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SURFACES IN A RIEMANNIAN MANIFOLD

WITH A BOUNDED CURVATURE

YONG DUCG KIM AND JIN WHAN YIM

1. Introduction

Let M be a complete Riemannian manifold with the sectional curva
ture K M. One of the central problems in Riemannian Geometry is the
study of the metric structure of M in the case when K M is bounded either
above or below by a constant. When KM is nonnegative (bounded be
low by zero), by the Toponogov splitting theorem([2], [7]), the universal
covering M of M can be written as the isometric product M x IRk, where
IRk has its standard fiat metric. Therefore, in M we have a submanifold
corresponding to IRk, which is obviously totally geodesic. On the other
hand, when KM is nonpositive, it is shown in [4], [5] that the universal
covering of M contains a fiat totally geodesic submanifold determined
by the fundamental group of M, and we have a similar conclusion as in
the case of nonnegative curvature.

These theorems suggest that if M has a bounded curvature, a sub
manifold with extreme value of sectional curvature is totally geodesic in
M when it is suitably constructed. In this paper, we will construct a
2-dimensional submanifold E of M when K M is bounded, and show that
the sectional curvature of M takes the extreme value over the surface E
if and only if E is totally geodesic in M and locally isometric to a surface
with constant curvature.

For the basic notation and tools we refer to [1], [3], [6].

2. Main Results

Let M be a complete Riemannian manifold with sectional curvature
K M ~ cor K M :::; c, where c is a constant. We will denote by ( , ) the
Riemannian metric on M. Let 'Y : [a, b) ~ M be a geodesic and E(s)
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be a parallel vector field along, such that 1II'(s)1I = 1, IIE(s)1I = 1,
and (l'(s),E(s» = o. Define a smooth map F: [a,b] x [0,00) -+ M by
F(s, t) = exp-y(s) (tE(s». Denote

,t(s) = F(s, t), I7s (t) = F(s, t),

V = F.(~) = ,;(s),

T = F.(~) = 17~(t).

Note that for each s E [a, b], I7s : [0,00) -+ M is a geodesic, and hence
F is in fact a variation through geodesics. Therefore the variational
vector field Vet) along each geodesic I7s is a Jacobi-field. Let V denote
the Levi-Civita connection on M. Since '\7 is a symmetric connection
and [V, T] = F.([:s' :t]) = 0, we have '\7TV = VyT whenever they are
defined. Along, = '0' We have yeO) = ,'(s) and T = E. Therefore,
VTV = VyT = 0 along, because E is parallel. For each s, Vet) is a
Jacobi-field along I7s such that (YeO), 17~(0)} =o. Then from the fact that
the Jacobi-field Vet) is a solution to a second order ordinary differential
equation with initial conditions,

(YeO), 17~(0» = 0

(VTV(O), 17~(0» = 0,

it is not difficult to see that (Vet), 17~(t» = 0 for every t, and we conclude
that V and T are perpendicular to each other whenever they are defined.
We assume that for each s E [a, b}, the geodesic I7s has no conjugate
points or focal points, and therefore F is an immersion. In particular,
if c > 0, F is defined only for t < 2vrc (Myers and Bonnet, see t1]). We
denote by ~ the 2-dimensional immersed submanifold with the induced
metric. This surface ~ is the object of our study. We will show that
the sectional curvature of M takes the extreme value over the surface
~ if and only if ~ is totally geodesic as an immersed submanifold. By
assumption, the sectional curvature of M is bounded either above or
below by c. Hence the extreme value of the sectional curvature means
that KM = c over~. In the following lemma, we will show what this
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means in terms of the curvature tensor. The curvature tensor R on M
is defined by

R(X,Y)Z = VxVyZ - VyVxZ - V[X,y]Z,

and KM(X, Y) means the sectional curvature of the plane spanned by
X and 1':

LEMMA 2.1. Let M and E be as above. Then the following state
ments are equivalent:

(i) KM(T, V) = cover E.
(ii) R(T, V)V = cTIIVII2

•

(iii) R(V, T)T = cV.

