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LARGE DEVIATION PRINCIPLES OF

RANDOM VARIABLES OBTAINED

BY SCALING RANDOM MEASURE

DAE-SIK HWANG

1. Introduction

Let {Xn : n 2: I} be an ergodic sequence of random variables with the
same mean E[Xn] = m for each integer n. Let Sn = Xl +.. ,+Xn be-the
partial sums. IfE[Xn ] is finite for each n, Sn/n converges to m by the law
of large numbers. We set Mn(t) = E[exp(tSn )], the moment generating
function, which will be assumed to exist for every real number t. We say
that Sn/n satisfies the large deviation principle with rate function l(x),
where l(x) is non-negative, lower semi-continuous and convex function,
if

for any closed subset F in R,

(1.1) lim sup.!. ·logP [Sn E F] ::; -1(F),
n-oo n n

and,
for any open subset G in R,

(1.2) liminf.!. ·logP [Sn E G] ? -leG).
n-oo n n

Cramer presented the first large deviation theorem at a probability
symposium in 1937. Since 1937, this theory has undergone an extensive
development and this original work was extended in various directions.
There have been many developments in the theory of large deviations
over the last two decades.
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Primary and most significant is the work of M. D. Donsker and S.
R. S. Varadhan [1, 2] who have developed a powerful machinery in a
series of papers .to deal with many old and new problems in probabil­
ity where precise estimates of the large deviation probabilities play an
important role. Gartner [5] and Ellis [4] have developed useful and sur­
prising generalizations with assumptions about the dependence of the
random variables and the moment generating functions. Also the large
deviation principles have found many applications in statistics (Groene­
boom [6]), statistical mechanics [Ellis [3], Lanford [8]) and in stochastic
processes [1, 2].

Throughout this paper, we study the large deviation principles for
distributions of scaling limits of random measures. That is to say, we give
computation of the large deviations. Also, this property is possessed by
the following classes of examples: Poisson point process, Poisson center
cluster random measure and doubly stochastic process.

2. Preliminaries and Main Theorem

We assume that the readers are familiar with the language of random
measures. As a good reference for details, Kallenberg's book [7] may
.be consulted. N will denote the set of Radon Borel measures on Rd ,

so that if pEN then it is finite on bounded Borel sets. Let 1] be the
u-algebra of subsets of N generated by sets of the form {p E N Ip(B) <
r} for a bounded Borel set B and a non-negative real number r. A
random measure is a measurable function X : (n,:E, P) -+ (N, .,,), where
(Q,:E, P) is a fixed probability space. IT B is a Borel set, then we let
p(B) be the random amount of mass the measure p gives to B.

From now on, let X be a random measure on Rd. Let A be a bounded
Borel subset of Rd. All random measures will be assumed to be station­
ary, i.e., with a translation invariant distribution. The most well known
random measure is the Poisson point process with intensity a > 0 (see
Definition 3).

Let A be a Borel subset of Rd. We denote Xr(A) by Xr(A) = X(rA)
for r E R+. The ergodic theorem says that Xr(A)/rd converges to a
mean of Xr(A)/r d as r -+ 00. We will show that the random variable
obtained by scaling a random measure X, Xr(A)/rd satisfies the large
deviation principle with rate function I(x). That is,
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(large deviation upper bound) ; For any closed subset Fin R,

(2.1) lim sup 1
d

• log [XrSA) E F] :5 -/(F).
r-oo r r

(large deviation lower bound) ; For any open subset Gin R,
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(2.2) liminf ~ ·logP [XrSA
) E G] 2:: -1(G).

r-oo r r

In the above, we denote, for each Borel subset A in Rd ,

1(B) = 1A(B) = inf 1A(x) = inf 1(x) for a Borel subset B in R,
zEB zEB

where
1(x) =1A(x) = sup{tx - M(t)},

tER

and
M(t) = lim ..!... .logE[etXr(A)].

r-oo r d

Let us consider a random variable Xr(A) for a bounded Borel subset
A of Rd. The moment generating function Mr(t) of a random variable
Xr(A) is defined by

Mr(t) = (MA)r(t) = E[etXr(A)] for every t E R.

