Comm. Korean Math. Soc. 8 (1993), No. 1, pp. 1-14

AN EXTREME POSITIVE LINEAR OPERATOR
ON M, WHICH MAPS AN EXTREME
POINT TO A NON-EXTREME POINT

BYUNG S00 MOON

1. Introduction

We denote M, for the set of all n x n complex matrices and E,
for the Hermitian part of M,,. Thus, E, is the real ordered space of all
n xn Hermitian matrices with the positive cone consisting of all elements
having nonnegative eigenvalues. A linear operator T from FE, to E,, is
positive if T(P) > 0 whenever P > 0, and T is extreme if S = AT for
some A > 0 whenever 0 < S <T.

A linear operator which maps every extreme point xx* € E, to either
0 or yy* € E,, will be called a ‘simple’ extreme linear operator.

It is proved in [1] and [2] that a positive linear operator on E, or from
E; to Ej3 is extreme if and only if it is a simple extreme linear operator.
In [3], it is proved that every positive linear operator on E; is a sum of
simple extreme positive linear operators.

Choi and Lam [4 ; Theorem 4.4] gave an example of a non-square
extreme semidefinite biquadratic real polynomials. In the context of
positive linear operators on M, ‘simple’ extreme operators correpond
to (absolute) squares of bilinear homogeneous polynomials when we con-
sider z*T(xx*)z be the equivalent semidefinite form corresponding to a
positive linear operator T on M,,.

In this paper, we give an example of a non-square extreme semidefi-
nite biquadratic in complex setting, i.e. a positive semidefinite complex
polynomial which is not a sum of absolute squares of homogeneous bi-
linear forms. In our terms, it will be an example of an extreme positive
linear operator which maps an extreme point of the positive cone in M,
to a non-extreme point in M,.
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We write

x®

xx* = 2 i

T3 ror3e

2

rf 1 rze‘.o1 T3 tf2
3

for x € C® where 8 = 6 — 6,, and let
T(xx*) = [

where I is the identity in E,, then it is routine to verify that T > 0. The
linear operator defined above will always be denoted by T and all the
linear operators we consider in this paper will be assumed to be from Fj
to E3.

Note that there is a natural extension of every positive linear operator
on E, to a positive linear operator on M,.

Since T(ese? ) = I, where I is the identity in E2, T maps an extreme
point to a non-extreme point. We have to prove that T is extreme. But,
first we prove that T is not the sum of simple extreme positive linear
operators, which gives us some assurance that T may be extreme.

r3I rir3(eicos 8 + ezsin ;) + irzr3(ezcos 8 + esind
r% + r%

2. T is not a Sum of Simple Extreme Operators
_ In the following, we will use Ej; for eiel, Ex for (exel + ejel), and
By for ieke? — iezez',k #1

LEMMA 2.1. If S is a linear operator with 0 < § < T, then S(E13),

S(Era), S(Ea3), S(Ez3) are all of the form [0 a] for some a € CZ.

0

0

Proof. Note that we must have S(Eu) = tEss, S(E’ss) == [P 0

somet>0,0< PecEs. Let

S(Es) = [A a] S(Brs) = [

] for

B b]
p ’
then

1 0 re¥ 2 . .
S _ [r P + r(Acosf + Bsinf)  r(acosf + bsind) ]

0 :)2 t + r(Acosé + psin 6)
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Hence t + r(Acos 8 + psin ) > 0 for all r > 0,0 € R, from which we
obtain A = y = 0. Also, from 7P + Acos 8 + Bsin 6 > 0 for all » > 0 and
6 € R, we obtain A = B = 0. A similar proof for S(Ez3) and S(Ez3) is
omitted.

