SURFACES IN A RIEMANNIAN MANIFOLD WITH A BOUNDED CURVATURE

Yong Ducg Kim and Jin Whan Yim

1. Introduction

Let M be a complete Riemannian manifold with the sectional curvature K_{M}. One of the central problems in Riemannian Geometry is the study of the metric structure of M in the case when K_{M} is bounded either above or below by a constant. When K_{M} is nonnegative (bounded below by zero), by the Toponogov splitting theorem([2], [7]), the universal covering \tilde{M} of M can be written as the isometric product $\bar{M} \times \mathbb{R}^{k}$, where \mathbb{R}^{k} has its standard flat metric. Therefore, in M we have a submanifold corresponding to \mathbb{R}^{k}, which is obviously totally geodesic. On the other hand, when K_{M} is nonpositive, it is shown in [4], [5] that the universal covering of M contains a flat totally geodesic submanifold determined by the fundamental group of M, and we have a similar conclusion as in the case of nonnegative curvature.

These theorems suggest that if M has a bounded curvature, a submanifold with extreme value of sectional curvature is totally geodesic in M when it is suitably constructed. In this paper, we will construct a 2-dimensional submanifold Σ of M when K_{M} is bounded, and show that the sectional curvature of M takes the extreme value over the surface Σ if and only if Σ is totally geodesic in M and locally isometric to a surface with constant curvature.

For the basic notation and tools we refer to [1], [3], [6].

2. Main Results

Let M be a complete Riemannian manifold with sectional curvature $K_{M} \geq c$ or $K_{M} \leq c$, where c is a constant. We will denote by (,) the Riemannian metric on M. Let $\gamma:[a, b] \rightarrow M$ be a geodesic and $E(s)$

[^0]be a parallel vector field along γ such that $\left\|\gamma^{\prime}(s)\right\|=1,\|E(s)\|=1$, and $\left\langle\gamma^{\prime}(s), E(s)\right\rangle=0$. Define a smooth map $F:[a, b] \times[0, \infty) \rightarrow M$ by $F(s, t)=\exp _{\gamma(s)}(t E(s))$. Denote
\[

$$
\begin{aligned}
\gamma_{t}(s) & =F(s, t), \quad \sigma_{s}(t)=F(s, t) \\
V & =F_{*}\left(\frac{\partial}{\partial s}\right)=\gamma_{t}^{\prime}(s) \\
T & =F_{*}\left(\frac{\partial}{\partial t}\right)=\sigma_{s}^{\prime}(t)
\end{aligned}
$$
\]

Note that for each $s \in[a, b], \sigma_{s}:[0, \infty) \rightarrow M$ is a geodesic, and hence F is in fact a variation through geodesics. Therefore the variational vector field $V(t)$ along each geodesic σ_{s} is a Jacobi-field. Let ∇ denote the Levi-Civita connection on M. Since ∇ is a symmetric connection and $[V, T]=F_{*}\left(\left[\frac{\partial}{\partial s}, \frac{\partial}{\partial t}\right]\right)=0$, we have $\nabla_{T} V=\nabla_{V} T$ whenever they are defined. Along $\gamma=\gamma_{o}$, We have $V(0)=\gamma^{\prime}(s)$ and $T=E$. Therefore, $\nabla_{T} V=\nabla_{V} T=0$ along γ because E is parallel. For each $s, V(t)$ is a Jacobi-field along σ_{s} such that $\left\langle V(0), \sigma_{s}^{\prime}(0)\right\rangle=0$. Then from the fact that the Jacobi-field $V(t)$ is a solution to a second order ordinary differential equation with initial conditions,

$$
\begin{aligned}
\left\langle V(0), \sigma_{s}^{\prime}(0)\right\rangle & =0 \\
\left\langle\nabla_{T} V(0), \sigma_{s}^{\prime}(0)\right\rangle & =0,
\end{aligned}
$$