Also,

mr(A) = E[Xr(A)] for a bounded Borel subset A of Rd.

Assume that

(2.3) (a) Cr(t) = 1
d

• log Mr(t) is finite for every t E R,
r

(2.4) (b) M(t) = lim Cr(t) exists and is finite for every t E R,
r-oo

and

(2.5) (c) m(A) = lim Id' mr(A) exists for a bounded Borel set A of Rd.
r-oo r

Define the Legendre-Fenchel transformation of the convex function
M(t) by

(2.6) 1(x) = sup{tx - M(t)}.
tER

Now, the main results in this paper are as follows;
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THEOREM 1. Under assumptions (2.3), (2.4) and (2.5),

(i) l(x) is convex, non-negative, and lower semi-continuous.
(ii) I has compact level sets.

(iii) The large deviation upper bound, i.e., the formula (2.1) is valid.
(iv) IfM(t) is differentiable for eveq t E R, then the large deviation

lower bound, i.e., the formula (2.2), is valid.

Proof. (i) For every Xl and X2 in R and A E [0,1],

I{AXI + (1 - A)X2} = SUp{Atxl +(1 - A)tx2 - M(t)}
teR

= SUp{A[txl - M(t)] + (1 - A)[tx2 - M(t)]}
teR

< A· SUp{txl - M(t)} + (1- A)· SUp{tx2 - M(t)}
~R ~R

= A· I(Xl) + (1 - A). l(x2).

Thus, 1(x) is convex.
H t = 0, then tx - M(t) = 0 for every X E R. Since l(x) ~ 0, l(x) is

non-negative.
Since tx - M(t) is continuoUs for x, l(x) is lower semi-continuous.
(ii) For every real number k ~ 0, let Kk = {x E R: l(x) :S k}. (Kk)C

is open since 1(x) is lower, semi-continuous, i.e., {x E R : 1(x) > k} is
open. Thus Kk is closed. On the other hand, let's take x E Kk. Since
l(x) :S k, {x : l(x) :S k} ~ [-k-M( -1), k+M(1)]. Kk is also bounded.
Thus the set {x E R: l(x):S k} is compact.

(iii) Since tx -M(t) = 0 for t = 0, so l(x) ~ o. IT E[Xr(A)] = mr(A),

and m(A) = lim Id· mr(A) exists (denote m = m(A», then Jensen's
r .....oo r

inequality implies that E[etXr(A)] ~ eE[tXr(A») = etmr(A) for all t. So,
tm - M(t) :S 0 for all t and l(m) :S o. Therefore, if the limit m of
mr(A), exists, then l(m) =o.

By the property (i), since l(x) is convex, l(x) is non-increasing on
( -00, m] and non-decreasing on [m, (0).

Note that both x < m and t > 0 imply xt - M(t) < mt - M(t) :S 0,
and both x > m and t < 0 imply xt - M(t) < mt - M(t) :S O.

Therefore, I( x) need be taken only over both t > 0 for x > m and
t < 0 for x < m.
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For t > 0; let 11 = [a,oo) for a> m.

Qr(It} = P [X~SA) :5 a] :5 e-ardt . E [etXr(A)]

by Chebychev's inequality

= e-rd[at-Cr(t».

So,

limsup Id . log Qr(I1) :5 - sup{at - M(t)}.
r-+oo r t>O

For t < 0; let 12 = (00, a] for a < m.

Qr(I2) = P [X~~A) $ a] $ e-ardt . E [etXr(A)]

by Chebychev's inequality

=e-rd[at-Cr(t»).

So,

limsup Id • log Qr(I2) :5 - sup{at - M(t)}.
r-+oo r t<o
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Now, in order to prove the main property in general, let F be an
arbitrary closed set.

If mE F, then I(F) = 0 and so

limsup ~ . log Qr(F) :5 o.
r-+oo r

If m f/. F, let (al, a2) be the largest interval containing m such that

Note that lex) is non-increasing on (-oo,al] and non-decreasing on
[a2'00).

