ON THE INDEX THEOREM OVER EVEN-DIMENSIONAL CLOSED ORIENTED RIEMANNIAN MANIFOLDS

KYU HYUN SOHN, JAE UP SO AND HONG JAE LEE

Let M be a closed oriented Riemannian manifold with even-dimension throughout this note. We put

$$B(M) = \{x \in T(M) \mid ||x|| \le 1 \}$$

and

$$S(M) = \{x \in T(M) \mid ||x|| = 1\}$$

where T(M) is the tangent bundle of M. Let

$$\pi : B(M) \rightarrow M$$

be the projection map. For a vector bundle ζ over M we define the following:

- (1) $C^{\infty}(\zeta)$ is the set of all C^{∞} cross sections $M \to \zeta$
- (2) $\tilde{\zeta}$ is the restriction of $\pi^*\zeta$ to S(M).

For two vector bundles ζ and η over M, let

$$D : C^{\infty}(\zeta) \to C^{\infty}(\eta)$$

be an elliptic operator with the symbol $\sigma(D)$, then we have the isomorphism

$$\sigma(D) : \tilde{\zeta} \cong \tilde{\eta}.$$

Hence we have an element $\gamma(D) \in K(B(M), S(M))$ (relative K-group) ([1], [2], [3]) such that

$$\gamma(D) = (\pi^*\zeta, \ \pi^*\eta, \ \sigma(D)).$$

Received January 13, 1993. Revised March 22, 1993.

The present study was supported by Basic Science Research Institute Program, Ministry of Education, 1992.

Moreover, we have two homomorphisms $i_a: K(B(M), S(M)) \to \mathbb{Z}$ (=integers) and $i_t: K(B(M), S(M)) \to \mathbb{Q}$ (=rationals) as follows. For $\gamma(D) \in K(B(M), S(M))$, $i_a(\gamma(D)) = i_a(D)$ and $i_t(\gamma(D)) = i_t(D)$, where $i_a(D)$ is the analytical index of D and $i_t(D)$ the topological index of D ([4], [5], [7]). The Atiyah-Singer index theorem asserts that $i_a(\gamma(D)) = i_t(\gamma(D))$ ([3], [4], [7]).

Let $T^*(M)$ be the cotangent bundle of M. We put

$$\xi^k = \Lambda^k(T^*(M) \otimes_R \mathbf{C}) \text{ and } \xi = \bigoplus_k \xi^k$$

where C is the ring of complex numbers. For the exterior derivative $d: C^{\infty}(\xi) \to C^{\infty}(\xi)$ let δ be the adjoint operator. Then, $d + \delta$ is an elliptic differential operator ([2], [3], [7]).

A bundle map $\alpha:\xi\to\xi$ is defined as follows. For each $k\geq0$, $\alpha:\xi^k\to\xi^{2l-k}$ is defined by

$$\alpha = (i)^{-k(k-1)+l} * (i = \sqrt{-1})$$

where $\dim_R(M) = 2l$ and * is the star operator. Since $\alpha^2 = 1_{\xi}$ ([2], [3], [6]), we shall put

$$\xi^+ = \{ v \in \xi \mid \alpha(v) = v \}, \quad \xi^- = \{ v \in \xi \mid \alpha(v) = -v \},$$

then it is clear that

$$\xi = \xi^+ \oplus \xi^-$$

([3], [7]). We put

$$d+\delta|_{C^{\infty}(\xi^{+})}=D_{M}:C^{\infty}(\xi^{+})\to C^{\infty}(\xi^{-}).$$

Since K(B(M), S(M)) is a K(M)-module under the action:

$$\nu \cdot \beta = \pi^* \nu \otimes \beta \ (\nu \in K(M), \beta \in K(B(M), S(M)))$$

([1]). We compute $(D_M \otimes 1_{\eta})$ as follows, where η is a vector bundle over M.

$$(D_M \otimes 1_{\eta}) = d(\pi^*(\xi^+ \otimes \eta), \pi^*(\xi^- \otimes \eta), \sigma(D_M) \otimes 1_{\eta})$$

= $d(\pi^*\xi^+, \pi^*\xi^-, \sigma(D_M)) \cup \pi^*\eta$,

where \cup is the cup product.

