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ON THE INDEX THEOREM OVER
EVEN-DIMENSIONAL CLOSED

ORIENTED RIEMANNIAN MANIFOLDS

Kvu HVUN SOHN, JAE Up SO AND HONG JAE LEE

Let M be a closed oriented Riemannian manifold with even-dimension
throughout this note. We put

B(M) = {x E T(M) IlIxll 51}

and
SCM) = {x E T(M) IlIxll = I}

where T(M) is the tangent bundle of M. Let

11" : B(M) -+ M

be the projection map. For a vector bundle ( over M we define the
following:

(1) Coo«() is the set of all Coo cross sections M -+ (

(2) (is the restriction of 11"*( to SCM).
For two vector bundles ( and 1] over M, let

be an elliptic operator with the symbol (T(D), then we have the isomor­
phism

(T(D) : ( ~ ij.

Hence we have an element '"reD) E K(B(M),S(M» (relative K-group)
([1], [2], {3]) such that

'"reD) = (11"*(, 11"*1], (T(D».
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Moreover, we have two homomorphisms ia : K(B(M), S(M» --+ Z
(=integers) and it : K(B(M),S(M» --+ Q (-rationals) as follows.
For -reD) E K(B(M), S(M», ia(-r(D» = ia(D) and it(-r(D» = it(D),
where ia(D) is the analytical index of D and it(D) the topological in­
dex of D ([4], [5], [7]). The Atiyah- Singer index theorem asserts that
ia(-r(D» = it(-r(D» ([3], [4], [7]).

Let T*(M) be the cotangent bundle of M. We put

e = Ak(T*(M) @RC) and ~ =EBe
k

where C is the ring of complex numbers. For the exterior derivative
d: COO(e) --+ COO(e) let h be the adjoint operator. Then, d + h is an
elliptic differential operator ([2], [3], [7]).

A bundle map 0 : e --+ eis defined as follows. For each k ~ 0,
o : ek --+ e'-k is defined by

o = (i)-k(k-l)+l * (i = H)

where dimR(M) = 21 and * is the star operator. Since 0
2 = Ie ([2], [3],

[6]), we shall put

e+ = {vEelo(v)=v}, e- = {vE~lo(v)=-v},

then it is clear that

([3], [7]). We put

d + hlcc>o(e+) = DM : COO(~+) --+ COO(~-).

Since K(B(M), S(M» is a K(M)-module under the action:

1/' {J = 1r*1/@{J (1/ E K(M),{J E K(B(M),S(M»)

([1]). We compute (DM @1,,) as follows, where 1] is a vector bundle over
M.

(DM @ 1,,) = d(1t'*(e+ @ 1]j, 1r*(e- @ 1]), U(DM) @ 1,,)

=d(1t'*e+, 1t'*e- ,U(DM» U 1t'*1],
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where U is the cup product.
Therefore we have the following:
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(A)

We review the Pontrjagin classes of M as the elementary symmetric
functions of y~ , ... ,y;, in tij,e usual way:

,
1 +Pl(M) + ... + p,(M) = II(1 + yf)·

i=l

Then

,
(B) ch(DM) = II(eYi - e-Yi)/Yi

i=l

= 2' + positive dimensional terms

([3], [7]). In this case, an immediate consequence is

(C) ch(DM @ 1,,) = ch(DM)· ch(17)

where ch(17) is the Chern character of 17([3], [7]). We define

i : K(M) -+ Q

by i(v) = i(v,DM ) for each v E K(M). Thus from (A) we have

(A')

For each v E K(M) we use the notation i(M, v) in place of i(v) some­
times.

In this note, we want to prove that i(8 2m , V) = 2m where 8 2m is
the 2m-dimensional sphere and V E K(82m ) such that ch(V) is the
generator of H 2m(B2m; Q) (Theorem 4).
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PROPOSITION 1. For the m-dimensional sphere, let Pi(sm) be the ith

Pontrjagin class of sm. Then Pi(sm) = 0 for all i = 1,2,3, ....

Proof. For the tangent bundle T(sm) of sm

Since
T(sm) ffi (}1 = T(Rm+I)lsm

by the properties of Pontrjagin classes ([6]), we have

where (}1 is the one-dimensional vector bundle which is trivial and p(sm)
is the total Pontrjagin class of sm. Thus, from

1 = Po(sm) +Pl(sm) +... and po(sm) = 1

([6]), we have
Pi(sm) = 0 for i = 1,2, ....

LEMMA 2. The index of the operator

is the Euler characteristic of M, where

ee = EBe2k
, eO =Egek+I.

k k

Sketch of Proof. We put .6. = (d + 6)2, then there is a canonical
isomorphism H*(Mj C) ~ ker.6. by the Hodge theory ([3], [7]). For each
fJ E ker.6. let <p be a representative of fJ which is called a harmonic
representative (form) of fJ. In this case,

[m/2) [m/2)

(*) dimker(Do) = L bzi, dimker(D~)= L b2i+I
i=O i=O
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w~ere Do is the adjoint operator of Do,

m

L(-1)ibi (bi = ith Betti number of M)
i=O
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is the Euler characteristic of M and dimR(M) = 2m. By the Hodge
theory ([7]), even-dimensional harmonic forms are 1-1 correspondence
with even-dimensional elements of H*(M;C). The first half of (*) is
proved. Since Do = d + 6 is formally self-adjoint the second half of (*)
follows from the argument of the preceding paragraph. Thus we have

m .

