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AN EXTREME POSITIVE LINEAR OPERATOR

ON M n WHICH MAPS AN EXTREME

POINT TO A NON-EXTREME POINT

BVUNG Soo MOON

1. Introduction

We denote M n for the set of all n x n complex matrices and En
for the Hermitian part of M n. Thus, En is the real ordered space of all
n x n Hermitian matrices with the positive cone consisting of all elements
having nonnegative eigenvalues. A linear operator T from En to Em is
positive if T(P) ~ 0 whenever P ~ 0, and T is extreme if S = AT for
some A ~ 0 whenever 0 ::; S ::; T.

A linear operator which maps every extreme point xx* E En to either
o or yy* E Em will be called a 'simple' extreme linear operator.

It is proved in [1] and [2] that a positive linear operator on E 2 or from
E2 to E3 is extreme if and only if it is a simple extreme linear operator.
In [3], it is proved that every positive linear operator on E2 is a sum of
simple extreme positive linear operators.

Choi and Lam [4 ; Theorem 4.4] gave an example of a non-square
extreme semidefinite biquadratic real polynomials. In the context of
positive linear operators on M n , 'simple' extreme operators correpond
to (absolute) squares of bilinear homogeneous polynomials when we con­
sider z*T(xx*)z be the equivalent semidefinite form corresponding to a
positive linear operator Ton M n •

In this paper, we give an example of a non-square extreme semidefi­
nite biquadratic in complex setting, i.e. a positive semidefinite complex
polynomial which is not a sum of absolute squares of homogeneous bi­
linear forms. In our terms, it will be an example of an extreme positive
linear operator which maps an extreme point of the positive cone in M n

to a non~extreme point in M n .
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We write

[
r~

xx· =

for x E Ca where 8 = fh - 81 , and let

T(xx.) = [rl 1 r1 r3(e1COS 82 + e2sin ( 2) + ir2r3(e2cos e+ e 1sin8]
rl +r~

where I is the identity in~, then it is routine to verify that T ~ o. The
linear operator defined above will always be denoted by T and all the
linear operators we consider in this paper will be assumed to be from Ea
to Ea.

Note that there is a natural extension of every positive linear operator
on En to a positive linear operator on Mn.

Since T(eael') = 12 where 12 is the identity in ~,T maps an extreme
point to a non-extreme point. We have to prove that T is extreme. But,
first we prove that T is not the sum of simple extreme positive linear
operators, which gives us some assurance that T may be extreme.

2. T is not a Sum of Simple Extreme Operators

In the following, we will use Eii for eieT,Ekl for (ekeT + eler), and
Ekl for iekeT - ieler, k =/: 1.

LEMMA 2.1. If S is a linear operator with 0 :$ S :$ T, then S(E13),

S(E13),S(~3),S(Eza) are all of the form [0 ~] forsomeaE c 2
•

Proof. Note that we must have SeEn) = tE3a , S(E3a) = [P ~] for

somet~t); 0:5 P"E.Ei ~ Let··

S(Et3 ) = [A ~], S(Et3 ) = [B :],

then

~ r~i8] = [r2P +r(Acos8 + Bsin8) r(acos8 + bsi~8) ] > o.
2 t + r(Acos8 + /lsm 8) -

r
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Hence t + T( ,\cos 6 + Jlsin 6) 2: 0 for all T 2: 0, 6 E R, from which we
obtain ,\ = Jl = O. Also, from T P + Acos 6 + Bsin 6 2: 0 for all r 2: 0 and
6 E R, we obtain A = B = O. A similar proof for S(~3) and S(E23 ) is
omitted.

LEMMA 2.2. If S is a simple extreme positive nnear operator with
o~ S ~ T, then

[

2 *S(xx*) = T3qq T3('\Tle
i82 + JLT2

ei8)q ]
1'\12r; + IJlI2T~ + TIT2(ICOS 61 + gsin ( 1 )

[

T 2

where xx* = 1

9 = i('\ji - "XJl) or

[

2 *
S(xx*) = T3qq T3('\Tle-

i82 + JLT2 e -
i8 )q ]

I'\12T~ + IJLI2T~ + Tl T2 (I' cos 61 + g'sin 6t)

where f' = f,g' = -g.

