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Zp-LOCALIZATION IN THE

PLUS-eONSTRUCTION AND ITS APPLICATIONS

Kvu-HvUN SOHN AND SANG-EoN HAN

1. Introduction

Throughout this paper, A means a ring with unity. It is well-known
that BGLA+ is an infinite loop space, a nilpotent space, and a homotopy
associative H-space [1, 2, 6, 10 12, 14, 16]. Since D. Quillen defined the
algebraic K-group Kn(A) = 7rn(BGLA+) for n ~ 1, Kn(A) is an abelian
group.

In this paper, we shall prove that RCX)BGLA+ is an infinite loop space
(Theorem 3.1) and [X, RCX)BGLA+] , [X,BGLA+] are trivial groups
where [ ,] means the set of based homotopy classes, X is an acyclic space
(Corollary 3.2). Finally, by use of the Ext-completion, Hom-completion
[3,4] and Dror's acyclic tower, we shall calculate the homotopy group
7rn(RCX)BGLF:) where Fq is a finite field with q elements. More pre
cisely,

+ _{O ifniseven,
1rn(RCX)BGLFq ) = ...b ® Zqj -1 if n(= 2) - 1) IS odd,

where R = Zp = Z/pZ and RCX) means the Bousfield's R-completion
which is equivalent to the R-Iocalization in the S*N'

Throughout this paper, we shall work iIi the category of based con
nected CW-complexes which is denoted by S*. Moreover we denote
the category of based connected nilpotent CW-complexes by S*N. Ob
viously S*N is a subcategory of S.. All maps means the base point
preserving continuous maps unless otherwise stated. We denote the
maximal perfect subgroup of a group G by PG, and the loop functor
by O.
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2. Preliminaries
In this section, we shall consider the Dror's acyclic fiber and Quillen's

plus-construction, nilpotent action, the localization of a nilpotent space
and the completion of a space.

Firstly recall the Quillen's plus-construction; let X be a space then
the Quillen's plus-construction X+[15} is constructed as follows. Let
p : X' --+ X be a covering space of X with 1t'1(X') = P1t'I(X). Attach
2-cells and 3-cells to X' to get a simply connected space Y' such that f :
X' --+ Y' is an acyclic co:6..bration. Then we have the acyclic cofibration
i+ : X --+ X+ by the push-out with ker1t'I(i+) =P1t'I(X).

Secondly recall the infinite general linear group GLA = limGLnA
--+

where A is the ring with unity. We consider the BGLA as the Milnor
classifying space of GLA and BGLA+ as the plus-construction of the
BGLA.

Now, we recall thirdly the Dr:or's acyclic fiber over X[5}. We take
Xl = X and X 2 as the covering space of X with 1t'1(X2 ) = P1t'I(X),
Next X 3 ,X4 , ••• are construct as follows;

such that

(1) Hq(Xn) = 0, q < n.
(2) X n ~ X nH is induced from the path fibration (n ~ 2)

X n +l --+ AK(Hn(Xn), n)
! © ! ;cartesian square

(pull-back)
X n --+ K(Hn(Xn),n)

where A means the path space, K means the Eilenberg-MacLane
space.

(3) X n is unique up to fiber homotopy equivalence over X n - l .

Then lim X n = AX is an acyclic space.-LEMMA 2.1.
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Proof. We consider the fibration X 2 --+ X --+ K(7l"l(X+), 1). Since
P7l"l (X+) is a trivial group, there exists a fibration;

As the same method we also make the following fibration;

X;+l --+ X; --+ K(Hn(Xn), n)+ = K(Hn(Xn), n) for n 2: 2.

By use of the homotopy exact sequence and generalized Hurewicz theo
rem, we have

{
7l"q(X;;) = 0 if q < n,
7l"q(X~) = 7l"q(X+) if q 2: n.

DEFINITION 2.2. A group acts nilpotentlyon a group G if there is an
action on G with the following conditions; there exists a finite sequence
of subgroups of G i.e.,

G = G1 ::> G2 ::> ••. ::> Gj ::> ... ::> Gn = *

such that for all j

(1) G j is closed under the action,
(2) Gj+l is normal subgroup of Gj, Gj/Gj+I is abelian,
(3) The induced action on Gj/Gj+l is trivial.

