SYSTEMS OF SIMULTANEOUS EQUATIONS OF VECTOR FORMS ON OPERATOR ALGEBRAS

HAN SOO KIM, IL BONG JUNG AND BOK JA KIM

Let \mathcal{H} be a separable, complex Hilbert space and let $\mathcal{L}(\mathcal{H})$ be the algebra of all bounded linear operators on \mathcal{H} . For a linear manifold \mathcal{A} in $\mathcal{L}(\mathcal{H})$, a form on \mathcal{A} is a linear functional on \mathcal{A} . For $x, y \in \mathcal{H}$, $x \otimes y$ denotes the form on $\mathcal{L}(\mathcal{H})$ defined by $x \otimes y(S) = (Sx, y)$ for any $S \in \mathcal{L}(\mathcal{H})$ (cf. [2]). An elementary form on a linear manifold \mathcal{A} in $\mathcal{L}(\mathcal{H})$ is the restriction $x \otimes y \mid \mathcal{A}$ for $x, y \in \mathcal{H}$. It is well-known that there are several Hausdroff locally convex topologies on $\mathcal{L}(\mathcal{H})$. Recently several functional analysists have been studied systems of simultaneous equations of weak* continuous elementary forms on a singly generated operator algebra (cf. [3]). This study has been applied to invariant subspaces, dilation theory, and reflexivity for contraction operators. In particular, Jung-Kim (cf. [5]) introduced property $(\tau_{m,n})$ which are concerned with the system of simultaneous equations of vector forms and obtained some new dilations of operator algebras related with property $(\tau_{m,n})$. This paper is a sequel study of those in [5].

Throughout this paper the topology τ is one of the following topologies; weak operator topology, operator-normed topology, strong operator topology, weak* topology (or equivalently, ultra-weak operator topology), or ultra-strong operator topology on $\mathcal{L}(\mathcal{H})$. N denotes the set of natural numbers and C the complex plane. \mathcal{A} denotes a unital subalgebra of $\mathcal{L}(\mathcal{H})$ (note that the closedness of \mathcal{A} is not considered).

DEFINITION 1. Suppose that m and n are any cardinal numbers such that $1 \leq m$, $n \leq \aleph_0$ and r is a fixed real number satisfying $r \geq 1$. A subalgebra \mathcal{A} of $\mathcal{L}(\mathcal{H})$ has property $(\tau_{m,n}(r))$ if for any τ -continuous

Received March 3, 1992. Revised June 18, 1992.

This work was partially supported by the Basic Science Research Institute Program, Ministry of Education, 1991-1992.

form $\{\phi_{ij}\}_{\substack{0 \le i < m \ 0 \le j < n}}$ on \mathcal{A} and r < s, there exist $\{x_i\}_{0 \le i < m}$ and $\{y_j\}_{0 \le j < n}$ in \mathcal{H} such that $\phi_{ij} = x_i \otimes y_j$ on \mathcal{A} ,

$$||x_i|| \le \left(s \sum_{0 \le j < n} ||\phi_{ij}||\right)^{\frac{1}{2}} \quad \text{for} \quad 0 \le i < m ,$$

and

$$\|y_j\| \le \left(s \sum_{0 \le i < m} \|\phi_{ij}\|\right)^{\frac{1}{2}} \quad \text{for} \quad 0 \le j < n .$$

PROPOSITION 2. Assume that the adjoint operation $\Phi(A) = A^*$ from \mathcal{A} onto $\mathcal{A}^*(=\{A^*|A\in\mathcal{A}\})$ is τ -continuous under the given topology τ in $\mathcal{L}(\mathcal{H})$. Suppose m and n are any cardinal numbers such that $1\leq m,n\leq\aleph_0$. Then \mathcal{A} has property $(\tau_{m,n}(r))$ if and only if \mathcal{A}^* has property $(\tau_{n,m}(r))$.

