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ON CERTAIN CLASSES OF
MULTIVALENT FUNCTIONS

Nak Eun CHO

1. Introduction

Let A, denote the class of functions of the form

(11)  f2)=2"+ arspe™™® (peN={1,2,3,})
k=1

which are analytic in the open unit disk U = {z: |z| < 1}. Let fand ¢
belong to A,. We denote by f x g the Hadamard product or convolution
of f,g € A, , that is, if

(12) f(x)=2"+ Z ak+p2k+p and g¢(z) =27+ Zbk+pzk+p,
k=1

k=1
then
o0
(1.3) (Fx9)(2) =27+ artpbispz*?.
k=1
Let
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P
” D™l f(z) = Ao * f(2)
( ° B 2P (zn_]f(z))(n'l'P’l)

(n+p-1)

9

where n is any integer greater than —p.
Goel and Sohi [2] introduced the classes Ky, , (i.€., K, p) of functions
f € A, which satisfy the condition

n+p z
(1.5) Re{ﬁ%—{-ﬁ(—g} >% (z € V).

They proved that Kn41p C Ky p for any integer n greater than —p.
Let R, () denote the classes of functions f € A, which satisfy the
condition

pe ntp—1 £(, !
(16) Re{ I()gnﬂ_]; ((zi) } Sa (zeU)

for some o (0 < o < 1). We have R_p41,,(a) = Sp(«), where S;(a) is
the well known class of p-valent starlike functions of order a. For p = 1,
the classes R, 1(0) and R, ;(a) were considered by Singh and Singh [7]
and Ahuja [1], respectively.

In this paper, we prove that Rn,y1 () C Rpp(a). Since R_p41 ()
is a class of p-valent starlike functions [9], it follows that all functions in
Ry »(a) are p-valent. We also investigate some properties of the classes
R, p(a). Furthermore, we obtain some special elements of R,,(a) by
Hadamard product.

2. Some properties of the classes R, {,_:1(a)

We need the following lemma due to Jack [3] for the proofs of the
comming results.
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LEMMA 1. Let w be a nonconstant and analytic function in |z| < r <
1, w(0) = 0. If |w| attains its maximum value on the circle |z| = r at
20, then zow'(zp) = kw(zo), where k is a real number and k > 1.

THEOREM 1. Rpy1p(a) C Rup(a) for any integer n greater than
—p‘
proof. Let f € Ryy1p(a). Then

‘ z(D"** f(2))
(2.1) Re {W} > a.

We have to show that (2.1) implies the inequality

pe (Dn+P—1f(z))'
(2.2) Re{ pD L 1(2) } > a.

Define w(z) in U by

z (D1 f(2)) _ 14 (2a—1)u(z)
pD™+P=1f(z) 1+w(z) -

(2.3)
Clearly w(z) is analytic, w(0) =0 and w(z) # —1. Using the identity

24)  2(D"7f(2)) = (n +p)D"Hf(2) - nD" P f(2),

the equation (2.3) may be written as

D™?f(z) _ (n+p)+(n+p2a—1)uw(z)

(2.5) D5 - (n+p)(1+ w(z))

Differentiating (2.5) logarithmically, we obtain
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(D52 1+ (20— 1Ju(z)
pD™?f(z) 1+ w(z)
_ 2(1 — a)zw'(2)
TT () (3 +9) + (n F p@a D) w()

We claim that |w(z)] < 1. For otherwise, by Lemma 1, there exists
zp € U such that

(2.6)

(2.7) zow'(z0) = kw(zo),

where |w(zo)] = 1 and k£ > 1. The equation (2.6) in conjugation with
(2.7) yields

(2.8)
20 (D™? f(z))’ _ 1+ (2a — 1w(z)
pD™? f(z) 1+ w(zo)
B 2(1 — a)zw'(z0)
(1 +w(20)) ((n +p) + (n + (20 — 1)) w(z0))
Thus

20 (D™*? f(z0)) k(1 — )
(2.9) Re { pD™*? f(z9) } fa-— %n + pa) < aq,

which contradicts (2.1) and from (2.3) it follows that f € Ry y(a).
THEOREM 2. Let f € R, ,(a). Then

Dn+p-1f(z) B 1
(2.10) Re{ - } > S ey 11 (z €U),

where 0 < B < 2—’;(—11:;7.
Proof. Let f € Ryp(a),lety = Wl-l—_am' and let w(z) be analytic

function such that
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211) {D"+P—1f(z)}" _1+(2r-Duw()

zP - 1+ w(z2)

Then w(0) = 0 and w(z) # —1. The theorem will follow if we can show
that |w(z)| < 1 in U. Now differentiating (2.11) logarithmically, we get

z(DP () 2(1 — y)zw'(2)
pD™=1f(z) 7 Bp(1+w(2)) 1+ (27— Duw(z))’
We now claim that |w(z)] < 1 for z € U. For otherwise, by lemma 1,

there exists a point zg € U such that zow'(2¢) = kw(zo) with |w(z)| =1
and k > 1. Applying this result to (2.12), we obtain

(2.12)

2 (D1 f(20) | . k(L—7)
(2.13) Re{ pD" T [(20) } <1 By <a

This contradicts the hypothesis that f € R, (a). Hence we conclude
that |w(2)| < 1 for z € U. This completes the proof of theorem.