Proof. H either (ii) or (iii) is true, then clearly KM = cover E because
{T, V} = O. Therefore, it suffices to show that (i) implies both (ii) and
(iii). The argument is exactly same for (ii) and (iii), and we will only
show that (i) implies (ii).

For each pEE, R(-, V)V : TpM -+ TpM is a symmetric linear
transformation because R is symmetric. Let N C TpM be the set of
all vectors perpendicular to V and A : N -+ N be the restriction of
R(-,V)V to the subspace N. Since TpM is a vector space isomor
phic to Rn+! where n + 1 is the dimension of M, we can view this
map A as a symmetric linear transformation in ·Rn. Define f(W) =
(A(W), W}, and g(Xl,X2, ... ,xn) = X1 2+ X2 2 + ... + x;. Then sn-l =
((Xt,X2,""Xn) I g(Xl,X2""'Xn ) = I}, and f/sn-l denotes f re
stricted to sn-l which is the sectional curvature because ~ V are or
thonormal. Let B = {el' e2, ... , en} be an orthonormal basis for Rn, n X n
matrix (aij) be the matrix of A relative to B, and let W = Z::=1 Wkek.

Then

f(W) = (A(W), W}
n n n

= (~:::XE aijWj)ei, L Wkek)
i=1 j=1 1.=1
n n n

- """""" a'·w'wL6~- L..t L..t L..t I) ) '" &

i=1 j=1 k=1
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n n

= L L aijWjWi-

i=l j=l

Since A is a nonzero symmetric n x n matrix, the above equation becomes
n

L aiiw~ + 2 L aijWiWj.

i=l i>j

Then we can get
n n

Vf(W) = 2L(L aijWj)ei = 2A(W).
i=l j=l

Since flSn - 1 has a maximum or minimum at T, by the Lagrange multi
pliers, there exists a nonzero real number A such that Vf(T) = AVg(T).
Therefore, we get A(T) = AT because Vf(T) =2A(T) and Vg(T) = 2T.
And we can see that A is equal to c1lV1I 2 , because

A= f(T) = (A(T), T)

= (R(T V)V T) = (R(T, V)V, T) IIVI12

" liT /\ VII 2

= KM(T, V)11V1I 2 = c1lV1I 2
•

We already used the fact that V is a Jacobi-field along each (Js in
order to show that {V, T} forms an orthogonal frame field over E. Every
Jacobi-field satisfies a second order ordinary differential equation called
the Jacobi-equation, of which the solutions are uniquely determined by
the initial conditions. Using this fact, we can show that the vector field
V must be of a special form in the case of extreme sectional curvature.
In the following proposition, Ps(t) is the parallel vector field along (Js
with Ps(O) = "'('(s). Then, of course, we have IlPs(t)1I ~ 1 for each s and
t.

PROPOSITION 2.2. Let M and E be as above. The sectional curvature
KM(T, V) = c if and only if V(t) = cos( VC t)Ps(t) for c > 0 and
V(t) = cosh(.;=c t)Ps(t) for c ~ O.

Proof. We will verify the statement only in the case when c > O.
For a nonpositive number c, the proof would be exactly same with the
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corresponding fWlctions. By Lemma 2.1, it suffices to show that Vet) =
cos(v'C t)Ps(t) if and only if R(~T)T = cV.

We first assume that V(t) = cos(VC t)Ps(t). Since Ps is parallel along
Us, we have \!TPs = 0 and hence

tP
\!T\!TV = dt2 cos(y'C t) Ps

= -c . cos(y'C t )Ps

=-cV.

Since V(t) is a Jacobi-field along Us, it satisfies the Jacobi-equation,

Therefore, we conclude

Conversely, if R(V, T)T = cV, then we have

because we already know V is a Jacobi-field along each geodesic Us'

Therefore, V( t) = cos( v'C t )Ps{t) is the unique solution satisfying the
initial conditions

In order to prove E is totally geodesic, we have to show that the second
fundamental form II of E vanishes. Since {V, T} forms an orthogonal
system, it suffices to show that \!v V, \!T T, and \!T V are tangential
to the surface E. The most difficult part is to show \!v V has only
tangential component, which is proved in the following lemma.