Next X is called a nilpotent space if

(1) 7l"l(X) is a nilpotent group,
(2) The action 7l"l(X) on 7l"n(X) is nilpotent for n ~ 2.

DEFINITION 2.3. For X E S*N, R C Q, an R -localization of X is the
space X with the map X --+ X E S*N such that either of the following
(equivalent) conditions hold;

(1) the groups 7l"*X are R-nilpotent and the canonical map

R@ 7l"*X --+ 7l"*X is an isomorphism,

(2) the groups H*(X; Z) are R-nilpotent and the canonical map

R 0 H*(X : Z) --+ H*(X; Z) is an isomorphism.
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Since the R-completion X -+ RooX is an R-Iocalization for X E S*N
[9, 12] and any R-Iocalization X ~ X is canonically equivalent to X -+

RooX in the pointed homotopy category [4]. Moreover the R-completion
has the following properties [11];

I

(1) Roo(SX) ~ SRooX, where S denotes the suspension functor.
(2) Roo(OX)::::::: ORooX, where 0 denotes the loop functor and X is

I-connected.

3. Main Theorems

In this section, we shall prove that RooBGLA+ is an infinite loop
space and show the group structure of [X, RooBGLA+]. Finally,
'1rn(RooBGLFt) is calculated.

We know that BGLA+ is a nilpotent space [10, 14], thus we consider
the R-Iocalization and R-completion of the BGLA+.

Let C A be the ring of locally finite matrices over A and M A(C C A)
be the two-sided ideal of finite matrices, i.e., those matrices have at most
finitely many non-zero entries. Define SA =CAlMA which is called the
swpension ring of A.

THEOREM 3.1. RooBGLA+ is an inlinite loop space.

Proof. We know that precise O-speetrum structure on BGLA+ IS

shown [2, 16];

BGLA+, BGL(SA)t, ... , BGL(snA);+I""

where ( )n means the Door's n-th acyclic tower[5].
By lemma 2.1, BGL(SA)t is a I-connected space and BGL(S2 A)t is a
2-connected space. Now we make the new sequence;

In the sequence above,

RooBGLA+ ~ RooOBGL(SA)t

~ ORooBGL(SA)t
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-because BGL(SA)i is I-connected.
" ~ " means homotopy equivalence.

Furthermore, for all n ;;::: 2

RooBGL(sn-1 A)~ ~ RooOBGL(snA)~+t

~ ORooBGL(snA)~+I

because BGL(snA)~+t is an n-connected space. Therefore RooBGLA+
is an infinite loop space.

COROLLARY 3.2. [X, RooBGLA+], [X,BGLA+] are all trivial groups
wbere X is an acyclic space.

We recall that Kn(Fq) = 1rn(BGLFt) is a finitely generated abelian
group [8, 15]. i.e.,

{
K2j(Fq) =0

K 2j-I(Fq) ~ Zqj -I.

Next, for every nilpotent group N and prime number p we recall the
Ext-completion;

Ext(Zpoo,N) = 1rtRooK(N, 1)

and Hom-completion;

where Roo means the Bousfield's R-completion which is equivalent to
the R-Iocalization in S.N R = Zp =Z/pZ [7, 9, 12].

THEOREM 3.3. If Fq is a finite field witb q-elements, tben

{
o ifn is even ,

1rn(RooBGLpt) ~ ...b ® Zqj-l ifn(= 2J -1) JS odd,

wbere~ = ~Z/pnz is a p-adic integers.

Proof. For X E S.N and R = Zp = Z/pZ, we know that RooX E S.N.
Now, we consider the following splittable short exact sequence;[4]
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Since BGLA+ is a nilpotent space, we can make the following sequence;

0-+ Ext(Zpoo, 7rn BGLFi) -+ 7rn (RooBGLF:)

-+ Hom(Zpoo,7rn _ 1BGLF:) -+ O.

Thus we have

for every n ~ 1. And 7rn _ 1BGLF: is a finitely generated abelian group.
Hence

Furthermore

Therefore

{
o ifniseven,

7rn(RooBGLF:) ~ ~ ® Zqj-l if n(= 2j -1) is odd.
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