Proof. Let $\{\phi_{ji}\}_{\substack{0 \leq i < m \\ 0 \leq j < n}}$ be a system of τ -continuous forms on \mathcal{A}^* . Put $\psi_{ij} = \overline{\phi}_{ji} \circ \Phi$ for $0 \leq i < m, 0 \leq j < n$, where $\overline{\phi_{ji}}(S) = \overline{\phi_{ji}}(S)$ for $S \in \mathcal{A}^*$. Then ψ_{ij} is τ -continuous form on \mathcal{A} . By definition, there exist $\{x_i\}_{0 \leq i < m}$ and $\{y_j\}_{0 \leq j < n}$ in \mathcal{H} such that $\psi_{ij} = x_i \otimes y_j$,

$$||x_i|| \le \left(s \sum_{0 \le j < n} ||\psi_{ij}||\right)^{\frac{1}{2}}$$
 for $0 \le i < m$

and

$$||y_j|| \le \left(s \sum_{0 \le i < m} ||\psi_{ij}||\right)^{\frac{1}{2}}$$
 for $0 \le j < n$.

So $\phi_{ji}(A^*) = \overline{\psi_{ij}(A)} = (A^*y_j, x_i)$ and $\|\psi_{ij}\| = \|\phi_{ji}\|$. Moreover, we have

$$||x_i|| \le \left(s \sum_{0 \le j < n} ||\phi_{ji}||\right)^{\frac{1}{2}}$$
 for $0 \le i < m$

and

$$\|y_j\| \le \left(s \sum_{0 \le i < m} \|\phi_{ji}\|\right)^{\frac{1}{2}}$$
 for $0 \le j < n$.

Hence \mathcal{A}^* has property $(\tau_{n,m}(r))$. Conversely, we can prove the converse implication by a similar method.

PROPOSITION 3. If \mathcal{M} is a τ -closed subalgebra with property $(\tau_{m,n}(r))$ for some cardinal numbers m and n with $1 \leq m, n \leq \aleph_0$ and \mathcal{N} is a τ -closed subalgebra of \mathcal{M} , then \mathcal{N} has property $(\tau_{m,n}(r))$.

Proof. Let $\{\phi_{ij}\}_{\substack{0 \le i < m \\ 0 \le j < n}}$ be a system of τ -continuous form on \mathcal{N} . Since \mathcal{A} is a locally convex space under the given topology τ , by [4, Proposition 14.13], there exists a system $\{\psi_{ij}\}_{\substack{0 \le i < m \\ 0 \le j < n}}$ of τ -continuous forms on \mathcal{M} such that $\psi_{ij}|\mathcal{N} = \phi_{ij}$ and $\|\psi_{ij}\| = \|\phi_{ij}\|$, $0 \le i < m$, $0 \le j < n$. Hence there exist $x_i, y_j \in \mathcal{H}$, $0 \le i < m$, $0 \le j < n$, such that $\psi_{ij} = x_i \otimes y_j$,

$$||x_i|| \le \left(s \sum_{0 \le j < n} ||\psi_{ij}||\right)^{\frac{1}{2}}$$
 for $0 \le i < m$

and

$$||y_j|| \le \left(s \sum_{0 \le i < m} ||\psi_{ij}||\right)^{\frac{1}{2}} \text{ for } 0 \le j < n.$$

Moreover, it follows trivially that $\phi_{ij} = x_i \otimes y_j$,

$$||x_i|| \le \left(s \sum_{0 \le j < n} ||\phi_{ij}||\right)^{\frac{1}{2}}$$
 for $0 \le i < m$

and

$$||y_j|| \le \left(s \sum_{0 \le i < m} ||\phi_{ij}||\right)^{\frac{1}{2}}$$
 for $0 \le j < n$.

Hence \mathcal{N} has property $(\tau_{m,n}(r))$ and the proof is complete.

We write

$$A^{(n)} = \{\underbrace{A \oplus \cdots \oplus A}_{(n)} \mid A \in A\},\$$

which is called an n-th ampliation of A.

PROPOSITION 4. If A has property $(\tau_{1,1}(r))$, then an ampliation $A^{(n)}$ has property $(\tau_{1,n}(r))$ for any cardinal number n with $1 \le n \le \aleph_0$.