it is not difficult to see that $\left\langle V(t), \sigma_{s}^{\prime}(t)\right\rangle=0$ for every t, and we conclude that V and T are perpendicular to each other whenever they are defined. We assume that for each $s \in[a, b]$, the geodesic σ_{s} has no conjugate points or focal points, and therefore F is an immersion. In particular, if $c>0, F$ is defined only for $t<\frac{\pi}{2 \sqrt{c}}$ (Myers and Bonnet, see [1]). We denote by Σ the 2 -dimensional immersed submanifold with the induced metric. This surface Σ is the object of our study. We will show that the sectional curvature of M takes the extreme value over the surface Σ if and only if Σ is totally geodesic as an immersed submanifold. By assumption, the sectional curvature of M is bounded either above or below by c. Hence the extreme value of the sectional curvature means that $K_{M}=c$ over Σ. In the following lemma, we will show what this
means in terms of the curvature tensor. The curvature tensor R on M is defined by

$$
R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z,
$$

and $K_{M}(X, Y)$ means the sectional curvature of the plane spanned by X and Y.

Lemma 2.1. Let M and Σ be as above. Then the following statements are equivalent:
(i) $K_{M}(T, V)=c$ over Σ.
(ii) $R(T, V) V=c T\|V\|^{2}$.
(iii) $R(V, T) T=c V$.

Proof. If either (ii) or (iii) is true, then clearly $K_{M}=c$ over Σ because $\langle T, V\rangle=0$. Therefore, it suffices to show that (i) implies both (ii) and (iii). The argument is exactly same for (ii) and (iii), and we will only show that (i) implies (ii).

For each $p \in \Sigma, R(-, V) V: T_{p} M \rightarrow T_{p} M$ is a symmetric linear transformation because R is symmetric. Let $N \subset T_{p} M$ be the set of all vectors perpendicular to V and $A: N \rightarrow N$ be the restriction of $R(-, V) V$ to the subspace N. Since $T_{p} M$ is a vector space isomorphic to \mathbb{R}^{n+1} where $n+1$ is the dimension of M, we can view this $\operatorname{map} A$ as a symmetric linear transformation in \mathbb{R}^{n}. Define $f(W)=$ $(A(W), W)$, and $g\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{1}{ }^{2}+x_{2}{ }^{2}+\cdots+x_{n}^{2}$. Then $S^{n-1}=$ $\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid g\left(x_{1}, x_{2}, \ldots, x_{n}\right)=1\right\}$, and $f \mid S^{n-1}$ denotes f restricted to S^{n-1} which is the sectional curvature because W, V are orthonormal. Let $\mathbb{B}=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ be an orthonormal basis for $\mathbb{R}^{n}, n \times n$ matrix $\left(a_{i j}\right)$ be the matrix of A relative to \mathbb{B}, and let $W=\sum_{k=1}^{n} w_{k} e_{k}$. Then

$$
\begin{aligned}
f(W) & =\langle A(W), W\rangle \\
& =\left\langle\sum_{i=1}^{n}\left(\sum_{j=1}^{n} a_{i j} w_{j}\right) e_{i}, \sum_{k=1}^{n} w_{k} e_{k}\right\rangle \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} a_{i j} w_{j} w_{k} \delta_{i}^{k}
\end{aligned}
$$

$$
=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} w_{j} w_{i}
$$

Since A is a nonzero symmetric $n \times n$ matrix, the above equation becomes

$$
\sum_{i=1}^{n} a_{i i} w_{i}^{2}+2 \sum_{i>j} a_{i j} w_{i} w_{j}
$$

Then we can get

$$
\nabla f(W)=2 \sum_{i=1}^{n}\left(\sum_{j=1}^{n} a_{i j} w_{j}\right) e_{i}=2 A(W)
$$