Proof. Note the S(E33) = [qq* ~] for some q E C 2 sine S(E33 ) is

extreme by assumption. By Lemma 2.1, S(xx*) is of the form

Since S(xx*) is either 0 or extreme in E3 for all x E C 3, we have

(Iri + gT~ + Tl T2 ('Ycos 61 + 8sin ( 1 ) )qq*

(1) ={Tl (aoos 62 + bsin ( 2 ) + T2( coos 0 + dsin 6)}

. {rl (acos62 + bsin ( 2) + T2 (ccos 6 + dsin O)} *.

By comparing the coefficients of ri, we obtain fqq* = cos2 62aa* +
sin262bb* + sin 6200s 62 (ab* + ba*) for all 62 E R. Thus, we have

(2) aa* = bb* = fqq*, ab* + ba* = O.
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Similarly, from the cofficients of r~, we obtain

(3) cc* = dd* = gqq*, cd* + dc* = 0

From (2) and (3), we have a = Aq, b = oq, c = ILq, d = f3q with
IAI 2 = 10/2 = j,11L12 = 113/2 = g. Let 0 = ).,ei.t:T,f3 = lLe ir and substitute
these into (1) with r2 = 0 to obtain 1 = Icos92+eit:Tsin 92 12 for all 92 E R,
Le. 1 = 1 + 2cos O'sin 92cos 92. Hence, we have cos 0' = 0, i.e. eit:T = ±i.
Similarly, with rl = 0 in (1), we obtain eir = ±i.

Consider the case with eit:T = i, eir = -i, then we have

[

2 *5(xx*) = r3qq

Hence, (1) becomes IAI2rf + 11L12r~ + rlr2(,cos £II + isin £II) = IArlei92 +
jLr2e-i912 = 1).,12rf+11L12r~+rlr2(>'/-te-i(6+62)+Ajtei(8+92» for all £II, 92 E
R, with 9 = 92 - £II. Therefore, we must have A = IL = , = S = 0, i.e.
S = o. Similarly, we obtain 5 = 0 when eit:T = -i, eir = i. Thus, for
a nontrival 5, we must have eit:T = eir which is either i or -i and the
result follows.

THEOREM 2.3. T is not the sum of simple extreme operators.

Proof. Suppose T is a sum of simple extreme poitive linear operators,
then by Lemma 2.2, we must have

(Ajrle-i62 + /-tj r2e- i6)raCJj ]
/).,jI2r~ + IlLjl2r~ + rlr2(-Yjcos £II + Sjsin £II) .

First, we consider the case with m ~ 1,n ~ 1. By comparing the
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correponding elements, we obtain

m m+n m m+n

(4) L Aiqi + L Ajq; = el, L Aiqi - L Ajqj = - ie2

i=l j=m+l i=l j=m+l
m m+l m m+n

(5) L Jliqi + L J1.jq; = ie2, L Jliqi - L J1.jV = el
i;"'l j=m+n i=l j=m+l

m m+n

(6) Lqiqi + L q;qi = h
i=l j=m+l
m+n m+n

(7) L IAil
2 = 1, L lJ1.il

2 = 1
i=l i=l

5

From (4), we obtain :E~l Aiqi = ! Ci) =6, :E';:~+I Ajqj = ! CD ==
6. Note that {6, 6} is linearly independent and hence we may write
V = aj16 +aj26,j = 1,2,··· ,m+n. Then the above relations become

from which we obtain

(8)
m m+n m m+n

L Aiail = L Ajaj2 = 1, L Aiai2 = L Ajajl = 0
i=l j=m+l i=l j=m+l

Similary from (5), we obtain

m m+n m m+n

(9) L Ilia il = L Iljaj2 = 0, L llia i2 = - L Jljajl = 1
i=l j=m+l i=l j=m+l
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:t(laj112+laj212-aj1aj2-aj1aj2). But from (6), we have 2:j:~n Iqjkl2 = 1
for k = 1,2. Therefore, we have