LEMMA 2.2. If S is a simple extreme positive hnear operator with
0<S<T, then

sy [ raOne® umeia
IA%r2 + |p?rE 4 rira(fcos 61 + gsin 6:)

T rlrgeiol r1r3eif92 B
where xx* = r2 roraet® |, 0 =6, —6,, f = A\g+ Ay, and

r3
g = t(AE — M) or

S(xx*) — quq* "'3(>""1‘3—w2 + /“'26—‘9)‘:1
IA2r2 + |u|?r2 + rir2(f'cos 61 + g'sin 61)

where f' = f,g' = —

0
extreme by assumption. By Lemma 2.1, S(xx*) is of the form

Proof. Note the S(Es3) = {qq 0] for some q € C? sine S(Es3) is

S(xx*) = riqq* r1r3(acost92 + bsm 62) + rors(ccos 8 + dsin 9)
fr? 4+ gr2 4 riry(ycos 6, + 6sin 1)
Since S(xx*) is either 0 or extreme in Ej for all x € C3, we have

(fr? + grZ 4+ rirz2(ycos 61 + 8sin 61))qq”
(1) ={r1(acos 82 + bsin 6;) + rz2(ccos 6 + dsin )}
- {r1(acosf; + bsin 6;) + ra(ccos 6 + dsin 6)}*.

By comparing the coefficients of r?, we obtain fqq* = cos?’6aa* +
sin?@2bb* + sin fcos f2(ab* + ba*) for all 62 € R. Thus, we have

(2) aa® = bb* = fqq*, ab* + ba* = 0.
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Similarly, from the cofficients of r2, we obtain

(3) cc* =dd* = gqq*, cd* +dc* =0

From (2) and (3), we have a = Aq,b = aq,c = uq,d = fq with
A2 = |af® = f,|pl* = |B]* = g. Let a@ = Xe'”, B = pue'™ and substitute
these into (1) with r; = 0 to obtain 1 = |cosf, +¢'%sin 6,)? for all 4, € R,
i.e. 1 =1+ 2cos osin fycos 8. Hence, we have cos o = 0, i.e. €7 = +i.
Similarly, with r; =0 in (1), we obtajn e’ = +i.

Consider the case with e'” = i,e'” = —i, then we have
2 ey * i0 —i0
= __ | T399 r3(Ar1€*®? 4 prae™*")
S(ox’) = [ IA2r2 + |uf2r2 + rira(cos 0; + 6sin 6;) | 2 ©

Hence, (1) becomes |A[2r? + |u|?2 + rira(ycos 6 + bsin 6;) = |Ar1e’® +
prae~ 92 = |z\|2r2+|pl2r +rira(Ape~H0+82) 4 X\ 5ei(6+92)) for all 6;,0, €
R, with 8 = 02 — 6,. Therefore, we must have A = uy =y =6 =0, i.e.
§ = 0. Similarly, we obtain S = 0 when €*° = —i,¢'” = i. Thus, for
a nontrival S, we must have e’® = ¢'” which is either ¢ or —i and the
result follows.

THEOREM 2.3. T is not the sum of simple extreme operators.

Proof. Suppose T is a sum of simple extreme poitive linear operators,
then by Lemma 2.2, we must have

* r39:q; (Air1e® + pirae¥)raq;
T(xx*) = 2; [ [Xil2r? + |uil?r2 + rirz(yicos 61 + Sisin 61)
¢ 3 [l Orie e e
=9 [AilPr} + lujl*rs + rira(vjcos 61 + 8sin 6;)

First, we consider the case with m > 1,n > 1. By comparing the
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correponding elements, we obtain

m+n m-+n

(4) EA,q, + ) Ajgj= el,Z/\,q, D Ajaj = —ie;
=1 j=m+1 =1 j=m+1
m+1 m m+n
(5) Zu.q. + Z #iq; = iez,Zusq-' - Z Biq; = €1
i=1 j=m+n =1 j=m+1
m+n
(6) Z%q. + ) adi=5
=1 j=m+1
m4n m+n
(M NP =1) lmf =1
=1 i=1
From (4), we obtain } i~ Aiqi = %(_1,) =, E;n_-t:+1 =2 ( ;) =

&. Note that {£;,&;} is linearly independent and hence we may write
q; = aji€i+ajeée,j =1,2,--- ;m+n. Then the above relations become

(i /\iau) &+ (zm: /\,-a,-g) £ = &1,

=1 =1
m+n m+n
( > A""") a+| 3 Nep =6
i=m+1 j=m-1
from which we obtain
m+n m+4n
i=1 j=m+1 :-1 j=m+1