Since $f \mid S^{n-1}$ has a maximum or minimum at T, by the Lagrange multipliers, there exists a nonzero real number λ such that $\nabla f(T)=\lambda \nabla g(T)$. Therefore, we get $A(T)=\lambda T$ because $\nabla f(T)=2 A(T)$ and $\nabla g(T)=2 T$. And we can see that λ is equal to $c\|V\|^{2}$, because

$$
\begin{aligned}
\lambda & =f(T)=\langle A(T), T\rangle \\
& =\langle R(T, V) V, T\rangle=\frac{\langle R(T, V) V, T\rangle}{\|T \wedge V\|^{2}}\|V\|^{2} \\
& =K_{M}(T, V)\|V\|^{2}=c\|V\|^{2}
\end{aligned}
$$

We already used the fact that V is a Jacobi-field along each σ_{s} in order to show that $\{V, T\}$ forms an orthogonal frame field over Σ. Every Jacobi-field satisfies a second order ordinary differential equation called the Jacobi-equation, of which the solutions are uniquely determined by the initial conditions. Using this fact, we can show that the vector field V must be of a special form in the case of extreme sectional curvature. In the following proposition, $P_{s}(t)$ is the parallel vector field along σ_{s} with $P_{s}(0)=\gamma^{\prime}(s)$. Then, of course, we have $\left\|P_{s}(t)\right\|=1$ for each s and t.

Proposition 2.2. Let M and Σ be as above. The sectional curvature $K_{M}(T, V) \equiv c$ if and only if $V(t)=\cos (\sqrt{c} t) P_{s}(t)$ for $c>0$ and $V(t)=\cosh (\sqrt{-c} t) P_{s}(t)$ for $c \leq 0$.

Proof. We will verify the statement only in the case when $c>0$. For a nonpositive number c, the proof would be exactly same with the
corresponding functions. By Lemma 2.1, it suffices to show that $V(t)=$ $\cos (\sqrt{c} t) P_{s}(t)$ if and only if $R(V, T) T=c V$.

We first assume that $V(t)=\cos (\sqrt{c} t) P_{s}(t)$. Since P_{s} is parallel along σ_{s}, we have $\nabla_{T} P_{s}=0$ and hence

$$
\begin{aligned}
\nabla_{T} \nabla_{T} V & =\frac{d^{2}}{d t^{2}} \cos (\sqrt{c} t) P_{s} \\
& =-c \cdot \cos (\sqrt{c} t) P_{s} \\
& =-c V .
\end{aligned}
$$

Since $V(t)$ is a Jacobi-field along σ_{s}, it satisfies the Jacobi-equation,

$$
\nabla_{T} \nabla_{T} V+R(V, T) T=0
$$

Therefore, we conclude

$$
R(V, T) T=-\nabla_{T} \nabla_{T} V=c V .
$$

Conversely, if $R(V, T) T=c V$, then we have

$$
\nabla_{T} \nabla_{T} V+c V=0
$$

because we already know V is a Jacobi-field along each geodesic σ_{s}. Therefore, $V(t)=\cos (\sqrt{c} t) P_{s}(t)$ is the unique solution satisfying the initial conditions

$$
\left\{\begin{array}{l}
V(0)=\gamma^{\prime}(s) \\
\nabla_{T} V(0)=0
\end{array}\right.
$$

In order to prove Σ is totally geodesic, we have to show that the second fundamental form Π of Σ vanishes. Since $\{V, T\}$ forms an orthogonal system, it suffices to show that $\nabla_{V} V, \nabla_{T} T$, and $\nabla_{T} V$ are tangential to the surface Σ. The most difficult part is to show $\nabla_{V} V$ has only tangential component, which is proved in the following lemma.

Lemma 3. If $V(t)=\cos (\sqrt{c} t) P_{s}(t)$ or $\cosh (\sqrt{-c} t) P_{s}(t)$, then $\nabla_{V} V$ has only tangential component.