m+n m+n m+n
(10) L laj112 + L laj212 = 4, L (aj1 aj2 + aj1 aj2) = 0

j=l j=l j=l

Now, from (7), 2:::1IAiI2 :5 1 and hence from (8), we must have
2:::1 lai112 ~ 1,2:}:+':+1 la;212 ~ 1. Similarly, from (7) and (9) we

obtain L:~1 lai212 ~ 1, E';:+':+l laj112 ~ 1. Applying these results to
(10), we obtain

m m m+n m+n

L la;t12
= L la;212 = L la;112

= L la;212
= 1.

j=1 j=1 ;=m+1 j=m+1

Therefore, (Xi)~l and (aj1)j=1 are m-vectors of norm less than or equal
to 1 with inner product of value 1. Thus we must have (Xi) = (aj1), but
this would imply Ai = 0 for i ~ m + 1 which is contrary to the second
equality of (8).

Next, we consider the case with n = O. Then the relations (4)
must still hold without the second summation terms, i.e. E~l Aqi =
e1, E::l Aqi = -ie2 which is certainly not possible. A similar argue­
ment can be applied so that m =1"0.

3. The Positive Linear Operator T is Extreme

LEMMA 3.1. Let

B( *):;::: [drlI r1 r3(6 cos ()2 + 6sin ()2) + r2r3(1]1 cos () + 1]2 sin ())]
xx arf + br~ +TIT2(fCOS 81 + gsin ()1) ~ 0,

where Ci,1]i E C 2 • Hrank (S(xx*)) :5 2 for all x E C 3 or ifO:5 S:5 T,
then

(1) ci6 = c2*6 = ad, ci6 + c26 = 0,
(2) 1]i1]1 = 1]21]2 = bd, 1]i172 + 1]21]1 = 0,
(3) Ci1]l + 1]i6 = C21]2 + 7726 = fd,
(4) Ci1]2 + 1]26 = -(C2771 + '7i6) = -gd.
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Proof. Note that rank (T(xx*)) $ 2 since for each x =F 0, T(xx*) can
be written as a sum of two extreme elements; one in Ez and the other
in E3 • Hence, if 0 $ S $ T, then rank (S(xx*» $ 2 for all x E C3

•

Therefore, by [5; Theorem 4, p47] we have for all T1, T2 ~ 0, lJ1, lJ2 E R,

d(ar~ + br~ + T1T2(JooslJ1 + gsin lJI)

={r1(ei'cos lJ2+ e2sin lJ2) + r2('7i'oos lJ + '72sin lJ)}

. {T1(6cos lJ2 +6sin lJ2) +T2('71ooS lJ + '72sin lJ)}.

We take r1 = 1, r2 = 0, lJ1 = 0 (i.e. lJ = lJ2) to obtain

for all lJ2 E R and hence (1) follows. Similarly, with r1 = 0, lJ1 = 0 we
obtain (2).

Substituting (1) and (2) into the above equation, we get

d(JcoslJ1+ gsin lJ1) = (ei''71 + '7i'6)cos lJ2cos lJ + (ei''72 + '726)005 lJ2sin lJ

+ (e2'71 + '7i'6)sin lJ2cos lJ + (ei'72 + '726)sin lJ2sin lJ.

We take lJ = 0 (i.e. lJ1 = lJ2) and lJ = i to obtain (3) and (4).

COROLLARY 3.2. Let

where D = [~ 1
2

] with d1 =F 0, d2 =F 0, and let U= [~o ~] where

Uo = (U1, U2) is a unitazy matrix. If 0 $ S $ U 0 T, where U 0 T is tbe
composition of U and T, then the following are satisfied.