Similary from (5), we obtain

m-+n m+n
9) Zl‘zatl = Z #iajz =0, Zl—‘tad == Z pian =1
j=m+1 j=m+1

Note that gj1 = 2(aj1+aj2),¢j2 = %(——ajl +ajz) from q; = aj1& +ajée
and hence, we have |¢1[> = $(laj1|* + laj2|* + @181 +@jiaj2), lgi2f* =
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4(|a,1]2+|a,2| —aj183;j2—8;10;52). But from (6), we have Em+" [q,klz =1
for k = 1,2. Therefore, we have

m+n m+in m+n
(10) Z laal? + Z lajzl? = 4, 2(011‘112 +aj1a52) =
=1 =1

Now, from (7), Yo, |Xi|> € 1 and hence from (8), we must have
Yoimy laal® = 1,2:‘:,:“ laj2|> = 1. Similarly, from (7) and (9) we
obtain Y i, laiz|> > 1,2:?:"’: +1lai1? > 1. Applying these results to
(10), we obtain

m+$n m+tn
Z laji [ = Z laj2|? = Z laj1|? = Z laje|? =
j=1 j=1 j=m+1 j=m+1

Therefore, (A;)™, and (aj1 )71 are m-vectors of norm less than or equal
to 1 with inner product of value 1. Thus we must have (;) = (aj1), but
this would imply A; = 0 for ¢ > m + 1 which is contrary to the second
equality of (8).

Next, we consider the case with n = 0. Then the relations (4)
must still hold without the second summation terms, i.e. ) .o, Aq; =
e1,Y ie; Aq; = —ie; which is certainly not possible. A similar argue-
ment can be applied so that m #0.

3. The Positive Linear Operator T is Extreme

LEMMA 3.1. Let

S(xx*) = dril rir3(&icos 02 + &25in 63) 4 r2r3(nycos 8 + n2sin ) >0
‘ - ar? + b2 + rira(fcos 61 + gsin 6;) =7

where &i,ni € C%. If rank (S(xx*)) < 2forallx € C? or if0< S L T,
then

(1) &&= &8 =ad, £5& + 66 =0,

(2) nim =n3n2 = bd, ninz +93m =0,

(3) &m + 01k =En2 + 0362 = fd,

(4) &im+ 36 = —(&m +nibe) = —gd
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Proof. Note that rank (T(xx*)) < 2 since for each x # 0, T(xx*) can
be written as a sum of two extreme elements; one in E; and the other
in F3. Hence, if 0 < § < T, then rank (S(xx*)) < 2 for all x € C3.
Therefore, by [5; Theorem 4, p47] we have for all r1,r2 > 0,61,62 € R,

d(ar? + br2 + r1ra(feosby + gsin 6 ))
={r1(£&cos 02 + £3sin 02) + ro(n; cos 6 + n3sin 6)}
- {r1(&1cos 82 + &2sin 6;) + ra(n1cos 6 + nesin 6)}.

We take 1y = 1,72 =0,60; =0 (i.e. 8 = 82) to obtain
ad = £} €1cos? 0 + £3€25in%8; + (E1€2 + €3€1)sin facos 6,

for all 82 € R and hence (1) follows. Similarly, with r; = 0,6, = 0 we
obtain (2).
Substituting (1) and (2) into the above equation, we get

d(fcosb, + gsin 6;) = (§5m + ny€1)cos B2cos 6 + (€7m2 + n3€1)cos Ozsin 6
+ (é3m + 11 €2)sin B5cos 0 + (€372 + n3€2)sin Gasin 6.

We take § = 0 (i.e. §; = 6;) and § = § to obtain (3) and (4).

COROLLARY 3.2. Let

S(xx*) = 13D rir3(€icos O + E2sin 63) + ror3(nicos 6 + nasin 6)
- ar? + br2 4 rir2(fcos 61 + gsin 6;)

_ d1 0 . Uo
WhereD—[0 dz] with d; # 0,d2 # 0, and let U= 0 1

Uo = (u1,u2) is a unitary matrix. FO< S<UoT, whereUoT is the
composition of U and T, then the following are satisfied.