ia(Do) = L(-I)ibi (=the analytic index of Do).
i=O

On the other hand, for the topolo~ca1 index it(Do) of Do we have

it(Do) = e(M)([M]),

where e(M) is the Euler class of M and [M] the fundamental homology
class of M. Since

m

e(M)( [M]) = L(-1 )ihi (Euler charateristic) .
i=O

([6]) we have
m

ia(Do) = L( -l)ibi = it(Do).
i=O

Let Cbe a complex vector bundle over M and let Ci«() be the ith

Chern class of C. As is well-known, there are Xi E H2(M; Q) such that

n

1 + Cl(C) + ... + cn «() = IT(1 +Xi)
i=l

where dime ( = n ([3], [7]). In this case,

n

'J«() = IT xi/(l - e-Xi
}

i=l
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is the Todd cllL8s of ( ([3J, [5J, [7)).
Let ( and fJ be two complex bundles over M, and let

be an elliptic differential operator. Then the topological index it(D) is
defined as follows:

it(D) = (ch(D)T(M»([M)),

where ch(D) is the Chern character of D, 'J(M) the Todd class of the
tangent bundle eof M and [MJ the fundamental homology class of M.

PROPOSITION 3. (i) H the Pontrjagin classes of M are zero, then
'J(M) = 'J(e) = 1.

(ii) For the 2m-dimensional sphere S2m let u E H2m(S2m; Q) be the
generator determined by the orientation: u([S2mJ) = 1, where· [S2m] is
the fundamental homology class of S2m. Then ch(Do) = 2u (for Do see
Lemma).

Proof. (i) If the Pontrjagin classes are zero, in the definition of Todd
class

m

'J(M) = II xd(l- e-Xi
),

i=l

dimRM=2m

xif(l- e-Xi
) = xif(l-Xi + x~/2! + ... ) = 1

because
m

1 +Pl(M) +. ··Pm(M) = II(l +xn = 1
i=l

implies Xi = 0 for all i = 1,2, .... Thus we have T(M) = 1.
(ii) By the Proposition 1, we see that the Pontrjagin classes of s2m

are zero. Therefore we have 'J(S2m) = 1. From

it(Do) = (ch(Do)'J(s2m»([s2m))

= e(~m)([s2m))

we have
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where e(S2m) is the Euler class of S2m. Thus
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by (i).
Let V( S2m) be the primary obstruction class of the tangent bundle

of s2m. We have
e(s2m) = V(s2m) = 20"

([6]). Thus
ch(Do) = 20".

THEOREM 4. For tbe 2m-dimensional spbere S2m, i(S2m, V) = 2m,
where V E K(S2m) is determined by ch(V) = 0" and 0" E H2m(S2m; Q)
such that O"([S2m]) = 1.

Proof. By (B) above
ch(DS 2m) = 2m

since the Pontrjagin classes of S2m are zero (by Proposition 1).
Let M be a closed oriented Riemannian manifold with dimR M = 2m,

and let B(M), S(M) be defined as follows:

B(M) = {v E T*(M)llIvll ~ I}

S(M) = {v E T*(M)llIvll = I},

where T*(M) is the cotangent bundle of M. Then we have the Thom
isomorphism ([3], [6], [7])

<;'* : H'(M, Q) -+ H 2m+1(B(M), S(M); Q)

defined by <;'*(0) = 7r*a UU for any a E Hi(M, Q), where 7r : T*(M) -+

M is the projection, U the cup product and U is the Thom class in
H2m(B(M), S(M); Q) satisfying the following:

For each x E M let T*(M)x be the fiber of T*(M) at x. Then
H2m (B(T*(M)x), S(T*(M)x); Q)(~ Q) has the generator Ux. Then
i;(U) = Ux where ix is the inclusion

ix : (B(T*(M)x), S(T*(M)x)) -+ (B(M), S(M)).
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(by(A'»

(by(****»

With the Chern character ch and the isomorphism 'P* above we define
the following

ch(Da ) = (-I)m<p;(ch(a»

where a = ,(Da) E K(B(M), S(M» and Da is an elliptic differential
operator. Thus we have

(**) ch(,(Ds2...»= (_l)m2m U U

where U is the Thom class in H2m(B(B2m), S(S2m)j Z). By (A) and
(C) above

(***) ch({(Ds2'" ® lv» = ch({(DS 2m». ch(lv)

= (-l)m2m1r*u U U.

On the other hand, for ,(Do) E K(B(S2m), S(S2m»

ch({(Do»= (-l)m21r*u U U

by (ii) of Proposition (3) and the isomorphism 'P*. In general, for a finite
CW pair (X, Y), since

e.t

ch: K(X, Y) ® Q .=. Hev(X, Yj Q)

the kernel of ch is the torsion subgroup of K(X, Y) ([3], [7)), where

Hev(X,YjQ) = EBH2k(X,YjQ).
k

Hence, from (**) and (***) we have

(****) ,(DS2m ® Iv) = 2m - I ,(Do) + torsion elements.

By Lemma 2 and the proof of (ii) of Proposition 3, the Euler character­
istic is 2 = e(S2m)([S2m)), and thus, as in the proof of Lemma 2

ia({(Do»= it({(Do»= it(Do) = 2.

Thus we have the following:

i(s2m, V) = i(D52m ® Iv)

= i({(DS 2m ® Iv»

= 2m
-

1i({(Do»
=2m

•
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