(1) (6,6) = (6,6) = a,Re(6,6} = 0
(2) ('71, '71) = ('72, '72) = b, Re('71, '72} = 0
(3) Re(6, '71} = Re(6, '72} = !f
(4) Re(6, '71} = -Re(6, '72} = !g
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where (z,w) = JIZ1Wl + i2Z2W2 wheneverz = (:~), w = (:~). And if
dl =1= 1, d2 -I 1 then

(5) ((Ul - 6, Ul - 6)} = ((U2 -6, U2 - 6)} = 1- a,
Re((ul - 6, U2 - 6)} = 0

(6) ((iU2 -7]I,iu2 -7]1)} = ((iUl -7]2, iU l -7]2» = 1- b,
Re( (iU2 - 7]1, iUl - 7]2}) = 0

(7) Re((ul - 6, Uz - 6)} = Re((iuz -7]I, iul - T/z}} = ~f

(8) Re((u2 - 6, iU2 -7]1}) = -Re((ul - 6, iUl - 7]2}} = ~g,

where ((z, w)} = l.!d
1

ZI Wl + l.!d2Z2W2.

Proof. For z E C3 with zT = (zt, Zz, Z3) where Zj -I 0, i = 1,2,3, we
define

then Sz is a one-to-one strongly positive linear operator, i.e. both Sz

and S;1 are positive. Let d T = (k, Jz;, 1) and let SI = Sd 0 S, Tl =
Sd 0 U 0 T. Then we have 0 ~ SI ~ Tl where

with &,.T = (.f!L k) n'T = (.!IlL .!1.1L). Now we apply Lemma 3.1
~] .../ill' Vil2 ' -'] v'd1' Vil2 '

to obtain e~*e~ = e~*e~ = a, e~*e~ + e~* e~ = 0, etc which can be written
as (6,6) = (6, 6) = a, Re(6, 6} = 0 and so forth. Thus, the relations
(1) through (4) are obtained.

To prove the relations (5) through (8), we consider R = U 0 T - S
and repeat the above process.

LEMMA 3.3. Let

[
d lwhere D = 0
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Proof. Note that we have 0 ~ '\S ~ T for all 0 ~ ,\ ~ 1 and hence if
d1 =/:. 1, d2 =/:. 1 then by Lamma 3.2, we have

((el - '\6,el - ,\6)) = ((e2 - '\6,e2 - ,\6)) = 1- '\a,

. 11- '\z11
2

,\21wl1
2
-1- \

z.e., 1 _ ,\d
1

+ 1 _ ,\d
2

- ",a

where er = (ZI, WI ), er = (Z2, W2) for all 0 ~ ,\ ~ 1. Expanding this
out, we have (1- ,\a){l- >.(d1 +d2) + ,\2d1d2} = (1- ,\d2){1 + >.21z112 ­
,\(Zl + ZI)} + (1- '\d1){,\2IwlI2}. By comparing the coefficients of '\, we
have a + d1 + d2 = d2 + ZI + ZI and from the cofficients of ,\2, IZ112 +
IW112 + d2(ZI + ZI) = d1d2 + ad1 + ad2. From these relations, we get
IZ112 + IWll2 = ad, and hence we have Re(zI) = t(a+dI) ~ IZII ~ vad1
from which we obtain a = d1 , Zl = Zl = IZll, WI = O. Similarly, from
«(e2 - '\6, e2 - ,\6)) = 1- '\a, we obtain a = d2 •

Now, assume d1 = 1, d2 =/:. 1. Then we have, for r3 = 1

[

1
S(xx*) =

~ [1

o rl(zlcos fh + z2sin ( 2) + r2(alcos 8 + a2sin 8) ]
d2 rl (WI cos 82 + W2sin ()2) + r2({jl cos 8 + !32 sin 8)

ari + br~ + rl r2(fcos 81 + gsin ( 1)

o rlcos 82 + ir2sin 8]
1 rlsin 82 + ir2cos 8

ri +r~

By looking at the firt row of (T - S)(xx*), we find that ZI = 1, Z2 =
O,al = 0,a2 = i since (l,l)-element is zero. Also, from S(xx*) ~ 0, we
find Cei ~ 1, TJiTJi ~ 1, i = 1,2 and hence WI = !32 = o. Therefore, we
have