Therefore we have the following:

$$(A) (D_M \otimes 1_{\eta}) = [\eta] \cdot \gamma(D_M).$$

We review the Pontrjagin classes of M as the elementary symmetric functions of y_1^2, \ldots, y_l^2 , in the usual way:

$$1 + p_1(M) + \cdots + p_l(M) = \prod_{i=1}^l (1 + y_i^2).$$

Then

$$(B) ch(D_M) = \prod_{i=1}^{l} (e^{y_i} - e^{-y_i})/y_i$$

$$= 2^l + \text{positive dimensional terms}$$

([3], [7]). In this case, an immediate consequence is

$$(C) ch(D_M \otimes 1_{\eta}) = ch(D_M) \cdot ch(\eta)$$

where $ch(\eta)$ is the Chern character of $\eta([3], [7])$. We define

$$i : K(M) \rightarrow \mathbf{Q}$$

by $i(\nu) = i(\nu, D_M)$ for each $\nu \in K(M)$. Thus from (A) we have

$$i([\eta]) = i(D_M \otimes 1_{\eta}).$$

For each $\nu \in K(M)$ we use the notation $i(M, \nu)$ in place of $i(\nu)$ sometimes.

In this note, we want to prove that $i(S^{2m}, V) = 2^m$ where S^{2m} is the 2m-dimensional sphere and $V \in K(S^{2m})$ such that ch(V) is the generator of $H^{2m}(S^{2m}; \mathbf{Q})$ (Theorem 4).

PROPOSITION 1. For the m-dimensional sphere, let $p_i(S^m)$ be the i^{th} Pontrjagin class of S^m . Then $p_i(S^m) = 0$ for all $i = 1, 2, 3, \ldots$

Proof. For the tangent bundle $T(S^m)$ of S^m

$$p_j(T(S^m)) = p_j(S^m) \in H^{4j}(S^m; \mathbf{Z}) \quad (j = 0, 1, 2, \dots).$$

Since

$$T(S^m) \oplus \theta^1 = T(\mathbf{R}^{m+1})|_{S^m}$$

by the properties of Pontrjagin classes ([6]), we have

$$p(S^m) = p(T(S^m) \oplus \theta^1) = p(T(\mathbf{R}^{m+1})|_{S^m}) = 1,$$

where θ^1 is the one-dimensional vector bundle which is trivial and $p(S^m)$ is the total Pontrjagin class of S^m . Thus, from

$$1 = p_0(S^m) + p_1(S^m) + \cdots$$
 and $p_0(S^m) = 1$

([6]), we have

$$p_i(S^m) = 0 \quad \text{for} \quad i = 1, 2, \dots$$

LEMMA 2. The index of the operator

$$D_0 = d + \delta|_{C^{\infty}(\xi^e)} : C^{\infty}(\xi^e) \to C^{\infty}(\xi^0)$$

is the Euler characteristic of M, where

$$\xi^e = \bigoplus_k \xi^{2k}, \quad \xi^0 = \bigoplus_k \xi^{2k+1}.$$

Sketch of Proof. We put $\Delta = (d + \delta)^2$, then there is a canonical isomorphism $H^*(M; \mathbb{C}) \cong \ker \Delta$ by the Hodge theory ([3], [7]). For each $\beta \in \ker \Delta$ let φ be a representative of β which is called a harmonic representative (form) of β . In this case,

(*)
$$\dim \ker(D_0) = \sum_{i=0}^{[m/2]} b_{2i}, \quad \dim \ker(D_0^*) = \sum_{i=0}^{[m/2]} b_{2i+1}$$

where D_0^* is the adjoint operator of D_0 ,

$$\sum_{i=0}^{m} (-1)^{i} b_{i} \quad (b_{i} = i^{th} \quad \text{Betti number of } M)$$

is the Euler characteristic of M and $\dim_R(M) = 2m$. By the Hodge theory ([7]), even-dimensional harmonic forms are 1-1 correspondence with even-dimensional elements of $H^*(M; \mathbb{C})$. The first half of (*) is proved. Since $D_0 = d + \delta$ is formally self-adjoint the second half of (*) follows from the argument of the preceding paragraph. Thus we have

$$i_a(D_0) = \sum_{i=0}^m (-1)^i b_i$$
 (=the analytic index of D_0).

