending chain condition on prime (resp.
radical) extended submodules. Then the residue class ring Rj AnnR E
satisfies the ascending chain condition on prime (resp. radical) ideals.

Moreover, this statement also holds in the case that "the ascending
chain condition" is replaced by "the descending chain condition".

Proof. This follows from the definitions and Lemma 2.

We recall the definition [L91, p.1] : in an R-module E, a submodule
P is called a prime 8ubmodule of E if (a) P is proper and (b) whenever
re E P (r E R, e E E), then either e E P or rE S; P. This definition is
the natural generalization of the one of a prime ideal in a commutative
ring.

Let E be a non-zero finitely generated R-module. There is no guar­
antee that pE is a prime R-submodule in E, even if p is a prime ideal
in R containing AnnR E. We will discuss under what conditions pE is a
prime R-submodule in E provided that p is a prime ideal of R containing
AnnRE.

PROPOSITION 5. Let R be a commutative ring and E a free R-module
with a finite basis. Then every prime extended submodule in E is prime.
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LEMMA 6. Let R be a commutative quasi-local ring, and E a finitely
generated R-module. Then E is quasi-local if and only if E is cyclic.

Proof. See Corollary to Theorem 13 of [L91].

LEMMA 7. Every quasi-local finitely generated R-module E is inde­
composable.

Proof. IT E is decomposable there exist submodules A, B of E such
that E = A ffi B, and A =I- 0, B =I- O. But then A =I- E =I- B. Let M
be the unique maximal submodule of E. Then A +B ~ M =I- E, which
contradicts.

LEMMA 8. The injective envelope of a submodule, within a given
non-singular module, is unique.

Proof. Assume that E and E' are both injective envelopes of a sub­
module N, within a given non-singular R-module M. Then it is well­
known [G76, Proposition 1.11] that there exists an isomorphism f from
E onto E' such that fiN = idN.

E is non-singular because it is a submodule of the non-singular mod­
ule M. Since E is an essential extension of N, it follows from [G76,
Proposition 1.21] that EjN is singular. We now consider the following
diagram

E
J

---41 E'
inc',. /inc

M

The two homomorphisms E ~ M, E ~ E' ~ M agree on N.
Therefore by [G76, Lemma 2.1] they must be equal and hence E =
f(E) = E' in M.

LEMMA 9. Let M = LiEI Ei be a non-singular R-module which is
a sum of indecomposable injective submodules Ei. Then there exists a
subset J of I such that M = LjEJEj(d.s.).

Proof. Consider the family {Ei}iEI. Then by [SV72, Proposition 1.7]
there is a maximal subfamily, say {Ej };EJ, of {EdiEI such that the sum
LjEJ Ej is direct. Let C = LjEJ Ej(d.s.). It now suffices to prove that
C=M.
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Suppose on the contrary that C I- M. Then there exists i in I such
that Ei 1: C. By the maximality of {Ej}ieJ, Ei n C I- O. This implies
that there exists a finite number of elements jt,h, ... ,jn in J such that
Ei n (Eil ffi Ej2 ffi··· ffi Ein) I- o. We put

P=E· ffiE· ffi ... ffiE·
11 II7 12 II7 II7 1n'

Q = Ei np,

so that Q I- O. Since P is injective, Q has an injective envelope E(Q)
which is a submodule of P [SV72, Proposition 2.22]. FUrther, Ei is an
injective envelope E'(Q) of Q [SV72, Proposition 2.28]. Therefore by
Lemma 8, Ei = E'(Q) = E(Q) ~ P ~ C. This gives a contradiction
and shows that C = M.

Let E be an R-module which is a direct sum of a finite number of cyclic
submodules, say Rdt, , Rdm • If P is a prime ideal of R containing
(0 : dI ) + (0 : d2 ) + + (0 : dm ), then pE is a prime R-submodule of
E. Hence, from Lemmas 6, 7, 9, we get the following result.

THEOREM 10. Let R be a commutative quasi-local ring and E =
ReI + Re2 + ... + Ren a non-singular finitely generated R-module with
the property that each Rei is an injective R-submodule. If p is a prime
ideal of R containing (0: et} + (0: e2) + ... + (0: en) then pE is a prime
R-submodule of E.

Let E be a non-zero finitely generated R-module. Then the prime
spectrum of E,. denoted by SpecR E, is defined to be the collection of
all the prime R-submodules in E. Let R denote R/ AnnR E. Then the
mapping f: SpecRE -+ SpecRR defined by f(P) = AnnR(E/P), where
P E SpecR E, is neither surjective nor injective, in general. If E is a free
module with a finite basis over a commutative ring R, then the mapping
f : SpecR E -+ SpecR R defined as above, is surjective (Proposition 5
and Lemma 2), but not injective, in general.

Let R be a commutative ring and E a free R-module with a finite
basis. We now restrict our attention to the minimal prime spectrum
of E, denoted by MinR E, which is defined to be the collection of all
the minimal prime R-submodules in E. The image of its restriction
f IMinR E : MinR E -+ SpecR R to the minimal prime spectrum MinR E
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is MinR R. In fact, let P be a minimal prime submodule in E. Consider
a prime ideal q in R satisfying q ~ AnnR(EjP). Then qE ~ P. But qE
is a prime submodule in E and AnnR(EjqE) = q. Since P is minimal,
we must have qE = P and q = AnnR(E/P). Hence AnnR(EjP) is a
minimal prime ideal in R.

