Comm. Korean Math. Soc. 8 (1993), No. 3, pp. 521-527

\mathbb{Z}_p -LOCALIZATION IN THE PLUS-CONSTRUCTION AND ITS APPLICATIONS

KYU-HYUN SOHN AND SANG-EON HAN

1. Introduction

Throughout this paper, A means a ring with unity. It is well-known that $BGLA^+$ is an infinite loop space, a nilpotent space, and a homotopy associative *H*-space [1, 2, 6, 10 12, 14, 16]. Since D. Quillen defined the algebraic *K*-group $K_n(A) = \pi_n(BGLA^+)$ for $n \ge 1$, $K_n(A)$ is an abelian group.

In this paper, we shall prove that $R_{\infty}BGLA^+$ is an infinite loop space (Theorem 3.1) and $[X, R_{\infty}BGLA^+]$, $[X, BGLA^+]$ are trivial groups where [,] means the set of based homotopy classes, X is an acyclic space (Corollary 3.2). Finally, by use of the Ext-completion, Hom-completion [3,4] and Dror's acyclic tower, we shall calculate the homotopy group $\pi_n(R_{\infty}BGLF_q^+)$ where F_q is a finite field with q elements. More precisely,

$$\pi_n(R_{\infty}BGLF_q^+) \cong \begin{cases} 0 & \text{if } n \text{ is even }, \\ \underline{\mathbb{Z}}_p \otimes \mathbb{Z}_{q^j-1} & \text{if } n(=2j-1) \text{ is odd}, \end{cases}$$

where $R = \mathbb{Z}_p = \mathbb{Z}/p\mathbb{Z}$ and R_{∞} means the Bousfield's *R*-completion which is equivalent to the *R*-localization in the S_{*N} .

Throughout this paper, we shall work in the category of based connected CW-complexes which is denoted by S_* . Moreover we denote the category of based connected nilpotent CW-complexes by S_{*N} . Obviously S_{*N} is a subcategory of S_* . All maps means the base point preserving continuous maps unless otherwise stated. We denote the maximal perfect subgroup of a group G by PG, and the loop functor by Ω .

Received December 19, 1992. Revised April 6, 1993.

This research is partially supported by KOSEF under Grant 921-0100-001-1.

2. Preliminaries

In this section, we shall consider the Dror's acyclic fiber and Quillen's plus-construction, nilpotent action, the localization of a nilpotent space and the completion of a space.

Firstly recall the Quillen's plus-construction; let X be a space then the Quillen's plus-construction $X^+[15]$ is constructed as follows. Let $p: X' \to X$ be a covering space of X with $\pi_1(X') = P\pi_1(X)$. Attach 2-cells and 3-cells to X' to get a simply connected space Y' such that f: $X' \to Y'$ is an acyclic cofibration. Then we have the acyclic cofibration $i^+: X \to X^+$ by the push-out with ker $\pi_1(i^+) = P\pi_1(X)$.

Secondly recall the infinite general linear group $GLA = \varinjlim GL_nA$ where A is the ring with unity. We consider the BGLA as the Milnor classifying space of GLA and BGLA⁺ as the plus-construction of the BGLA.

Now, we recall thirdly the Dror's acyclic fiber over X[5]. We take $X_1 = X$ and X_2 as the covering space of X with $\pi_1(X_2) = P\pi_1(X)$. Next X_3, X_4, \ldots are construct as follows;

$$X_2 \leftarrow X_3 \leftarrow X_4 \leftarrow \cdots \leftarrow X_n \leftarrow X_{n+1} \leftarrow \cdots$$

such that

- (1) $H_q(X_n) = 0, q < n.$
- (2) $X_n \leftarrow X_{n+1}$ is induced from the path fibration $(n \ge 2)$

$$\begin{array}{cccc} X_{n+1} & \longrightarrow & \Lambda K(H_n(X_n), n) \\ \downarrow & \textcircled{C} & \downarrow & ; \text{cartesian square} \\ & & & & (\text{pull-back}) \\ X_n & \longrightarrow & K(H_n(X_n), n) \end{array}$$

where Λ means the path space, K means the Eilenberg-MacLane space.

