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FIBRED RIEMANNIAN SPACES

WITH K-cONTACT STRUCTURE

YOSHIHIRO TASHIRO AND BVUNG HAK KIM*

1. Introduction

The fonnal divergence 6T of a tensor field T, say (Tjk) is defined by
V iTjk in local coordinates. A Riemannian manifold M is said to have
harmonic curvature if the fonnal divergence hR of the curvature tensor
R vanishes identically. By means of the second Bianchi identity, hR = 0
if and only if the Ricci tensor S satisfies the equation

(1.1) (V xS)(Y, Z) - (V yS)(X, Z) =0

for arbitrary vector fields X, Y and Z. In general, a Riemannian manifold
with parallel Ricci tensor has harmonic curvature but the converse is not
true. Essential examples have been given in [1].

The Weyl confonnal curvature tensor C and 3-tensor D in an m
dimensional Riemannian manifold are defined by

(1.2) C(X, Y)Z = R(X, Y)Z - {S(~ Z)X - SeX, Z)Y

+ g(Y,Z)AX - g(X,Z)AY}/(m - 2)

+ r{g(Y,Z)X - g(X,Z)Y}/(m -l)(m - 2),

(1.3) D(X, Y)Z = -{(V xS)(Y, Z) - (VyS)(X, Z)}/(m - 2)
+ {(Xr)g(Y, Z) - (Yr)g(X, Z)}/2(m - l)(m - 2),

respectively, where we have put g(AX, Y) = SeX, Y) and r is the scalar
curvature. It is well known that hC = (m - 3)D and a necessary and
sufficient condition for a Riemannian manifold to be conformally Hat
is C = 0 for m > 3 or D = 0 for m = 3. The conformal curvature
tensor C vanishes identically for m = 3. H the space is conformally
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flat of dimension > 3, then D = 0 is a consequence of C = 0 because
of 6C = (m - 3)D. It follows from (1.1) that a Riemannian manifold
M with harmonic curvature has the constant scalar curvature r because
68 = !Vr, and that D = 0 by means of (1.3). The converse is clear.
Thus we have

LEMMA 1. A Riemannian manifold M has the harmonic curvature if
and only if the scalar curvature r is constant and the Weyl conformal
curvature 3-tensor D vanishes identically.

2. K -contact manifolds with harmonic curvature
We suppose that M is a K -contact manifold of dimension m, that is,

a manifold with contact metric structu:re (4), e, "I, g) and e is a Killing
vector with respect to g. It is characterized by the equations
(2.1)
4>e = 0, 4>2X = -X + q(X)e, l1(X) = g(e,X), q(e) = 1, V xe = 4>X.

Since eis Killing and (2.1), we get

(2.2) (V x4»Y +R(e,X)Y =0

for arbitrary vector fields X and Y. The fundamental 2-form ~ of the
contact metric structure is defined by ~(X,Y) =g(4>X, V).

By use of the equations (2.1) and (2.2), the Riemannian curvature
tensor R and the Ricci tensor 8 of M satisfy the equations

(2.3)

and

(2.4) 8(X,e) = (m -1)q(X).

We shall prove the following

THEOREM 2. In a K -contact manifold M of dimension m 2': 3; the
following conditions are equivalent to one another:

(1) M is an Einstein manifold,
(2) the Weyl conformal curvature 3-tensor D vanishes identically,
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(3) the curvature is harmonic,
(4) R(X, Y)S = o.
Proof. The condition (1) implies trivially (2), (3) and (4), and Lemma

1 means that the condition (3) implies (2). Hence, it is sufficient to show
that both the conditions (2) and (4) imply (1). IT D = 0 on a K-contact
manifold M, then we have
(2.5)

1
(V xS)(Y,Z)-(VyS)(X,Z) = 2(m -1) {(Xr)g(Y,Z)-(Yr)g(X,Z)}.

Differentiating (2.4) covariantly, we get

(2.6) (m -l)~(X,Y)= (V xS)(Y,~)+S(cPX,Y).

IT we take the skew symmetric part in X and Y, then we have

1
(2.7) (m -l)~(X,Y)= 4(m -1) {(Xr)q(Y) - (Yr)q(X)}

+ ~{S(cPX, Y) - S(cPY,X)}

by use of (2.5).

Since the structure vector ~ is a Killing one on M, we see £(r =
~r = O. Replacing X with ein (2.7), we obtain Yr = 0, that is, the
scalar curvature r is constant. Hence, by means of Lemma 1, M has a
harmonic curvature and, by use of (2.5) and (2.6), we have

(2.8) (V (S)(X, Y) =(m - l)~(X, Y) - S(cPX, Y).

Since ~ is Killing on M, S satisfies the equation

(2.9) (£(S)(X, Y) = (V (S)(X, Y) +S(cPX, Y) +SeX, cPY) = O.

By means of (2.4), (2.8) and (2.9), we see that sex, Y) = (m-1)g(X, Y),
that is, M is an Einstein manifold.

In the mean time, the condition (4) is equivalent to

(2.10) S(R(X, Y)Z, U) + S(Z, R(X, Y)U) = O.
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Replacing U with ein (2.10) and using (2.4), we get

(2.11) (m - 1)7](R(X, Y)Z) +S(Z, R(X, Y)e) = O.