Proof. Let $\{\phi_i\}_{0 \leq i < n}$ be a system of τ -continuous forms on $\mathcal{A}^{(n)}$. Define $\psi_i(A) = \phi_i(A^{(n)})$ for any $A \in \mathcal{A}$, $0 \leq i < n$. Then ψ_i is a τ -continuous form on \mathcal{A} . So there exist $\{x_i\}_{0 \leq i < n}$ and $\{y_i\}_{0 \leq i < n}$ in \mathcal{H} such that $\psi_i = x_i \otimes y_i$,

$$||x_i|| \le (s ||\psi_i||)^{\frac{1}{2}} \text{ for } 0 \le i < n$$

and

$$||y_i|| \le (s ||\psi_i||)^{\frac{1}{2}} \text{ for } 0 \le i < n.$$

Set

$$\widetilde{x} = (\underbrace{x_0, x_1, \cdots}_{(n)})$$

and

$$\widetilde{y}_i = (\underbrace{0, \cdots, 0, y_i, 0, \cdots}_{(i)})$$
 for $0 \le i < n$.

Then it is easy to show that $\phi_i = \tilde{x} \otimes \tilde{y}_i$, $0 \leq i < n$

$$\|\widetilde{x}\| = \left(\sum_{0 \leq i < n} \|x_i\|^2\right)^{\frac{1}{2}} \leq \left(s \sum_{0 \leq i < n} \|\phi_i\|\right)^{\frac{1}{2}}$$

and

$$\|\widetilde{y}_i\| = \|y_i\| \le (s \|\phi_i\|)^{\frac{1}{2}} \text{ for } 0 \le i < n.$$

Hence $\mathcal{A}^{(n)}$ has property $(\tau_{1,n}(r))$.

PROPOSITION 5. If A has property $(\tau_{1,n}(r))$ for some cardinal number n with $1 \le n \le \aleph_0$, then $\mathcal{A}^{(n)}$ has property $(\tau_{n,n}(r))$.

Proof. Let $\{\phi_{ij}\}_{0 \leq i,j < n}$ be a system of τ -continuous forms on $\mathcal{A}^{(n)}$. Define $\psi_{ij}(A) = \phi_{ij}(A^{(n)})$ for $A \in \mathcal{A}$, $0 \leq i,j < n$. Then ψ_{ij} is a τ -continuous form on \mathcal{A} . By hypothesis, for fixed i with $0 \leq i < n$, there exist $x_i \in \mathcal{H}$ and $\{y_{ij}\}_{0 \leq j < n}$ in \mathcal{H} such that $\psi_{ij} = x_i \otimes y_{ij}$,

$$\|x_i\| \le \left(s \sum_{0 \le j < n} \|\psi_{ij}\|\right)^{\frac{1}{2}}$$
 for $0 \le i < n$

and

$$||y_{ij}|| \le (s ||\psi_{ij}||)^{\frac{1}{2}} \text{ for } 0 \le j < n.$$

Set

$$\widetilde{x_i} = \underbrace{(0,0,\cdots,0,x_i,0,\cdots)}_{(i)} \text{ for } 0 \leq i < n$$

and

$$\widetilde{y_j} = (\overbrace{y_{1j}, y_{2j}, \cdots}^{(n)})$$
 for $0 \le j < n$.

Then it is easy to show that $\phi_{ij} = \tilde{x}_i \otimes \tilde{y}_j$, $0 \leq i, j < n$

$$\|\widetilde{x}_i\| = \|x_i\| \le \left(s \sum_{0 \le j < n} \|\phi_{ij}\|\right)^{\frac{1}{2}}$$
 for $0 \le i < n$

and

$$\|\widetilde{y}_j\| = \left(\sum_{0 \le i < n} \|y_{ij}\|^2\right)^{\frac{1}{2}} \le \left(s \sum_{0 \le i < n} \|\phi_{ij}\|\right)^{\frac{1}{2}} \text{ for } 0 \le j < n.$$

Hence $\mathcal{A}^{(n)}$ has property $(\tau_{n,n}(r))$.

PROPOSITION 6. If A has property $(\tau_{1,1}(r))$, then $A^{(n^2)}$ has property $(\tau_{n,n}(r))$ for any cardinal number n with $1 \le n \le \aleph_0$.

Proof. By Proposition 4 and 5 this proof is simple, since $(A^{(n)})^{(n)}$ is identified with $A^{(n^2)}$.