On the other hand, for the topological index $i_t(D_0)$ of D_0 we have

$$i_t(D_0)=e(M)([M]),$$

where e(M) is the Euler class of M and [M] the fundamental homology class of M. Since

$$e(M)([M]) = \sum_{i=0}^{m} (-1)^{i} b_{i}$$
 (Euler charateristic).

([6]) we have

$$i_a(D_0) = \sum_{i=0}^m (-1)^i b_i = i_t(D_0).$$

Let ζ be a complex vector bundle over M and let $c_i(\zeta)$ be the i^{th} Chern class of ζ . As is well-known, there are $x_i \in H^2(M; \mathbf{Q})$ such that

$$1 + c_1(\zeta) + \cdots + c_n(\zeta) = \prod_{i=1}^n (1 + x_i)$$

where $\dim_{\mathbf{C}} \zeta = n$ ([3], [7]). In this case,

$$\mathfrak{I}(\zeta) = \prod_{i=1}^{n} x_i / (1 - e^{-x_i})$$

is the Todd class of ζ ([3], [5], [7]).

Let ζ and η be two complex bundles over M, and let

$$D : C^{\infty}(\zeta) \to C^{\infty}(\eta)$$

be an elliptic differential operator. Then the topological index $i_t(D)$ is defined as follows:

$$i_t(D) = (ch(D)\mathfrak{I}(M))([M]),$$

where ch(D) is the Chern character of $D, \mathcal{T}(M)$ the Todd class of the tangent bundle ξ of M and [M] the fundamental homology class of M.

PROPOSITION 3. (i) If the Pontrjagin classes of M are zero, then $\Im(M) = \Im(\xi) = 1$.

(ii) For the 2m-dimensional sphere S^{2m} let $\sigma \in H^{2m}(S^{2m}; \mathbf{Q})$ be the generator determined by the orientation: $\sigma([S^{2m}]) = 1$, where $[S^{2m}]$ is the fundamental homology class of S^{2m} . Then $ch(D_0) = 2\sigma$ (for D_0 see Lemma).

Proof. (i) If the Pontrjagin classes are zero, in the definition of Todd class

$$\Im(M) = \prod_{i=1}^{m} x_i / (1 - e^{-x_i}), \quad \dim_{\mathbf{R}} M = 2m$$

$$x_i/(1-e^{-x_i}) = x_i/(1-x_i+x_i^2/2!+\cdots) = 1$$

because

$$1 + p_1(M) + \cdots p_m(M) = \prod_{i=1}^m (1 + x_i^2) = 1$$

implies $x_i = 0$ for all $i = 1, 2, \dots$. Thus we have $\mathfrak{I}(M) = 1$.

(ii) By the Proposition 1, we see that the Pontrjagin classes of S^{2m} are zero. Therefore we have $\Im(S^{2m}) = 1$. From

$$i_t(D_0) = (ch(D_0)\mathfrak{I}(S^{2m}))([S^{2m}])$$

= $e(S^{2m})([S^{2m}])$

we have

$$(ch(D_0)\mathfrak{I}(S^{2m})) = e(S^{2m}),$$

where $e(S^{2m})$ is the Euler class of S^{2m} . Thus

$$(ch(D_0)) = e(S^{2m})$$

by (i).

Let $\mathcal{D}(S^{2m})$ be the primary obstruction class of the tangent bundle of S^{2m} . We have

$$e(S^{2m}) = \mathcal{D}(S^{2m}) = 2\sigma$$

([6]). Thus

$$ch(D_0)=2\sigma.$$

THEOREM 4. For the 2m-dimensional sphere S^{2m} , $i(S^{2m}, V) = 2^m$, where $V \in K(S^{2m})$ is determined by $ch(V) = \sigma$ and $\sigma \in H^{2m}(S^{2m}; \mathbf{Q})$ such that $\sigma([S^{2m}]) = 1$.

Proof. By (B) above

$$ch(D_{S^{2m}}) = 2^m$$

since the Pontrjagin classes of S^{2m} are zero (by Proposition 1).