(3) X_n is unique up to fiber homotopy equivalence over X_{n-1} . Then $\lim_{n \to \infty} X_n = AX$ is an acyclic space.

LEMMA 2.1.

$$\pi_q(X_n^+) = \begin{cases} 0 & \text{if } q < n, \\ \pi_q(X^+) & \text{if } q \ge n. \end{cases}$$

522

 \mathbb{Z}_p -localization in the plus-construction and its applications

Proof. We consider the fibration $X_2 \to X \to K(\pi_1(X^+), 1)$. Since $P\pi_1(X^+)$ is a trivial group, there exists a fibration;

$$X_2^+ \to X^+ \to K(\pi_1(X^+), 1)^+ = K(\pi_1(X^+), 1).$$

As the same method we also make the following fibration;

$$X_{n+1}^+ \to X_n^+ \to K(H_n(X_n), n)^+ = K(H_n(X_n), n) \quad \text{for } n \ge 2.$$

By use of the homotopy exact sequence and generalized Hurewicz theorem, we have

$$\begin{cases} \pi_q(X_n^+) = 0 & \text{if } q < n, \\ \pi_q(X_n^+) = \pi_q(X^+) & \text{if } q \ge n. \end{cases}$$

DEFINITION 2.2. A group acts *nilpotently* on a group G if there is an action on G with the following conditions; there exists a finite sequence of subgroups of G i.e.,

$$G = G_1 \supset G_2 \supset \cdots \supset G_i \supset \cdots \supset G_n = *$$

such that for all j

- (1) G_j is closed under the action,
- (2) G_{j+1} is normal subgroup of $G_j, G_j/G_{j+1}$ is abelian,
- (3) The induced action on G_j/G_{j+1} is trivial.

Next X is called a *nilpotent space* if

- (1) $\pi_1(X)$ is a nilpotent group,
- (2) The action $\pi_1(X)$ on $\pi_n(X)$ is nilpotent for $n \ge 2$.

DEFINITION 2.3. For $X \in S_{*N}$, $R \subset \mathbb{Q}$, an *R*-localization of X is the space \overline{X} with the map $X \to \overline{X} \in S_{*N}$ such that either of the following (equivalent) conditions hold;

(1) the groups $\pi_* \bar{X}$ are *R*-nilpotent and the canonical map

$$R \otimes \pi_* X \to \pi_* X$$
 is an isomorphism,

(2) the groups $H_*(\bar{X};\mathbb{Z})$ are *R*-nilpotent and the canonical map

 $R \otimes \tilde{H}_*(X:\mathbb{Z}) \to \tilde{H}_*(\bar{X};\mathbb{Z})$ is an isomorphism.

Since the *R*-completion $X \to R_{\infty}X$ is an *R*-localization for $X \in S_{*N}$ [9, 12] and any *R*-localization $X \to \overline{X}$ is canonically equivalent to $X \to R_{\infty}X$ in the pointed homotopy category [4]. Moreover the *R*-completion has the following properties [11];

- (1) $R_{\infty}(SX) \approx SR_{\infty}X$, where S denotes the suspension functor.
- (2) $R_{\infty}(\Omega X) \approx \Omega R_{\infty} X$, where Ω denotes the loop functor and X is 1-connected.

3. Main Theorems

In this section, we shall prove that $R_{\infty}BGLA^+$ is an infinite loop space and show the group structure of $[X, R_{\infty}BGLA^+]$. Finally, $\pi_n(R_{\infty}BGLF_q^+)$ is calculated.

We know that $BGLA^+$ is a nilpotent space [10, 14], thus we consider the *R*-localization and *R*-completion of the $BGLA^+$.