Conversely, if p is a minimal prime ideal in R, then pE is a prime
submodule in E. Further, let Q be a prime submodule in E and Q ~ pE.
Then AnnR(EjQ) ~ AnnR(EjpE) = p, so p = AnnR(EjQ). Hence
pE ~ Q, and therefore Q = pE. Consequently, pE is a minimal prime
submodule and AnnR(EjpE) = p.

By the above argument, the mapping flMinR E : MinR E -+ MinR R
is surjective. Moreover, it is injective. In fact, assume that P and Q are
minimal prime submodules in E satisfying AnnR(EjP) = AnnR(EjQ).
Then (AnnR(EjP»E ~ P, so P = (AnnR(EjP»E. Similarly, Q =
(AnnR(EjQ»E. Hence, P = Q.

Let us summarize the results as follows :

THEOREM 11. Let R be a commutative ring and E a non-zero free R­
module with a finite basis. Then there is a on~-to-one order-preserving
correspondence between all the minimal prime R-submodules in E and
all the minimal prime ideals in R, given alternatively by P +-+ AnnR(E / P)
or pE +-+ p.

COROLLARY. Let R be a commutative ring and E a non-zero free
R-module with a finite basis. Then eveJY minimal prime submodule in
E is of the form pE, where p is a minimal prime ideal in R containing
AnnRE.

Let R be a commutative ring and E a non-zero free R-module with a
finite basis. Then, it follows from Lemma 2 and Theorem 11 that

Card(MinR E) = Card(MinR R) ::; Card(SpecR R) ::; Card(SpecR E),

where Card(A) means the cardinality of a set A.
H a module is non-singular, then so is every module which is isomor­

phic to it.
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PROPOSITION 12. IfE is a non-singular R-module, then so is R/ AnnR E.

Proof. Assume that E is a non-singular R-module. Set R = R/ AnnR E
and let AnnR x be an essential ideal in R, where x denotes the residue
class of x E R modulo AnnR E. Then AnnR(xE) is also an essential
ideal in R. In fact, for any non-zero ideal I in R, In AnnR x =I O. Take
i E I with i =I 0 and ix = 0 in R. Then ix = 0 mod (AnnR E), hence
i(xE) = 0 in E. This implies that In AnnR(xE) =I o.

By our assumption, xE = 0 in E. Hence x = 0 in R.

LEMMA 13. If E is a non-singular module over a commutative ring
R, then the ideal AnnR E of R is radical.

Proof. Assume that E is a non-singular module over a commutative
ring R. Let R denote the residue class ring R/ AnnR E. It suffices to
prove that R is reduced.

Let x be any nilpotent element in R, where x denotes- the residue class
of x E R modulo AnnR E. Then it follows from [K70, §1-3, Exercise 14,
p.21] that x is a zero-divisor on every ideal in R. Hence Annk(x) is
an essential ideal in R, so that I n AnnR(xE) =I 0 for any ideal I of
R not contained in AnnR(E). Further, xE ~ E implies AnnR(E) ~

AnnR(xE), and hence In AnnR(xE) = I for any ideal I of R contained
in AnnR E. Thus, the intersection of any non-zero ideal I in R and
AnnR(xE) is non-zero. It follows that AnnR(xE) is an essential ideal in
R. Therefore, by our assumption, xE = 0, and hence x = 0 in R.

COROLLARY 1. IfE is a non-singular faithful module over a commu­
tative ring R, then R is reduced.

COROLLARY 2. Every non-singular commutative ring is reduced.

THEOREM 14. Let ~ !Je a non-zero cxc1ic JPgqy.le oyer~. co~",ta­

tive ring R and P a minimal prime R-submodule in E. Let p denote
AnnR(E/P). IfE is non-singular, then E p is a simple Rp-module.

Proof. E p is a quasi-local Rp-module with unique maximal submodule
(pRp)Ep [L91, Theorem 13]. To show that Ep is simple, it suffices to
prove that (pRp)Ep = 0, i.e. pRp = AnnRp Ep.

Since P is a minimal prime submodule of E, it follows from the state­
ment just prior to Theorem 10, and Lemma 2 that p is a minimal ~rime
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ideal in R containing AnnR E. The connection between the prime ideals
in R and those in Rp shows that pRp is the only prime ideal in Rp con­
taining (AnnR E)Rp• It is well-known [N76, Chapter 2, Theorem 12,
p.41] that (AnnR E)Rp = AnnRp Ep• Hence .jAnnRp Ep = pRp [N76,
Chapter 4, Theorem 10, p.113]. Now, it suffices to show that AnnRp Ep

is a radical ideal in Rp•

By our assumption and Lemma 13, AnnR E is a radical ideal in
R. Further, we know, from [AM69, Proposition 3.11, v), p.42] , that
.j(AnnR E)Rp = (JAnnR E)Rp• Therefore, AnnRp Ep is a radical ideal
in Rp•

COROLLARY. H P is a minimal prime ideal in a non-singular commu­
tative ring R, then Rp is a field.

Of course, this corollary can be proved by using Corollary 2 to Lemma 13.
In fact, if p is a minimal prime ideal in a commutative reduced ring R,
then Rp is a field.
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