So,
inf I(a) = min[l(at},I(a2)].
aEF
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Case(i); F ~ [a2' 00) and so the property (iii) is trivial.
Case(ii); F ~ (-00, al] and so the property (iii) is trivial.
Case(iii); F ~ (-00, al) U [a2' 00).

Qr(F) ~ Qr{(-00, al] U [a2' oo)}

=Qr{(-00, al]} + Qr{[a2' oo)}

~ exp{ _rd. I(It}} + exp{ _rdI(I2)}

~ 2exp{ _rd. min[I(It},I(I2)]}.

Therefore, the result holds in this case also. Throughout Case (i), (ii)
and (iii), the large deviation upper bound holds.

(iv) Now, it remains to prove the property (iv).
Let Qr(dx) denote the distribution of Xr(A)jrd on R. We define

probability measures, for any real number t,

Qr,t(dx) = 7(:~xI )} . Qr(dx) for positive real number r.
exp -r r t

Let G be an open set in R and Xo any point in G. We take a neigh­
borhood Ge(xo) = (xo - e,xo + e) such that Ge(xo) C G for e > o. H x
ranges over Ge(xo), then -tx 2:: -txo -Itle. Since Ge(xo) C G, we have

Qr(G) ~ Qr(Ge(XO»

= ( Qr(dx)
JGe(zo)

= exp{rdCr(t)} ( exp(-rdtx). Qr,t(dx)
JGe(zo)

~ exp{rd[Cr(t) - txo -Itle]} . Qr,dGe(xo)}.

Thus,

lim in! Id . log Qr(G)
r-oo r

~ C(t) - txo -Itle +liminf Id . log Qr,{Ge(XO)}
r-oo r '

=C(t) - txo -Itle by Lemma 2

~ -I(xo) -Itle by the definition of I(x).
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IT we take e -+ 0 since e is arbitrary, then we have

liminf Id . log Qr(G) ~ -I(xo).
r-+oo r
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Since we take an arbitrary point Xo in G, we can take I(G) = inf I(xo)
xoEG

instead of I(xo).
Finally, we have that

liminf Id . log Qr(G) ~ -I(G) for any open set G in R.
r-+oo r

Thus, we complete proof of the property (iv).

To complete our proof, we need the following lemma 2.

LEMMA 2. Assume hypotheses (2.3) and (2.4). C(t) is differentiable
at a point to with C'(to) = Xo. For any e > 0,

lim Qrt(O){Ge(xo)} = l.
r-+oo '

Proof. Now, we introduce a sequence {Wr,t(O); r is real} of random
variables such that Wr,t(O)/rd has distribution Qr,t(o)(dx) (We denote
to = t(O».

p [W~~(O) ~ Xo + e] = P [W~;(o) - Xo - e ~ 0]
S E [exp{rdt( W~'~(O) - Xo - e)}] by Markov' inequality for t ~ 0

S exp{ -rdt( Xo + e)} . E [exp{rdt( W~;(O) )}]

= exp{ -rdt(xo + e)}Jexp(rdtx). Qr,t(O)(dx)

= exp{ -rdt[xo + e - rdCr(to)]} Jexp{rd(t + to)x} . Qr(dx)

= exp{ -rdt[xo + e - rdCr(to)]} . exp{rdCr(t + to)}
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since Mr(t) = Jexp(rdtx)· Qr(dx) = exp{rdCr(t)} by the definition of
Cr(t). That is,

Thus,

. 1 [Wrt(O)] )limsuPd" -log P 'd ~ Xo + e ::::; C(to + t) - C(to) - t(xo + e .
r-oo r r

Similarly,

_ 1 [Wr,t(o) ]
limsuPd" -log P d::::; Xo - e ::::; C(to - t) - C(to) + t(xo - e).

r-oo r r

The both right sides are strictly negative for small t since C(t) is dif­
ferentiable, i.e., C'(to) = xo. Both imply that Qr,t(O){Ge(xo)} -+ 1 as
r -+ 00.