Proof. Once again we will prove the statement only in the case when $c>0$, and hence F is defined for $t<\frac{\pi}{2 \sqrt{c}}$. Denote by P the vector field over Σ defined by $P_{s}(t)$ at the point (s, t). Then,

$$
\begin{aligned}
\nabla_{V} V & =\nabla_{\cos (\sqrt{c} t) P}\{\cos (\sqrt{c} t) P\} \\
& =\cos (\sqrt{c} t) \nabla_{P}\{\cos (\sqrt{c} t) P\} \\
& =\cos (\sqrt{c} t)\left\{P[\cos (\sqrt{c} t)] P+\cos (\sqrt{c} t) \nabla_{P} P\right\} \\
& =\cos ^{2}(\sqrt{c} t) \nabla_{P} P
\end{aligned}
$$

Hence it suffices to show that $\nabla_{P} P$ is tangent to Σ. Since the Lie-bracket has the property,

$$
[f V, g W]=f g[V, W]+f V[g] W-g W[f] V
$$

and $[T, V]=0$, we have

$$
\begin{aligned}
0 & =[T, \cos (\sqrt{c} t) P] \\
& =\cos (\sqrt{c} t)[T, P]-\sqrt{c} \sin (\sqrt{c} t) P
\end{aligned}
$$

From the fact that F is defined for $t<\frac{\pi}{2 \sqrt{c}}$, we know $\cos (\sqrt{c} t) \neq 0$ and hence

$$
[T, P]=\sqrt{c} \tan (\sqrt{c} t) P
$$

Using this expression for Lie-bracket $[T, P]$, we can show that the vector field $\nabla_{P} P$ satisfies a first order differential equation along each σ_{s}. By the definition of the curvature tensor and lemma 2.1, we get

$$
\nabla_{T} \nabla_{P} P-\nabla_{P} \nabla_{T} P-\nabla_{[T, P]} P=R(T, P) P=c T
$$

Since P is parallel along σ_{s}, we know $\nabla_{T} P=0$. Together with $\nabla_{[T, P]} P$ $=\sqrt{c} \tan (\sqrt{c} t) \nabla_{P} P$, we obtain

$$
\nabla_{T} \nabla_{P} P-\sqrt{c} \tan (\sqrt{c} t) \nabla_{P} P=c T
$$

Put $W=\nabla_{P} P$. Then the above equation becomes

$$
\nabla_{T} W-\sqrt{c} \tan (\sqrt{c} t) W=c T
$$

Take a parallel orthonormal frame field $\left\{P_{i}(t)\right\}_{i=1}^{n}$ along $\sigma_{s}(t)$ with $P_{1}(t)$ $=T$. Then we can write

$$
W(t)=\nabla_{P} P=\sum_{i=1}^{n} f_{i}(t) P_{i}(t),
$$

and the above equation becomes

$$
\sum_{i=1}^{n} f_{i}^{\prime} P_{i}-\sqrt{c} \tan (\sqrt{c} t) \sum_{i=1}^{n} f_{i} P_{i}=c P_{1} .
$$

Since γ_{t} is geodesic at $t=0$, we have

$$
W(0)=\nabla_{\gamma^{\prime}(s)} \gamma^{\prime}(s)=\sum_{i=1}^{n} f_{i}(0) P_{i}(0)=0 .
$$

We get the initial condition $f_{i}(0)=0$ for $1 \leq i \leq n$. Thus we get a system of first order ordinary differential equations,

$$
\left\{\begin{array}{l}
f_{1}^{\prime}-\sqrt{c} \tan (\sqrt{c} t) f_{1}=c, \\
f_{i}^{\prime}-\sqrt{c} \tan (\sqrt{c} t) f_{i}=0, \quad \text { for } \quad 2 \leq i \leq n
\end{array}\right.
$$

with the initial condition $f_{i}(0)=0$ for $1 \leq i \leq n$.
The solutions to this system are

$$
\left\{\begin{array}{l}
f_{1}(t)=\sqrt{c} \tan (\sqrt{c} t) \\
f_{i}(t) \equiv 0 \text { for } 2 \leq i \leq n
\end{array}\right.
$$