(1) (61,61) = (6‘2, 62) = a, Re(fla{Z) =0
(2) (m,m) = (n2,m2) = b, Re(m1,72) =0
(3) Re(é1,m) = Re(&a,m2) = 3f

(4) Re(é2,m) = —Re(1,m2) = 39

where
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where (z,w) = d Zwy + 3 22w2 whenever z = (* ), w = (z:) And if
dy #1,dy #1 then
(5) ((ul _Elaul _61)) = ((uz —627‘12 - 62)) =1-—a,
Re((u; —&1,uz — &2)) =0
(6) ((illg - Wl,iuz - 771)) = ((ilh - 7]2,illl — 7)2)> =1- b,
Re((iug — 01, tu; — na)) =
(7) Re{(u1 — &1, uz — &)) = Re({iug — ny,iu; —1n3)) =
(8) Re{{uz —&2,5u2 — m1)) = —Re{{uy — &1, 001 — 72))

where ((2,W)) = 1=3-Z1w1 + 121 Zaws.

Proof. For z € C® with z7 = (z1,22,23) where z; # 0, 1 = 1,2,3, we

define
a a B |z112a z1Z2a 72278
Sy = b y|= |22’ 22737 |,
c |z3]%¢

then S, is a one-to-one strongly positive linear operator, i.e. both S,
and S;! are positive. Let a7 = (‘/— T 1) and let S; = S54085,7) =
SqoU oT. Then we have 0 < S; < T} where

Si(xx*) = r2I  rira(€icos Oy + Ehsin 62) + rora(n)ieicos 8 + nsin 8)
ar? + br2 + rira(fcos 6, + gsin 6;)

with &7 (‘E/}- \/E) (-ﬂL —"—"’J—) Now, we apply Lemma 3.1

to obtain £1*¢] = €5°€5 = a, £7€L + €5} = 0, etc which can be written
as (€1,&1) = (€2,62) = a, Re(£1,£2) = 0 and so forth. Thus, the relations
(1) through (4) are obtained.

To prove the relations (5) through (8), we consider R = U oT — §
and repeat the above process.

LEMMA 3.3. Let

S(xx*) = r2D  ryr3(é1cos 02 + E25in 62) + rors(nicos 0 + n2sin 9)
ar? + brZ + rira(fcos 61 + gsin 61)

dy

where D = [0 dy

] F0<S<Tthendy=d;=a
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Proof. Note that we have 0 < AS < T for all 0 < A <1 and hence if
dy # 1,dz # 1 then by Lamma 3.2, we have

((e1 — A1, e1 — Aé1)) = ({e2 — Af2,e2 — AL2)) =1 — Aa,
- /\:z1|2 + /\2|'w1|2 _
1-Xd;  1-Xdy

where ¢ = (21,w1),£€7 = (22, w2) for all 0 < A < 1. Expanding this
out, we have (1 —Xa){1—A(d1 +d2)+A2d1da} = (1 — Ad2){1 + A?|z1|* —
Mz + 21)} 4+ (1 — A1) {A?|w;]?}. By comparing the coefficients of A, we
have a + d; + dy = dy + z; + 7; and from the cofficients of A2, |z;|% +
|wi|? + d2(z1 + 71) = did2 + ad1 + ad2. From these relations, we get
|21/ + |w1|? = ad, and hence we have Re(z1) = 3(a+d1) < |z1]| € Vady
from which we obtain @ = d1,z1 = z; = |z1],w; = 0. Similarly, from
{{e2 — A&2,e2 — A€2)) = 1 — Aa, we obtain a = ds.
Now, assume dy = 1,d; # 1. Then we have, for r3 =1

1-)a

i.e.,

1 0 ri(z1c0s 0y + z2sin 02) + ra(aicos 8 + agsin 6)
S(xx*) = dy 11(wicos 63 + wosin 6;) + ro(B1 cos§ + P2 sin )

i ar? + br3 + ryre(fcos 6, + gsin 6,)

[1 0 ricos 8y + irgsin 6

< 1 rysin 85 + irgcos 0}

i r% + 1'22,

By looking at the firt row of (T' — S)(xx*), we find that z; = 1,2, =
0,a; = 0,02 = 7 since (1,1)-element is zero. Also, from S(xx*) > 0, we
find €¥¢: < 1,pfn: <1, 1 = 1,2 and hence w; = B2 = 0. Therefore, we

have

1 O ri1cos 85 + irysin 6
S(xx*) = ds riwssin 62 + roBicos 0
ar? 4 br? 4 rira(fcos 61 + gsin 6;)

Now, we look at the relation

0< da T1wsesin O + rocos 6
- ‘"'f + b”'% + rire(feos 61 + gsin ;)

