
Comm. Korean Math. Soc. 8 (1993), No.3, pp. 449-454

ON LORENTZIAN WARPED SPACE-TIME R XI H

JONG-CHUL PARK, JIN-HwAN KIM AND JONG-CHUL KIM

1. Preliminaries

Suppose (B, b) and (H, h) are semi-Riemannian manifolds and let f
be a positive smooth function on B. The warped product M = B X f H
is the product manifold B x H furnished with metric tensor 9 = 7r*(b) +
(J 0 7r)2u*(h) where 7r and u are the projections of B x H onto B and H
respectively. Explicitly, if x is tangent to B x H at (p, q), then g(x, x) =
b(d7r(x),d7r(x» + j2(p)h(du(x),du(x». A warped product B xI H is
a Lorentzian warped product if B is a Lorentzian manifold and H is a
Riemannian manifold.

The set of the lifts of all vector fields on B and H to B x H are denoted
as usual by L(B) and L(H) respectively. Typically we use the same
notation for a vector field and for its lift. Many geometric properties of
M = B x f H can be expressed in terms of warping function f and the
geometries the base B and the fiber H of M.

The standard space-time models of the universe are warped products
([3] Chapter 12), as are the simplest models of neighborhoods of stars
and black holes ([3] Chapter 13).

In this paper, we shall consider Lorentzian warped products of the
form R x f H , where (H, h) is a Riemannian n(> 1)-dimensional manifold
and the metric tensor 9 is given by 9 = -dt2 EB j2(t)h. These warped
products may be space-times. Throughout this paper, we assume that a
space-time M is the Lorentzian warped product R x I H and all of the
terminologies and notations will be referred to O'Neill [3].
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2. Ricci properties of Lorentzian warped product R x f H
In this section, we study the Ricci flatness and Einsteinness of

Lorentzian warped product M = R x f H by investigating the warp­
ing function f.

Given (t,p) E M, let Ej E Tp(H) for 1 ::; j ::; n such that {81m,
E I , ... ,En} forms a g-orthonormal basis for T(t,p)(M). The Hessian
of f is given by H f = f"dt EEl dt and the Laplacian of f is given by
/).,f = -f"·

LEMMA 2.1. The Ricci tensor Ric of M is given by

Ric(X, Y) = _yHf(Xl, YI ) + RicH(X2 , Y2 )

f" f'2+ f(X2 , Y2 ){7 + (n -1)72}

where Xl, Yi E L(R), X 2 , Y2 E L(H), X = Xl + X 2 , Y = YI +Y2 , and
RicH is denoted as the lift (pullback by 7r) of Ricci tensor of H.

Proof. By simple computation, it obtained from Corollary 7.43 of
O'Neill [3].

THEOREM 2.2. The LorentziaIl; warped product M = R x f H is Ricci
:Hat if and only if H is Ricci :Hat and the warping function f is a positive
constant function.

Proof. Assume that M is Ricci flat. Then by Lemma 2.1,

(1)

(2)

Solving (1), f(t) =CIt + C, where CI , C are arbitrarily constant. Since
f is a positive function, f is a positive constant function. Substituting
it into (2), RicH(Ej,Ej) = 0 (1 ::; j ::; n). Hence H is Ricci flat.

Conversely, if H is Ricci Hat and f is a positive constant function,
then Ric(8Im,8/m) = 0 and Ric(Ej,Ej) = 0 (1 ::; j ::; n). Hence M is
Ricci Hat.
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LEMMA 2.3. M = R xfH is Einstein if and only if H is Einstein and
f satisfies

(i) f" = af and
(ii) n(n -l)(ff" - f'2) = 8H

where 8H is the scalar curvature of H and a is a constant.

Proof. Suppose that M is Einstein with constant scalar curvature 8.
Then by Lemma 2.1,

nf" 8
---- andf n-1

f" f'2. 87 + (n -1)]2 + RicH(Ej,Ej ) = n -1·

Thus

Hence

RicH(Ej,Ej) = n; l(ff" - 1'2) = (n -I)(ff" - f'2)h(Ej ,Ej ).

On the other hand, f" j f is constant and so f f" - 1'2 is constant.
Therefore H is an Einstein manifold with scalar curvature 8 H = n(n­
l)(ff" - f'2). Also f satisfies f" = af where a = 8' j{n(n - I)}.
Conversely, suppose that H is Einstein and f satisfies f" = a f and
n(n -l)(ff" - f'2) = 8H. Then

Ric(8jat,8jOt) = -nf"jf = -na = nag(8jOt,8jOt).