We now consider a sufficient condition for property $(\tau_{1,n})$. First, we start from the following definitions.

DEFINITION 7. [1]. If $A \subset \mathcal{L}(\mathcal{H})$ and $x \in \mathcal{H}$, then Cyc(A, x) denotes the smallest subspace of \mathcal{H} that contains x and invariant for every S in A.

DEFINITION 8. [5]. Suppose m and n are any cardinal numbers with $1 \leq m, n \leq \aleph_0$. A subalgebra \mathcal{A} of $\mathcal{L}(\mathcal{H})$ has property $(\tau_{m,n})$ if for any system $\{\phi_{ij}\}_{\substack{0 \leq i < m \\ 0 \leq j < n}}$ on \mathcal{A} of τ -continuous forms, there exist $\{x_i\}_{\substack{0 \leq i < m \\ \text{and }}}$ and $\{y_j\}_{\substack{0 < j < n \\ \text{in}}}$ in \mathcal{H} such that $\phi_{ij} = x_i \otimes y_j$ on \mathcal{A} .

For a subalgebra $\mathcal{A} \subset \mathcal{L}(\mathcal{H})$, we write $\widetilde{\mathcal{H}} = \sum_{i=1}^n \mathcal{H}_i$ and $\widetilde{A} = \sum_{i=1}^n \mathcal{A}_i$, where $\mathcal{H}_i = \mathcal{H}$ and $A_i = A \in \mathcal{A}$, $1 \leq i \leq n$. And we denote $\widetilde{\mathcal{A}} = \{\widetilde{A} \mid A \in \mathcal{A}\}$.

THEOREM 9. If a subalgebra \mathcal{A} of $\mathcal{L}(\mathcal{H})$ has property $(\tau_{1,1})$ and for each $n \in \mathbb{N}$ and $\widetilde{x} \in \widetilde{\mathcal{H}}$, there exist an element x in \mathcal{H} and a unitary operator

 $U: Cyc(\widetilde{\mathcal{A}}, \widetilde{x}) \longrightarrow Cyc(\mathcal{A}, x)$ such that

$$U^*(A|Cyc(A,x))U = \overset{\cdot}{A}|Cyc(\widetilde{A},\widetilde{x}),$$

then A has property $(\tau_{1,n})$.

Proof. By [5, Proposition 2.4 (c)], for τ -continuous form ϕ_i on \mathcal{A} , there exist \widetilde{x} and \widetilde{y}_i in $\widetilde{\mathcal{H}}$ such that $\phi_i(A) = (\widetilde{A}\widetilde{x}, \widetilde{y}_i), \ 0 \leq i < n$. Let $\mathcal{M} = Cyc(\widetilde{\mathcal{A}}, \widetilde{x})$ and $v_i = UP_{\mathcal{M}}\widetilde{y}_i$ for $0 \leq i < n$, where $P_{\mathcal{M}}$ is the orthogonal projection onto \mathcal{M} . Since

$$(\widetilde{A} \ \widetilde{x}, \widetilde{y_i}) = (\widetilde{A} \ \widetilde{x}, P_{\mathcal{M}} \widetilde{y_i})$$

$$= (\widetilde{A} \widetilde{x}, U^* v_i)$$

$$= (AU\widetilde{x}, v_i)$$

for any $A \in \mathcal{A}$, $\phi_i(A) = (AU\widetilde{x}, v_i)$ for $0 \le i < n, A \in \mathcal{A}$. Hence \mathcal{A} has property $(\tau_{1,n})$.

References

- D. Hadwin and E. Nordgren, Subalgebra of reflexive algebras, J. Operator Theory 7 (1982), 3-23.
- H. Bercovici, A reflexivity theorem for weakly closed subspace of operators, Trans.
 A. M. S. 288 (1985), 139-146.
- 3. _____, Dual algebra with applications to invariant subspace and dilation theory, CBMS Regional Conference Series, No.56, A. M. S. Providence, R.I., 1985.
- 4. S. Brown and C. Pearcy, Introduction to operator theory, the elements of functional analysis, Springer, New York, 1977.
- 5. I. Jung and B. Kim, On dilation theorems of operator algebras, (to appear).

Department of Mathematics Kyungpook National University Taegue 702-701, Korea