516 Yong Ducg Kim and Jin Whan Yim

LEMMA 3. IfV(t) = cos(y'C t)Pa(t) or cosh(yCC t)Pa(t), then VvV
has only tangential component.

Proof. Once again we will prove the statement only in the case when
c> 0, and hence F is defined for t < 2Vic. Denote by P the vector field
over :E defined by PaCt) at the point (s, t). Then,

VvV = Vcos(v'C t) p{cos(VC t) P}

= cos(VC t) Vp{cos(VC t) P}

= cos(VC t){P[cos(VC t)} P + cos(VC t)VpP}

= cos2
( VC t) V pP.

Hence it suffices to show that V pP is tangent to:E. Since the Lie-bracket
has the property,

[fV, gW} = fg[V, W} + fV[g}W - gW[flV

and [T, V} = 0, we have

0= [T, cos(VC t) P}

= cos(VC t) [T, P} - VC sineVC t) P.

From the fact that F is defined for t < 2~' we know cos(y'C t) =1= 0 and
hence

[T, P} = VC tan(VC t) P.

Using this expression for Lie-bracket [T, PI, we can show that the vector
field V pP satisfies a first order differential equation along each (Fa. By
the definition of the curvature tensor and lemma 2.1, we get

Since P is parallel along (Fa, we know VTP = o. Together with V[T,P]P
= y'C tan(y'C t)VpP, we obtain

VTVpP - VC tan(y'C t)VpP = cT.
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Put W = '\lpP. Then the above equation becomes

'\lTW - ..;c tan(..;c t)W = cT.

Take a parallel orthonormal frame field {Pi(t)}i=l along oAt) with Pl(t)
=T. Then we can write

n

Wet) = V pP =L h(t)Pi(t),
i=l

and the above equation becomes
n n

L IIPi - ..;c tan( JC t) L IiPi = CPl.
i=l i=l

Since It is geodesic at t = 0, we have
n

W(O) = V")"(8)7'(8) = L Ii(O)Pi(O) = O.
i=l

We get the initial condition li(O) = 0 for 1 $ i $ n. Thus we get a
system of first order ordinary differential equations,

{
I~ - ..;c tan( JC t)ft = c,

II - JC tan(JC t)1i = 0, for 2 $ i $ n

with the initial condition h(O) = 0 for 1 $ i $ n.
The solutions to this system are

{
Il(t) = JC tan( JC t),

li(t) = 0 for 2 $ i $ n.

Therefore, we have
n

W = L hPi = ..;c tan( JC t )Pl
i=l

=JC tan( JC t)T.

Therefore '\lv V has only tangential component.

We are now ready to prove our main theorem. By sec) we denote the
2-dimensional rank one simply connected symmetric space of constant
curvature c, which means S(c) is a sphere if c > 0, the Euclidean plane
if c = 0, and a hyperbolic space if c < o.
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THEOREM 2.4. Let M be a complete Riemannian manifold with the
sectional curvature K M either bounded above or below by c, where c is
a constant. Then K M = cover E ifand only ifE is locally isometric to
S(c) and totally geodesic.

Proof. If E is totally geodesic and locally isometric to §(c), then
KM = cover E by the Gauss formula.

If KM = cover E, then by lemma 2.1 E is locally isometric to S(c).
The second fundamental form II(T, T) = (VTT).l = the normal com
ponent of (V"TT) = 0 because (Is is geodesic. Furthermore,

V"TV = VTcosVC t P

= (,.-VCsinVC t)P,

which is tangent to E. Therefore II(T, V) = (VTV).l = 0 and by lemma
2.3, II(V, V) = (VvV).l = O. Thus the second fundamental fonn II is
identically zero, that is E is totally geodesic.

COROLLARY 2.5. Suppose that K M ~ c. H K E = c, then E is totally
geodesic in M.

Proof. If K E = c then, by the Gauss fonnula,

C=KE

_ K IlII(T, V)1I 2

- M - IIT!\ VII2

~ C.

Equality holds only when KM = cover E and II(T, V) = O. Thus, by
theorem 2.4, the corollary 2.5 is proved.
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