[

1 0 rlcos 82 + ir2sin 8 ]
S(xx*) = d2 rlw2sin 82 + r2!31cos 8 .

ari + bri + rl r2(fcos ()1 + gsin (1)

Now, we look at the relation

[
d2 rlw2sin 82 + r2Cos 8 ]

o~ ari + br~ + rlr2(jcos 81 + gsin ()1)

< [1 rlsin 82 + r2icos 8]rr + ri .
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Substituting Tl = 1, T2 = 0, 82 = f, we find that

and hence d2 = W2 = a, Similarly, with rl = 0, r2 = 1,8 = 0, we obtain
d2 = b, fh = bi. Thus, we have

a(rlsin 82 + ir2fJlcos 8) ]
a(rl + r~) + rlr2(fcos 81 + gsin 81 )

rlsin 82 + ir2cos 8]
r 2 +r2

1 2

from which we conclude f = g = O. Finally, we now have

But S(xx*) ;::: 0 for all rl, T2 ;::: 0,8,82 E R and hence we must have
a ;::: 1, i.e. a = 1. Therefore, S = T.

LEMMA 3.4. Let

with u'[ = (cos T, sin r), uf = (-sin T, cos T) for some r E R, then there
exists a unitary operator W such that SoW =T.

Proof. Let W = [~ ~ ] then
eiT

ae-2ir
b
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and hence we have

11

- [0S(E13 ) = T(cosTE13-sin TEla) =

Similarly, we get

COS TU1 ~ sin TU2 ] = [0 ~].

- [0S(El3 ) =

- [0S(EJa) =

Therefore, S is of the desired form.

LEMMA 3.5. Let

S( *) = [riP r1ra(6cos 82 +6sin (2);- r2ra('71 cos 8 + 112sin 8)]
xx a1r~ + br~ + r1r2(jcoS 81 + gsin 8I) .

If 0 ~ S ~ T then P = >"1 for Bome 0 ~ >.. ~ l.

Proof. Since P ~ 0, we can take an orthonormal set of eigenvectors
of P. We may take U1, U2 such that ur = (cos T, eiAsin- T), ur =
(-sin T, eilJcos T). From UiU2 = 0, we have ei.\ = eilJ • Let Uo = (UI, U2),

U= [UO ~], then we have

[
r2 IU 0 T(xx*) = a

[
r 2 DU 0 S(xx*) = a

r1ra(U1 cos 82 + u2sin 8) + ir2ra(U2COS 8 + u1sin 8)]
r~ +r~

r1ra(e~COs 8'1. + e~sin ( 2) + r2r3(7J~COS 8 + 7J~sin 8)]
ar~ + br~ + r1 r2(jcos 81 + gsin 8t) .

[1 0 0]
Let V = 0 ei.\ 0 ,then

001
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where u~T = (cos r,sin r), u~T = (-sin r,cos r), and Vo U 0 S(xx*) =

[
Ti D T1 T3 (e~'cos 82 + e~sin ( 2) + T2 T3 (7]~' cos 8 + 7]~sin 8)]

aT~ + br~ + r1r2(f'cOS 81 + g'sin BI)

Now, we apply Lemma 3.4 to V 0 U 0 T to find a unitary W such that
V 0 U 0 ToW = T. Then with S' = V 0 U 0 SoW, we have 0 $ S' ~ T
and

[
2D (C'" 8 c"'· 8) ('" 8 III' 8) ]S'(xx*) - T3 T1 T3 r,.1 cos 2 + r,.2 sm 2 + T2 T3 1]1 cos + 1]2 sm

- aT~ + bT~ + T1T2(f"COS 81 + g"sin 8d

Finally we apply Lemma 3.3 to conclude D = >"1. Therefore, P =

UoDUo = >'UoUo = >"I.

LEMMA 3.6. Let

S( *) _ [dT~I T1 T3(el cos 82 + 6sin 82 ) + T2 r3(1]1 cos 8 + 1]2sin 8)]
xx - aT~ + br~ + r1r2(fcos 81 + gsin 8I) .