Replacing again X with ein (2.11) and making use of (2.3) and (2.4),
we obtain

0= (m - 1)g(R(e, Y)Z, e) +S(Z, -Y +7](Y)e)

= (m - 1)g(Y, Z) - S(Y, Z),

that is, M is Einstein. Thus the proof is completed.

A conformally flat Einstein manifold of dimension m ~ 4 is of constant
curvature, and so is a 3-dimensional Einstein manifold. As a consequence
of Theorem 2, we have the following result due to S. Tanno [4]:

COROLLARY 3. A conformally Bat K -contact manifold of dimension
m 2: 3 is of constant curvature.

3. Main Theorems

Let {M, B, g, 1r} be a fibred Riemannian space, that is, M an m
dimensional total space with projectable Riemannian metric g, B an
n-dimensional base space, and 1r : M ~ B a projection with maximal
rank n. The fibre passing through a point of M is a p-dimensional
submanifold of M and we denote it by M, where p = m - n. A vector
field on M is said to be vertical or horizontal if it is always tangent or
orthogonal to fibres, respectively. Throughout this section U, V, W, W'
will always be vertical vector fields, X, Y, Z, Z' basic ones, and we shall
write < , > for the inner product with respect to g.

Let V be the Riemannian connection of the total space M, h the
second fundamental form and L the normal connection of each fibre M
in M. In comparison of our notations with those of B. O'Neill [3],

huV=Tu~ hvX=-TvX, LxY=-AxY, LxV=AxV.

IT the curvature tensor R is defined by
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for any vector fields E, F and G on M, then the structure equations of
the fibred Riemannian space M are given by [2,3,5]

(3.1) {R(X,Y)Z,Z'} = {R(X,Y)Z,Z'} +2{LxY,LzZ'}

+ {LxZ,LyZ'} - {LyZ,Lx Z'},

(3.2) {R(X,Y)Z,U} = {(V zL)xY,U) - {LxY,huZ}

- {LxZ,huY} + {LyZ,huX },

(3.3) (R(X, U)Y, V) = -{(V xh) uV, Y} +{(V uL) xY, V}

- {LxU,LyV} + {hvY,huX},

(3.4) {R(U, V)W, W'} = {R(U, V)W, W'} + {huW,hvW'}

- {h vW, h uW'},

where R and R are the curvature tensors of B and M, respectively.
In a fibred Riemannian space M with almost contact metric structure

(4),e,''l,g), assume that 4> is projectable and each fibre Mis 4>-invariant
and tangent to e[5]. In this case, the base space B is an almost Hermitian
space, the covariant structure tensor of which will be denoted by J, and
each fibre M is an almost contact metric space with structure (~,e, 7j).
Concerning such a fibred space, we proved in [5] the following

THEOREM 4. A fibred almost contact metric spaceMwith 4>-invariant
fibres tangent to eis K -contact ifand only if the base space B is almost
Kaeblerian, each fibre M is K -contact, and the structure tensoresatisfies
V xe = 0, hue = 0 and L = J ® e.

Now we suppose that the fibred K -contact space M is conformally
Hat. By means of Corollary 3, M is of constant curvature, that is,

(3.5) R(E,F)G = c{{F,G}E - {E,G}F}

with a constant c = r/m(m -1), r being the scalar curvature of M. By
means of (3.1), (3.4), (3.5) and Theorem 4, we get

(3.6) {R(X, Y)Z, Z'} = c{ {Y, Z}{X, Z'} - {X, Z}{Y, Z'}}

- J(X, Z)J(Y, Z') + J(Y, Z)J(X, Z') - 2J(X, Y)J(Z, Z'),
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(3.7) (R(U, V)W; W') = c{(V, W}(U, W'} - (U, W}(V, W')}

- (huW,hvW') + (hvW,huW').

By means of V xe = 0 and L = J Q9 e, we have

(3.8)

and hue = 0 implies

(3.9) (LxY,huZ) = ((J xY)e,huZ) =0

for any X, Y, Z and U. Substituting (3.5) and (3.9) into (3.2), we obtain
V zL = 0 or V z J = 0, hence the base space B is KaeWerian.

On the other hand, by use of V xe = 0 and h ue = 0, we get
(V xh)ue = O. Hence, replacing V with -e in (3.3) and contracting
with respect to X and Y, we have c =' 1, by means of (3.5). Thus we
have

THEOREM 5. If a :fibred K -contact space M is conformally flat, then
the base space is a complex space form.

Moreover, by means of (3.4), for a fibred Riemannian space with con
formal fibres, huV = (U, V}N, N being the mean curvature vector of
M in M, and we obtain the following lemma due to S. Ishihara and M.
Konishi [2].

LEMMA 6. If a :fibred Riemannian space with conformal :fibres is of
constant curvature, then each :fibre is of constant curvature.

Combining Corollary 3, Theorem 5 and Lemma 6, we have

THEOREM 7. Ifa conformally flat :fibred K -contact space M has con
formal :fibres, then the base space is a complex space form and each :fibre
is of constant curvature.
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