Therefore, we have

$$
\begin{aligned}
W=\sum_{i=1}^{n} f_{i} P_{i} & =\sqrt{c} \tan (\sqrt{c} t) P_{1} \\
& =\sqrt{c} \tan (\sqrt{c} t) T
\end{aligned}
$$

Therefore $\nabla_{V} V$ has only tangential component.
We are now ready to prove our main theorem. By $\mathbb{S}(c)$ we denote the 2 -dimensional rank one simply connected symmetric space of constant curvature c, which means $\mathbb{S}(c)$ is a sphere if $c>0$, the Euclidean plane if $c=0$, and a hyperbolic space if $c<0$.

Theorem 2.4. Let M be a complete Riemannian manifold with the sectional curvature K_{M} either bounded above or below by c, where c is a constant. Then $K_{M}=c$ over Σ if and only if Σ is locally isometric to $\$(c)$ and totally geodesic.

Proof. If Σ is totally geodesic and locally isometric to $\mathbb{S}(c)$, then $K_{M}=c$ over Σ by the Gauss formula.

If $K_{M}=c$ over Σ, then by lemma 2.1Σ is locally isometric to $\mathbb{S}(c)$. The second fundamental form $\Pi(T, T)=\left(\nabla_{T} T\right)^{\perp}=$ the normal component of $\left(\nabla_{T} T\right)=0$ because σ_{s} is geodesic. Furthermore,

$$
\begin{aligned}
\nabla_{T} V & =\nabla_{T} \cos \sqrt{c} t P \\
& =(-\sqrt{c} \sin \sqrt{c} t) P,
\end{aligned}
$$

which is tangent to Σ. Therefore $\Pi(T, V)=\left(\nabla_{T} V\right)^{\perp}=0$ and by lemma 2.3, $\Pi(V, V)=\left(\nabla_{V} V\right)^{\perp}=0$. Thus the second fundamental form Π is identically zero, that is Σ is totally geodesic.

Corollary 2.5. Suppose that $K_{M} \leq c$. If $K_{\Sigma}=c$, then Σ is totally geodesic in M.

Proof. If $K_{\Sigma}=c$ then, by the Gauss formula,

$$
\begin{aligned}
c & =K_{\Sigma} \\
& =K_{M}-\frac{\|\Pi(T, V)\|^{2}}{\|T \wedge V\|^{2}} \\
& \leq c .
\end{aligned}
$$

Equality holds only when $K_{M}=c$ over Σ and $\Pi(T, V)=0$. Thus, by theorem 2.4, the corollary 2.5 is proved.

References

1. J. Cheeger, D. G. Ebin, Comparison theorems in Riemannian geometry, NorthHolland, Amsterdam, 1975.
2. J. Cheeger, D. Gromoll, On the structure of complete manifolds of nonnegative curvature, Ann. of Math. 96 (1972), 413-443.
3. S. Gallot, D. Hulin and J. Lafontaine, Riemannian Geometry, 2nd ed., SpringerVerlag, Berlin, 1990.
4. D. Gromoll, and J. A. Wolf, Some relations between the metric structure and the algebraic structure of the fundamental group in manifolds of nonpositive curvature, Bull. Amer. Math. Soc. 77 (1971), 545-552.
5. H. B. Lawson, S. T. Yau, On compact manifolds of nonpositive curvature, J. Differential Geom. 7 (1972), 221-228.
6. B. O'neil, Semi-Riemannian geometry with applications to relativity, Academic Press, New York, 1983.
7. V. A. Toponogov, Spaces with straight lines, Amer. Math. Soc. Transl. 37 (1964), 287-290.

Department of Mathematics
KAIST
Taejon 305-701, Korea

[^0]: Received February 13, 1993. Revised May 24, 1993.
 This research was partially supported by GARC-KOSEF