ItO ~ S ~ T, then S = dT.

Proof. We apply Lemma 3.1 to T - S where 0 ~ T - S ~ T to obtain

(1) (e1 - 6)*(e1 - 6) = (e2 - 6)*(e2 - 6) = (1- a)(1- d)
(2) (ie2 - 1]1)*(ie2 - TJd = (ie1 - 1]2)*(ie - 1]2) = (1 - b)(l - d)
(3) (e1 - e1)*(ie2 - 1]I) + (ie2 - 1]d*(e1 - 6) = - f(1- d)

(e2 - 6)*(ie1 - 1]2) + (ie1 - 1]2)*(e2 - 6) = - f(1- d)
(4) (e1 - 6)*(ie1 - 1]2) + (ie1 - 1]2)*(e1 - 6) = g(l- d)

(e2 - 6)*(ie2 - 1]1) + (ie2 - T]I)*(e2 - 6) = -g(1- d).
We expand (1) and apply Lemma 3.1 to S so that we have er6 +e;el =
a + d, ei6 + e2'e2 = a + d. Thus, we have !(a + d) = Re(e;e1) ~

le;e11 ~ 161 = v;;:J. Therefore, we obtain a = d, Re(e;e1) = 161 = d,
i.e. 1fu = e1. From the second relation of (1), we obtain similarly that

1& = e2·
We repeat the same process on (2) to obtain b = d, e1 = I~;r, e2 =

'~~f. Using these relations, we find from (3) that f = 0 since 7]r1]2 = O.
Similarly, from the second relation of (4), we have ,:t1 (1];1]1-1];7]1) = -g

where we have used the relation ei1]l +1];6 = gd. Thus, 9 = 0 and hence
S=dT.
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THEOREM 3.7. T is an extreme poitive linear operator.

Proof. Let 5 be an arbitrary positive linear operator with 0 :::; 5:::; T.
By Lemma 2.1, 5 is of the form

5( *) _ [r~p r1T3(6cos 82 + 6sin ( 2) + T2T3(771COS 8 + 772sin 8)]
xx - aT; + bT~ + T1T2(JCOS 81 + gsin ( 1)

Now, by Lemma 3.5, P = AI for some 0:::; A :::; 1. Therefore, by Lemma
3.6,5= AT.

4. Examples of Non-Extreme Positive Linear Operators

EXAMPLE 4.1. Let

then 5 is not extreme.

Proof. We difine

iT~ T3(T1ei82 - T2ei8) ]
ri -ir3(T1ei82 - r2 ei8 )

ri + T~ - 2T1T2COS 81

-iri r3(r1 ei82 + r~i8) ]
ri ir3(r1e-i82 + r2 e- i8 )

ri + r~ + 2r1 r2COs 81

then we clearly have 51, 52 ~ 0, S = !(Sl + 52).

ExAMPLE 4.2. Let S(xx*) = [r~ + r~ r~1r~

then S is not extreme.

Proof. We define Sl(XX*) =

r1 r3cos 82 + ir2r3sin 8]
r1 r3sin 82 + ir2r3cos 8 ,

ri

[ r~ + r~ + 2r, r,cos 8, i(r; - r~) + 2r1r2sin 81
r~ + r~ - 2r1 r2cos 81



14 Byung Soo Moon

-i(r~ - rn - 2rlr2sin fh
r~ + r~ + 2rlr2COS fh

then it is routine to verify that SI, 82 ~ 0 and 8 = lSI + lS2.

[
r~I rlr3cos fJ2 + ir2r3sin fJ]

EXAMPLE 4.3. Let 8(xx*) = irlr3sin fJ2 + r2r3COS fJ
r? +r~

S is not extreme.

Proof. We define

, then

r~ rl e
i82 + r2ei8 ]

r~ rl e i82 + r2ei8 ,

r? + r~ + 2rl r2COS flt
-r~ rlr3e-i82 - r2r3e-i8 ]

r~ -rlr3e-i82 + r2r3e-i8

r~ + r~ - 2rl r2cos fJl
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