Let M be a closed oriented Riemannian manifold with $\dim_{\mathbf{R}} M = 2m$, and let B(M), S(M) be defined as follows:

$$B(M) = \{ v \in T^*(M) | ||v|| \le 1 \}$$

$$S(M) = \{ v \in T^*(M) | ||v|| = 1 \},$$

where $T^*(M)$ is the cotangent bundle of M. Then we have the Thom isomorphism ([3], [6], [7])

$$\varphi_*: H^l(M, \mathbf{Q}) \to H^{2m+l}(B(M), S(M); \mathbf{Q})$$

defined by $\varphi_*(\alpha) = \pi^*\alpha \cup U$ for any $\alpha \in H^i(M, \mathbf{Q})$, where $\pi : T^*(M) \to M$ is the projection, \cup the cup product and U is the Thom class in $H^{2m}(B(M), S(M); \mathbf{Q})$ satisfying the following:

For each $x \in M$ let $T^*(M)_x$ be the fiber of $T^*(M)$ at x. Then H^{2m} $(B(T^*(M)_x), S(T^*(M)_x); \mathbf{Q}) \cong \mathbf{Q}$ has the generator U_x . Then $j_x^*(U) = U_x$ where j_x is the inclusion

$$j_x: (B(T^*(M)_x), S(T^*(M)_x)) \to (B(M), S(M)).$$

With the Chern character ch and the isomorphism φ_* above we define the following

$$ch(D_{\alpha}) = (-1)^m \varphi_*^+(ch(\alpha))$$

where $\alpha = \gamma(D_{\alpha}) \in K(B(M), S(M))$ and D_{α} is an elliptic differential operator. Thus we have

$$(**) ch(\gamma(D_{S^{2m}})) = (-1)^m 2^m \cup U$$

where U is the Thom class in $H^{2m}(B(S^{2m}), S(S^{2m}); \mathbb{Z})$. By (A) and (C) above

$$(***) ch(\gamma(D_{S^{2m}} \otimes 1_V)) = ch(\gamma(D_{S^{2m}})) \cdot ch(1_V)$$

= $(-1)^m 2^m \pi^* \sigma \cup U.$

On the other hand, for $\gamma(D_0) \in K(B(S^{2m}), S(S^{2m}))$

$$ch(\gamma(D_0)) = (-1)^m 2\pi^* \sigma \cup U$$

by (ii) of Proposition (3) and the isomorphism φ_* . In general, for a finite CW pair (X,Y), since

$$ch: K(X,Y) \otimes \mathbf{Q} \xrightarrow{\cong} H^{ev}(X,Y;\mathbf{Q})$$

the kernel of ch is the torsion subgroup of K(X,Y) ([3], [7]), where

$$H^{ev}(X,Y;\mathbf{Q}) = \bigoplus_{\mathbf{L}} H^{2k}(X,Y;\mathbf{Q}).$$

Hence, from (**) and (***) we have

$$(****) \gamma(D_{S^{2m}} \otimes 1_V) = 2^{m-1}\gamma(D_0) + \text{ torsion elements.}$$

By Lemma 2 and the proof of (ii) of Proposition 3, the Euler characteristic is $2 = e(S^{2m})([S^{2m}])$, and thus, as in the proof of Lemma 2

$$i_a(\gamma(D_0)) = i_t(\gamma(D_0)) = i_t(D_0) = 2.$$

Thus we have the following:

$$i(S^{2m}, V) = i(D_{S^{2m}} \otimes 1_V)$$
 $(by(A'))$
= $i(\gamma(D_{S^{2m}} \otimes 1_V))$
= $2^{m-1}i(\gamma(D_0))$ $(by(****))$
= 2^m .

References

- 1. M. Karoubi, K-Theory, Springer-Verlag, Berlin-Heidelberg-New York, 1978.
- 2. H. Lee, W Jeon and K. Shon, A note on analytical indices, to appear.
- 3. K. Lee and H. Lee, Sheaves, complex manifolds and index theorem, Hyongseol-Sa, Seoul, 1984.
- 4. K. Lee and H. Lee, Some properties of analytical indices of K(B(M), S(M)), Honam Math. J. 14 (1992), 1-6.
- 5. H. Lee and K. Sohn, A note on topological indices, Comm. Korean Math. Soc. 7 (1992), 25-32.
- 6. K. Lee, Foundations of topology II, Hakmoon-Sa, Seoul, 1984.
- R. S. Palais, Seminar on the Atiyah-Singer index theorem, Princeton Univ. Press, Princeton, 1965.

Department of Mathematics Education Chonnam National University Kwangju 500-757, Korea

Department of Mathematics Chonbuk National University Chonju 560-756, Korea