Let CA be the ring of locally finite matrices over A and $MA(\subset CA)$ be the two-sided ideal of finite matrices, i.e., those matrices have at most finitely many non-zero entries. Define SA = CA/MA which is called the *suspension* ring of A.

THEOREM 3.1. $R_{\infty}BGLA^+$ is an infinite loop space.

Proof. We know that precise Ω -spectrum structure on $BGLA^+$ is shown [2, 16];

$$BGLA^+, BGL(SA)_2^+, \ldots, BGL(S^nA)_{n+1}^+, \ldots$$

where $()_n$ means the Dror's *n*-th acyclic tower[5].

By lemma 2.1, $BGL(SA)_2^+$ is a 1-connected space and $BGL(S^2A)_3^+$ is a 2-connected space. Now we make the new sequence;

 $R_{\infty}BGLA^+, R_{\infty}BGL(SA)_2^+, \ldots, R_{\infty}BGL(S^nA)_{n+1}^+, \ldots$

In the sequence above,

$$R_{\infty}BGLA^{+} \approx R_{\infty}\Omega BGL(SA)_{2}^{+}$$
$$\approx \Omega R_{\infty}BGL(SA)_{2}^{+}$$

524

 \mathbb{Z}_p -localization in the plus-construction and its applications

because $BGL(SA)_2^+$ is 1-connected.

" \approx " means homotopy equivalence.

Furthermore, for all $n \geq 2$

$$R_{\infty}BGL(S^{n-1}A)_{n}^{+} \approx R_{\infty}\Omega BGL(S^{n}A)_{n+1}^{+}$$
$$\approx \Omega R_{\infty}BGL(S^{n}A)_{n+1}^{+}$$

because $BGL(S^nA)_{n+1}^+$ is an *n*-connected space. Therefore $R_{\infty}BGLA^+$ is an infinite loop space.

COROLLARY 3.2. $[X, R_{\infty}BGLA^+]$, $[X, BGLA^+]$ are all trivial groups where X is an acyclic space.

We recall that $K_n(F_q) = \pi_n(BGLF_q^+)$ is a finitely generated abelian group [8, 15]. i.e.,

$$\begin{cases} K_{2j}(F_q) = 0\\ K_{2j-1}(F_q) \cong \mathbb{Z}_{q^j-1}. \end{cases}$$

Next, for every nilpotent group N and prime number p we recall the Ext-completion;

$$\operatorname{Ext}(\mathbb{Z}_{p^{\infty}}, N) = \pi_1 R_{\infty} K(N, 1)$$

and Hom-completion;

$$\operatorname{Hom}(\mathbb{Z}_{p^{\infty}}, N) = \pi_2 R_{\infty} K(N, 1)$$

where R_{∞} means the Bousfield's *R*-completion which is equivalent to the *R*-localization in $S_{*N} R = \mathbb{Z}_p = \mathbb{Z}/p\mathbb{Z}$ [7, 9, 12].

THEOREM 3.3. If F_q is a finite field with q-elements, then

$$\pi_n(R_{\infty}BGLF_q^+) \cong \begin{cases} 0 & \text{if } n \text{ is even }, \\ \underline{\mathbb{Z}}_p \otimes \mathbb{Z}_{q^j-1} & \text{if } n(=2j-1) \text{ is odd }, \end{cases}$$

where $\underline{\mathbb{Z}}_p = \lim_{n \to \infty} \mathbb{Z}/p^n \mathbb{Z}$ is a p-adic integers.