Taking p =1, n =0and 8 = Tll—?)' in Theorem 2, we obtain the
following corollary which was proved by Jack [3].

COROLLARY 1. Let f € Sf(a). Then

(2.14) Re {@}ﬁ > % (z € U).

Putting p=1, n =0 and B #~ 1 in Theorem 2, we have
COROLLARY 2. Let f € Sf(a) (3 < a<1). Then

(2.15) Re { f(:)} >3 _12a (z € U).
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REMARK. Under the condition of Corollary 2, taking a = -%, we have
a result of MacGregor [6].

Takingp=1,n=1and 8 = -;— in Theorem 2, we obtain the following
known result of Strohacker [8].

COROLLARY 3. Let f € Ay be such that Re {1 + —‘3{—'((7;2} > 0. Then

(2.16) Re { ()} > -;- (z e U).

3. Special elements of the classes R, ,(a)

In this section, we form special elements of the classes R, (@) by the
Hadamard product of elements of Ry, ;(a) and h.(z), where
he(z) = JZ=; c+jz] (Re ¢ > —p).

THEOREM 3. Let f € R, p(a) and ¢ + pa > 0. Then

(3.1) F(z)y=(f*he)(2)= c;l—cp /Oz t~ f(t)dt

belongs to R, p(a).
Proof. Let f € Rpyp—1(a). From (3.1), we obtain

(32)  z(D™T'F(2)) = (p+c)D"Pf(z) — cD"PPTIF(2).

Define w(z), analytic in U by

2 (D IF(2) 14 (20— Dw(z)
pD™tP-1F(2) 1+ w(z)

(3.3)
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Obviously w(0) = 0 and w(z) # —1 for z € U. It is sufficient to show
that |w(z)| < 1 for z € U. Using the identity (3.2) and taking the
logarithmic derivative of (3.3), we get

z (D"'H’_lf(z))' _ 1+ (2a — 1)w(z)
pDnr—1f(2) 14+ w(z)
_ 2(1 — a)zw'(2)
(1 +w(2))((c+p) + (c +p(2a — 1)) w(z))’

(3.4)

The remaining part of the proof is similar to that of Theorem 1.
In case ¢ = n, Theorem 3 can be improved as follows.

THEOREM 4. Let f € R, p(a) and let n be any integer greater than
—p. Then '

(3.5) F(z) =2+ /0 "1 ()t

zn

belongs to Rn41p(a).
Proof. Let f € R, p(a). Applying (2.4) and (3.2), we have

(3.6) D™=l f(2) = D"PF(2).

Therefore

2(D"PF(2))' | _ 2 (D™P=15(2))
(3.7) Re{ pD" P F(z) } = Re{ PD P I1(2) } > a

Hence F € Rn+1,p(a).
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THEOREM 5. Let f € A, satisfy the condition

2 (DT f(2) } Sa-—2"%_ (zeD),

38 R { pDntP-1 f(2) ~ 2c+pa)

where n is any integer greater than —p and c+pa > 0 (0 < a < 1).
Then F(z) as given by (3.1) belongs to R, ,(a).

The proof of this theorem is similar to that of Theorem 3 and so we omit
it.

The following special cases of Theorem 5 represent some improvement
on theorems due to Libera [4] in the sense that much weaker assumptions
produce the same results.

Taking p = 1,n = 0 and a = 0 in Theorem 5, we get

COROLLARY 4. Let f € A, be such that Re {%—S—)} >—2 (¢>0)
Then F(z) is starlike in U, where

(3.9) F(z) = ¢1 A "1 ()t

zC
Putting p = 1,n = 0 and a = 0, Theorem 5 reduces to

COROLLARY 5. Let f € A; be such that Re {1 + ’f,"z;)} > -4
(¢ > 0) . Then F(z) as given by (3.9) above is convex in U.
We now prove the converse of Theorem 3.

THEOREM 6. Let F € Ry, p(a) and c+ pa > 0. Let f(z) be defined
as

(3.10) F(z)= X2 / T f(2) .

Thenf € Rn,p(a) in IZI < Rc — —((1—0)P+1)+\/((lc-:;?’l;tl’?z+(c+1')(c+2&?—P) )

Proof. Since F € R, p(a), we can write
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z (D""'P_IF(z))’

(3.11) DTG

= (a+ (1 - a)u(2)),

where u € P, the class of functions with positive real part in U and
normalized by u(0) = 1. Using the identity (3.2) and differentiating
(3.11) logarithmically, we get

(3.12)
z (D""’"“lf(z))' Ca o) leu zu'(z)
( D7 () ) e = o+ -

Using the well known estimate |2u'(z)] < 7225 Re {u(z)} and Re {u(z)} >

12 (] =), the equation (3.12) yields

(D) N
(3.13) Re{( DL f(2) a) 1-a) }

2r
2 Retwle) (1 Ty TA SRS

Now the right hand side of (3.13) is positive provided r < R.. Hence
f € R, p(a) for |z| < R,.

Taking p = 1 and n = 0 in Theorem 6, we get the following result.

COROLLARY 6. Let F € S}(a) and c+a > 0. Let f(2) be defined as
(3.9).Then f € S3(a) for |z| < 22tV CoP Hethet2aD)

REMARK. Above Corollary 6 is an extension of the result obtained
earlier by Libera and Livingston [5] for ¢ = 1.
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