3. Applications

3.1. Poisson random measure with intensity a > 0

Let X be a Poisson point process with intensity a > O. Let A be a
bounded Borel subset of Rd _ The moment generating function of the
random variable Xr(A) is

where IAI means Lebesgue measure of A.
Also we have

(3.2) M(t) = lim Id • log Mr(t) and lex) = sup{tx - M(t)}.
r-oo r tER

Now, for a Poisson point process X, we will show that Xr(A)/r d

satisfies the large deviation principle with rate function l(x ).
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DEFINITION 3. X is called a Poisson point process with intensity
a> 0 if

(1) X(A) is a Poisson random variable with parameter alAI for ev­
ery bOWlded Borel subset A in Rd and

(2) If AI, A2 , ••• , An are disjoint bounded Borel subsets of Rd, then
X(Ad,X(A2 ), ••• ,X(An) are independent Poisson random vari­
ables with respective parameters alAI I, aIA2 1, .. .,alAnl, where
1·1 denotes Lebesgue measure.

THEOREM 4. Let X be a Poisson random measure with intensity
a> O. Then

(a) M(t) = aIA/(et
- 1) and

lex) = ~~~{tx - M(t)} = x . log [a~AI] - x + alAI·

(b) X r (A) / rd satisfies the large deviation principle with rate func­
tion

lex) = x . log [a~l] -x + alAI·

Proof. (a) Since Mr(t) = exp{ardIAI(et -1)},

M(t) = lim 1
d

• log Mr(t)
r-co r

=alAI(e t
- 1).

So, lex) = sup{tx - M(t)} = sup{tx - alAI(et -1)}.
tER tER

Now, to find lex), let I(t) = tx - aIA/(et - 1). Differentiating I(t)
with respect to t and then solving in terms of x,

dl I ItXtdt = x - a A e = O. So alAI = e .

Note that each x is positive. Thus we get that t = log [Q'~I]'
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lex) = x . log [a~AI] - x + alAI·

(b) Moreover, obviously M(t) is differentiable for every real number
t and thus Xr(A)/rd satisfies the large deviation principle with rate
function l( x) given as above by Theorem 1.

3.2. Poisson center cluster random measure

Let U be a stationary Poisson process on Rd with intensity a> O. V
is a point process which has finite total expected mass, ( = E[V(Rd )].

Let Xi be the random occurrences of U and let {Vi} be independent
identically distributed (LLd.) copies of V that are also independent of
U.

DEFINITION 5. The resulting cluster process X is said to be a Poisson
center cluster process, which is defined by superimposing i.i.d. copies of
V centered at the occurrences of U.

In other words. If A is a bounded Borel subset of Rd, then X is
defined by

(3.3) X(A) = L Vi(A - Xi)'

Xi

The moment generating function of V( Rd) is

(3.4) M(t) = E [etV(R
d

)] for every real number t.

In addition, we assume that the moment generating function M(t) is
finite for every real number t.

Note that E[X(A)] = a(IAI.
In the case of a Poisson center cluster random measure X, let us

consider the random variable obtained by scaling such random measure
X, that is, Xr(A)/rd for a bounded Borel subset A of Rd. The ergodic
theorem says that Xr(A)/r d converges to a(IAI as r -+ 00. Then we
have the following property.
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THEOREM 6. X is a Poisson center cluster random measure. Let A be
a bounded Boreisubset of Rd. Then Xr(A)jrd satisfies the large devia­
tion principle with rate function lex) = sup{tx+aIAI-aIAIMV(Rd)(t)}.

tER

Proof. First, let us consider the moment generating function of X r(A)

Mr(t) = E [etXr(A)]

= E [etX(rA)]

= E [etE ,V;(rA-X;)]

=E [E[etE,V;(rA-x,) IU = {xd]]

= E [II,.E[etV,(rA-X;) IU = {XI'}]]' TJ'" • dSInce Y i IS 1.1. .

=E [eE.,.,E[,.V."A-"'IU:{<;}]]

=E [/1.,E[,'V"A-"] U(d<)]

_ [U(lOg E(eCV(rA-",)])]-E e .