Proof. For $X \in S_{*N}$ and $R = \mathbb{Z}_p = \mathbb{Z}/p\mathbb{Z}$, we know that $R_{\infty}X \in S_{*N}$. Now, we consider the following splittable short exact sequence;[4]

$$0 \to \operatorname{Ext}(\mathbb{Z}_{p^{\infty}}, \pi_n X) \to \pi_n(R_{\infty} X) \to \operatorname{Hom}(\mathbb{Z}_{p^{\infty}}, \pi_{n-1} X) \to 0.$$

Since $BGLA^+$ is a nilpotent space, we can make the following sequence;

$$0 \to \operatorname{Ext}(\mathbb{Z}_{p^{\infty}}, \pi_n BGLF_q^+) \to \pi_n(R_{\infty} BGLF_q^+) \\ \to \operatorname{Hom}(\mathbb{Z}_{p^{\infty}}, \pi_{n-1} BGLF_q^+) \to 0.$$

Thus we have

$$\pi_n(R_{\infty}BGLF_q^+) \cong \operatorname{Ext}(\mathbb{Z}_{p^{\infty}}, \pi_nBGLF_q^+) \oplus \operatorname{Hom}(\mathbb{Z}_{p^{\infty}}, \pi_{n-1}BGLF_q^+)$$

for every $n \ge 1$. And $\pi_{n-1}BGLF_q^+$ is a finitely generated abelian group. Hence

$$\operatorname{Hom}(\mathbb{Z}_{p^{\infty}}, \pi_{n-1}BGLF_q^+) = 0.$$

Furthermore

$$\operatorname{Ext}(\mathbb{Z}_{p^{\infty}}, \pi_n BGLF_q^+) \cong \underline{\mathbb{Z}}_p \otimes K_n(F_q).$$

Therefore

$$\pi_n(R_{\infty}BGLF_q^+) \cong \begin{cases} 0 & \text{if } n \text{ is even }, \\ \underline{\mathbb{Z}}_p \otimes \mathbb{Z}_{q^j - 1} & \text{if } n(=2j-1) \text{ is odd }. \end{cases}$$

References

- 1. J. F. Adams, Infinite loop spaces, vol. 90, Ann. of Math. Stud., Princeton Univ., 1978.
- 2. A. J. Berrick, An approach to the algebraic K-theory, Pitman Advanced Publishing Company, London, 1981.
- 3. A. K. Bousfield and D. M. Kan, Localization and completion in homotopy theory, Bull. Amer. Math. Soc. (1971), 1006-1010.
- 4. _____, Homotopy limits, completions and localizations, Lecture Notes in Math. vol. 304, Springer-Verlag, New York, 1972.
- 5. E. Dror, Acyclic spaces, Topology (1972), 339-348.
- 6. S. M. Gersten, On the spectrum of algebraic K-theory, Bull. Amer. Math. Soc. 78 (1972), 216-219.
- 7. _____, The Whitehead Theorem for nilpotent spaces, Proc. Amer. Math. Soc. 47 (1975), 259-260.
- B. Harris and G. Segal, K_i-groups of rings of algebraic integers, Ann. of Math. 101 (1975), 20-33.

 \mathbb{Z}_p -localization in the plus-construction and its applications

- 9. P. Hilton, G. Mislin and J. Roitberg, Localizations of nilpotent group and spaces, Math. Studies, vol. 15, Elsevier, New York, 1975.
- 10. R. H. Lewis, Homology and cell-structure of nilpotent spaces, Trans. Amer. Math. Soc. 290 (1985), 747-760.
- 11. J. P. May, Simplicial objects in algebraic topology, Van Nostrand, New York, 1967.
- 12. M. Mimura, G. Nishida, H. Toda, Localization of CW-complexes and its applications, Math. Soc. Japan 23 (1971), 593-624.
- 13. G. Mislin, Finitely dominated nilpotent spaces, Ann. of Math. 103 (1976), 547-556.
- 14. R. Oliver, Finiteness obstructions for homologically nilpotent spaces, Topology Appl. 25 (1987), 229-235.
- 15. D. Quillen, On the cohomology and K-theory the general linear groups over a finite field, Ann. of Math. 96 (1972), 552-586.
- 16. J. B. Wagoner, Delooping classifying spaces in algebraic K-theory, Topology 11 (1972), 349-370.

Department of Mathematics Education Chonnam National University Kwangju 500-757, Korea

Department of Mathematics Honam University Kwangju 502-791, Korea