[1 risin 0y + rozcos 6

IA

2
rf + r3
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Substituting r1 = 1,72 = 0, 62 = %, we find that

o[ ]=["

and hence d; = wy = a, Similarly, with ry = 0,r, = 1,8 = 0, we obtain
ds = b, 31 = bi. Thus, we have

o< | a(rysin 8, + iry By cos 8)
= a(r? 4+ r2) + rira(fcos 6, + gsin 6;)

< 1 risin 62 4 irscos 6
2 4 r2
1+ 132

from which we conclude f = ¢ = 0. Finally, we now have

1 0 ricos by +irysin
S(xx*) = a a(risin 6 + irgcos 6) | .
a(rf +r3)

But S(xx*) > 0 for all r{,r; > 0,6,02 € R and hence we must have
a>1,ie. a=1. Therefore, S=T.

LEMMA 3.4. Let

r2I rir3(ujcos 83 + ugsin 62) + irers(uzcos 8 + uysin 9)]
2, .2
T+

Sex) = |

with uT = (cos 7,sin 7),u3 = (—sin 7, cos ) for some T € R, then there
exists a unitary operator W such that SoW =T.

1 0 o0
Proof. Let W= |0 €?" 0 | then
0 0 €7

a a B a ae—ur ﬂi"_i’
W b d|W*= b ~ve'”

c [
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and hence we have

S(E].3) = T(COSTE13—-Sin TEI:'!) — [0 COS8S Tu; — sIn Tu2] — [0 el] .

0 0

Similarly, we get
S(Ew) = [0 82] S(E2s) = [ 2'((3)2] )
s(Ew) = | %5t $(Bia) = S(Bio) =

Therefore, S is of the desired form.
LEMMA 3.5. Let

S(xx*) = r3P rirs(éicos 92 + &2sin 02) + rars(n1cos 6 + n2sin 0)
- a1r? + br? 4+ rir2(fcos 8; + gsin 6;)

HO<S<Tthen P =Xl forsome(0 < A<I1.

Proof. Since P > 0, we can take an orthonormal set of eigenvectors
of P. We may take u;,u; such that ul = (cos T, esin 1), ul =
(—sin 7, e**cos 7). From uju; = 0, we have er = et Let Uy = (a3, uz),

U= [Uo 2], then we have

U o T(xx") = [rgI rirz(ujcos 62 + uzsin 02 + iggra(uzcos 0 + u;sin 0)]
Ty + )
o r2D r1r3(§1cos 6 + ﬁzsm 0;) + r2r3(n1cos 8 + n3sin 0)
Uo5(xx*) = [ ar? + br2 + ryr2(fcos 61 + gsin 6;)

1 0 0
Let V=)0 e* 0], then
0 0 1
2 [ 1 - ] 1 .
VoUoT(xx*) = [r3I rirs(ujcos 63 + ujsin 322):-::27‘3(112003 6 + ujsin 9)]
1172
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where u}l = (cos 7,sin 7), u}f = (—sin 7,cos 7), and V o U 0 S(xx*) =

r2D  rir3(€)cos 02 + £Ysin 83) + rarz(n)cos 6 + nYsin )
ar? + brZ + rir2(f'cos 61 + g'sin 6;)

Now, we apply Lemma 3.4 to V o U o T to find a unitary W such that
VoUoToW =T. Thenwith S’ =VoUoSoW,wehave 0< S’ <T

and

'(xx*) = riD  ryra(€Y cos 62 + E’"sm 62) + r2r3(ny’cos 8 + n3'sin 9)
ar? + br2 4+ riry(fcos 6; + g''sin ;)

Finally we apply Lemma 3.3 to conclude D = AI. Therefore, P =
UsDUp = AUgUg = Al

LEMMA 3.6. Let

S(xx*) = dril ryr3(& cos 02 + Egsm 02) + rer3(n: cos 0 + e sin 6)
ar? + br? + rirz(fcos 6, + gsin 6;)