The last equality holds since U is Poisson with intensity a > O. Also, the
last equality makes sense since exp{a JRd E[etV(rA-x) - l]dx} is finite
for t E R.

Thus, .

Mr(t) = exp{a f E[etV(rA-x) - l]dx} is finite for t E R.
JRd

Next, we will consider the limit of the cumulant generating function
as follows. That is to say,

M(t) = lim Id . log Mr(t)
r-+oo r
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= lim ~. ( E[etV(rA-x) - l]dx
r-oo rd JRd

00 t
k i i= lim aL-·E ...

r-oo k! Rd Rd
k=l

( l(rA-ry)(xd" .1(rA-ry)(Xk)dydV(xd··· dV(Xk)
JRd

00 t
k 11=aL,·E ...

k=l k. Rd Rd

( l(A-x(l)/r)(Y)" .1(A-x(k)/r)(y)dydV(xd··· dV(Xk)
JRd

(denote xCi) = Xi)

00 t
k 11=al::-.E ...

k=l k! Rd Rd

{ I(A - xI/r)··· (A - xkjr)ldV(xd'" dV(Xk)
JRd

00 t
k 1 i=alAI l:: - .E ... dV(xd'" dV(Xk)'

k=l k! Rd Rd

The last equality holds by the dominated convergence theorem since

l(A-xl/r) ...(A-xk/r) ~ l(A-xl/r).

Note that I(A - xdr) .. · (A - xkjr)\ ~ I(A - xdr)1 = IAI.
Therefore,

00 k

M(t) = alAI L ~! . E[V(Rd)]k
k=l

= aIAIE[etV(R
d

) - 1]

= aIAI[Mv(Rd)(t) -1].

Thus, we get that lex) = sup{tx + alAI- aIAIMv(Rd)(t)}.
• tER

Theorem 1 says that Xr(A)/rd satisfies the large deviation principle
with rate function l(x) given as above.
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3.3. Doubly stochastic process
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DEFINITION 7. Let Z be a stationary, associated random measure
and let X z be a Conditionally Poisson with intensity measure Z. That
is, X z is a Z-conditionally Poisson point process with intensity measure
Z. X z is called a doubly stochastic Poisson process.

The following hypotheses are assumed to hold for such an environment
Z.
(3.5) (a) Cr(t) = Id .logE[etZ,.(A)] is finite for every t E R,

r
where A is a bounded Borel subset of Rd.
(3.6) (b) Mz(t) = lim Cr(t) exists and is differentiable for every t E R.

r-+oo
Now, for a doubly stochastic process Xz (we denote Xz by W = Xz),

define MW(A)(t),

MW(A)(t) = lim Id . log E[etW,.(A)] exists for every t E R,
r-+oo r

and
lex) = sup{tx - MW(t)}.

teR

Then, we have the following property.

THEOREM 8. Let X z be a doubly stochastic process with environ­
me~t Z. Let W r(A) be a random variable defined as above for a bounded
Borel subset A of Rd. Under the above hypotheses (3.5) and (3.6),
Wr(A)/rd satisfies the large deviation principle with rate function

lex) = sup{tx - Mz(H(t))}, where H(t) = et - l.
teR

Proof. First, let us calculate the moment generating function of
Wr(A). Since W is Poisson point process with intensity Z,

E[etW,.(A)] = E [E[etW,.(A) IZ]]
= E [eJ(el-l)Z(dX)] , where f = tlrA
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Mw(t) = lim -!.. .log E [eZr(e J -1»)
r-oo rd

= lim -.!... log E [e(e l -l)Zr(A)]
r-oo r d

Since Mz(t) exists for every t E R by the hypothesis (3.6),

Mw(t) = Mz(et - 1) and Mw(t) = Mz(H(t)) = Mz 0 H(t),

where H( t) = et - 1.
Hence

I(x) = sup{tx - Mz 0 H(t)}.
tER

Moreover, since H(t) is differentiable for every t E R and also the com­
position function of two differentiable functions is differentiable, Mw(t)
is differentiable for every t E R. Theorem 1 says that Wr(A)jr d satisfies
the large deviation principle with rate function I(x) given as above.
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