Hence M is Einstein.
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LEMMA 2.4. If M = R X H is Einstein, then Ric =)..g for a constant
).. 2: 0 and hence the scalar curvature 5 of M is (n - 1).. 2: o.

Proof. Suppose ),,<0. Since J satisfies nf" = )..J, J(t)=C1 cosv'kt+
C2 sin Vkt where k = -)../n > O. This function is not a positive function.
Thus there is no warping function making M Einstein.

THEOREM 2.5. The Lorentzian warped product M = R xI H is
Einstein if and only if (a) H is Einstein, 5H = 0 and f is positive
constant, or (b) H is Einstein, 5H 2: 0 and J(t) = Ce'd + [5HI{4n(n­
1)k2C}]e-kt for some constants C(> 0), k(#O).

Proof. Suppose that M is Einstein, by Lemma 2.4, Ric = )..g for a
constant).. 2: O. By Lemma 2.1, (i) in Lemma 2.3 is to be J" = aJ =
)..JIn.

If ).. = 0, then solving (i) in Lemma 2.3, J(t) is a positive constant
function and by (ii), the scalar curvature 5H of H is zero.

Now if ).. > 0, solving (i), J(t) = C1evot + C2 e-vot. Substituting
it into (ii), we obtain 4C1C2 = 5H/{n(n - l)a} 2::: o. Since J > 0
for all t E R, C1 + C2 > 0 and C1C2 2: O. Hence 5H 2: 0 and
J(t) = Cekt + [SH/{4n(n - 1)k2C}]e-kt where C(> 0) and k(=I= 0)
are constants. Conversely, the function J in the hypothesis satisfies (i)
and (ii) in Lemma 2.3. Thus M is Einstein.

From Lemma 2.3 and Theorem 2.5, we have the following corollary.

COROLLARY 2.6. Let M = R X I H be an Einstein space-time. If the
scalar curvature 5H of H is not zero, then f(t) is not of the form Cekt

where C > 0 and k E R.

3. Null geodesic completeness of R X I H

In this section, we study the null geodesic completeness of Lorentzian
warped products M = R X I H in case that it is Einstein.

A space-time N is said to be null (resp., timelike, spacelike) geodesi­
cally complete if all null (resp., timelike, spacelike) geodesics may be
defined for all values -00 < t < 00 of an affine parameter.

A space-time N is said to be future (resp., past) null geodesically com­
plete if it is all future-directed (resp., past-directed) null geodesics can be
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defined for arbitrary positive (resp., negative) values of an affine param­
eter. N is said to be geodesically complete if all geodesics can be defined
on the entire real line R. Metric completeness and geodesic complete­
ness are unrelated for arbitrary Lorentzian manifolds (d.. Hopf-Rinow
theorem for Riemannian manifolds). Also timelike geodesic complete­
ness, null geodesic completeness, spacelike geodesic completeness are in
equivalent.

THEOREM 3.1. Hthe warping function j ofM = RXfH is constant,
then H is complete if and only if M is geodesically complete.

Prooj. By Proposition 7.38 of O'Neill [3], all geodesics of M are either
(up to parameterization) of the form (at, (3(t», (to, (3(t» or (at, Po) where
a, to E R, Po E H and {3 is a unit speed geodesic in H.

LEMMA 3.2. Let H be a complete Riemannian manifold. Then M =
R XI H is future (resp., past) null geodesica1ly complete iff Jooo j(t)dt
(resp., J~oo j(t)dt) is infinite.

Prooj. From Theorem 2.57 and Remark 2.58 of Beem and Ehrlich [1],
we have it.

THEOREM 3.3. Let M = R X f H be an Einstein space-time and H
be a complete Riemannian manifold. Then

(1) M is future or past null geodesically complete.
(2) M is null geodesica1ly complete iff j is not of the form Cekt where

C(> 0) and k(# 0) are constants.

Proof. By Lemma 2.5, the warping function j is of the following
forms,

(a) a positive constant function, (b) Cekt or (c) Ctekt+C2e-kt where
C, C1 and C2 are positive constants and k is a nonzero constant.

Now apply Lemma 3.2 to each case.
Cases (a), (c): M is null geodesically complete.
k > 0 in case (b): M is future null geodesically complete but past

null geodesically incomplete.
k < 0 in case (b): M is past null geodesically complete but future

null geodesically incomplete. './>

Using Theorem 3.2 and Corollary 2.6, we have the following.
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COROLLARY 3.4. Let M = R x J H be an Einstein space-time with H
complete Riemannian manifold. If the scalar curvature S H is not zero,
then M is null geodesically complete.
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