FOL SLT,then § =dT.
Proof. We apply Lemma 3.1 to T — .S where 0 < T — S < T to obtain
(D) (e =&) (a1 —&)=(e2—&) (2~ &) =(1-a)(1-d)
(2) (te2 —m)*(iez — m1) = (iex —n2)"(ie —n2) = (1 - b}(1 — d)
(3) (ex —&)*(iez —m) + (ie2 —m)*(e1 — &) = —f(1 ~ d)
(e2 — &2)*(ie1 — n2) + (te1 — m2)*(e2 — &2) = — f(1 - d)
(4) (e1—&1)*(ier —n2) + (iex — m2)*(e1 — &) = g(1 — d)
(€2 — £2)*(iez —m) + (iez — m)*(e2 — &2) = —g(1 — d).
We expand (1) and apply Lemma 3.1 to S so that we have e}¢; +£7er =
a+d, e3¢; +€5e; = a+d. Thus, we have 1(a + d) = Re(£le;) <
|¢te1] < 1] = Viad. Therefore, we obtain a = d, Re(£}e;) = |&1] = d,
ie. ﬁ.—h = e1. From the second relation of (1), we obtain similarly that
"% = €3. .
We repeat the same process on (2) to obtain b = d,e; = -—"Zf ey =
l l Using these relations, we find from (3) that f = 0 since 5in; = 0.

Similarly, from the second relation of (4), we have m(nl m—-nim)=—g
where we have used the relation &1, +n7€2 = gd. Thus, g =0 and hence
S =dT.
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THEOREM 3.7. T is an extreme poitive linear operator.

Proof. Let S be an arbitrary positive linear operator with0 < S < T
By Lemma 2.1, S is of the form

S(XX*) _ r§P r1r3(§1cos G, + £2sin 02) + 1‘21"3(7]1(108 0 + nasin 0)
- ar? + brZ + ryra(feos 6; + gsin 6;)

Now, by Lemma 3.5, P = AI for some 0 < A < 1. Therefore, by Lemma
3.6, S=AT.

4. Examples of Non-Extreme Positive Linear Operators

EXAMPLE 4.1. Let
r2] rirzcos @2 —irprasin 0
S(xx*) = rir3sin @5 + irgricos 8 |
r} +r}
then S is not extreme.

Proof. We difine

[ 2 ir2 T'3(T1€i0.2 - rge‘.o.)
S1(xx*) = ri  —irs(riet%? —ryeif)

| r? +r2 — 2riracos 61

(2 —ir2 r3(r e':92 +ry ia).
Sa(xx*) = r2  iry(rieTi% 4 rye?)

r2 + 12 4 2riracos 6;

then we clearly have $1,S52 > 0,5 = 3(S1 + S2).

r? 4 r2 0 rir3cos Oy + iryrasin 6
EXAMPLE 4.2. Let S(xx*) = r2 +r2  ryrasin 8, 4 irarzcos 6 |,
r3
then S is not extreme.
Proof. We define S;(xx*) =
rf + 1'22, + 2riracos 6, i(rf — r%) + 2rirosin 6 rlrgew? + 7‘27‘361.0.
r? 472 —2rrpco8 6 —i(rirset®? —rorze’) |

r3
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and Sp(xx*) =

i6> 1

r3 4+ r2 — 2ryracos 61 —-z’(r% — r%) — 2rirasin @y rirze” Y2 — rorze”
r? + 12 + 2rirocos 61 i(rirae% — rorze”)
then it is routine to verify that $1,S2 > 0 and S = 351 + £ 5.
rgI rir3cos O + iryrysin
EXAMPLE 4.3. Let S(xx*) = srir3sin @ + rerzcos 6 | |, then
ri+r
S is not extreme.
Proof. We define
-rg r§ ry e':9’ + rze'ia
Si(xx*) = r2 riet® 4 rpe'? ,
r3 +r2 + 2r racos 6,
-rg —rg 1‘11"36—:'0.2 - r2r3e"i‘9_
Sa(xx*) = 3 —rirze” %2 4 rorze?
i rZ 4 r% —~ 2ryr9cos 0

then we clealy have $1,52 > 0,5 = 15, + %Sz.
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