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A CLASS OF GENUS ZERO MINIMAL SURFACES

YONG SUP KIM

1. Introduction

We will consider conformal minimal immersions from a Riemann sur
face into R3. It is an important theorem of Chern and Osserman that a
complete minimal surface M in RR is of finite total Ga~ssian curvature
if and only if M is biholomorphic to a compact Riemann surface M g

punctured at a finite number of points and the tangential Gauss map
extends holomorphically to all of Mg.

Jorge and Meeks [4] constructed an example of a complete minimal
surface in R 3 with total curvature -41l"n (for each integer n ~ 1) con
formally equivalent to

whose ends are embedded.

In this article we carefully review the example of Jorge-Meeks [4],
including what happens near the point at infinity. We will prove the
following result.

PROPOSITION 4. Suppose f: M ~ R3 is a complete conform~ min
imal immersion of finite total curvature. Also suppose that 'l1 : M ~ M
is a bibolomorpbism, where M is another Riemann surface. Then f 0 'l1
is a complete conformal minimal immersion of finite total curvature.

We make the observation that there exists a Mobius transformation

'l1 : Cpl\ L ~ Cpl\{e2(k-l)1ri/k, 1 $; k $; r}
r
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where r is a positive integer less than 4, and IEr I= r. Combining this
observation with the aforementioned proposition we obtain the following
immersion result: Given any subset Er C CpI consisting of r points
with 1 :5 r :5 3, there exists a complete conformal minimal immersion of
finite total curvature f : CpI \ Er -7 R3.

2. The Weierstrass Representation

In this section we brush up on the Weierstrass representation of a
minimal surface in R3

• For proofs and details we refer the reader to [6].
Let M be a Riemann surface, and consider a conformal immersion

Confonnality means that the induced metric f*ds~, ds~ the Euclidean
metric, is compatible with the complex structure of M in the following
sense: IT z ·is a local holomorphic coordinate, then the induced metric
can be written as

ds2 = h(z) dz· dz

for some h(z) > 0, where we write f*ds~ = ds2 . Writing z = x+iy E C,
we can rewrite the above as

The local functions (x, y) are called isothermal coordinates.
The map f is said to be minimal if its mean curvature H vanishes

identically. The mean curvature of f is related to the Laplacian of f as
follows:

-2H = !:1f,

where !:1 = -(1;)fP /lJzoz. From the above formula we see that f is
minimal if and only if !:1f = 0, where !:1 is the Laplacian of (M, ds2 ).

Hereafter f : M -7 R3 denotes a conformal minimal immersion from M.
The minimality of f says that (J2f /ozoz =0, and we put "Ii(z) = 0 ji /oz.
Then we have OTJi /oz = 0, i.e. "Ii is a local holomorphic function on M.
In fact each (i = TJi(z)dz is a globally defined holo~orphic I-form on
M by the chain rule. Therefore, given a conformal minimal immersion
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I : M - R3 there arise three holomorphic I-forms (, = ((l, (2, (3) on
M. Then it is not difficult to verify the following. Let I and (, be as in
the preceding discussion. Then we have

L l7]i 12 = h/2, where ds2 = hdz . dz;

L(7]i)2 =0;

((i) have no real periods .

Conversely, we have

PROPOSITION 1. Let M be a Riemann surface. Suppose we have
holomorphic I-forms ((i) on M satisfying

(1) E l7] i l2 > 0, where (i = 7] idz locally;
(2) E(7]i)2 = 0;
(3) ((i) have no real periods.

Then I = 2~e 1%((i) : M -+ R3 is a conformal immersion with
%0

I(zo) = O.
For a proof of this well-known result see [6] pp. 15-16.

REMARK. By (3) we mean that the real part of the integral 1((i)

vanishes for any I-cycle 'Y.
Let c.p be a meromorphic function on a Riemann surface M, and also

let p, be a not identically zero holomorphic I-form on M. We further
require that c.p has a pole of order m at p E M if and only if p, has a zero
of order 2m at p. Put

The (i· s have no common zeros, hence the condition E l7] i l2 > 0 is met.
The condition E(7]i)2 = 0 is also easily verified. Therefore the forms
( = ((i) define a conformal minimal immersion I = I, : M -+ R3

•

Put as before (i = rldz (7]i = ali /az). Assume that (1 - i(2 is not
identically zero (when (1 - i(2 == 0, I is a horizontal plane anyway). We
put
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We then obtain a meromorphic function r.p and a holomorphic I-form JL
on M satisfying the prescription that at a pole of r.p of order m JL has a
zero of order 2m. To see this note that

(111
- i112). (111 + i112) = _(113

)2, 111 + iTJ2 = -(!:z .cl),

and TJ1 + i112 is holomorphic. The pair {p, r.p} is called the Weierstrass
pair of f.

The induced metric on M of a conformal minimal immersion f : M --I'

R3 is given by, in terms of the Weierstrass pair,

The holomorphic Gauss map of a conformal immersion f : M --I' R3

is defined to be the map

q" : M --I' Cp2, q,,(z) = [111(z),112(z),113 (z)],

where [11 i ] = [afi /az].
PROPOSITION 2. The map f is minimal if and only if q" is holomor

pmc.

Proof. Note that l:i.f = 0 if and only if a(af/az)/az = o. And this
is so if and only if 877/az = o.

Let K denote the Gaussian curvature of the induced metric. Then
K:::; 0, and

T, = 1M KdA:::; 0

is called the total curvature of f. The Gauss map of f, q,/l is said to be
algebraic if the following holds:

(4) M is biholomorohic to a compact Riemann surface Mg punctured
at a finite set of points :Lr = {PI, . .. ,Pr} j

(5) q,f extents holomorphically to all of Mg , which we again denote
by q,f.

Suppose q,f is algebraic. Then the degree of q" is, by definition, the
degree of the algebraic curve q,f(M g ) C Cp2 .

The following result is a variant of the so called Wirtinger theorem
from algebraic geometry, and a proof can be found in [6] pp. 24-25.
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PROPOSITION 3. Let T, denote tbe total curvature of f. Tben

-T, = 21rdeg( t), ).

441

In particular, the total curvature is an integral multiple of 21r.

A Riemannian manifold (N, dst-) is said to be complete if it is com
plete as a metric space. We have the following fundamental result.

The Chern-Osserman Theorem [3]. Suppose f : M -+ R 3 is a
complete minimal surface. Then the total curvature is finite if and only
if the Gauss map is algebraic.

3. The Jorge-Meeks Surfaces

Let r denote the number of punctures, Le., r = I~r I. For each integer
r ;::: 1, Jorge and Meeks [4] constructed an example of a complete minimal
surface in R3 with total curvature -41r(r -1), conformallyequivalent to
the sphere minus T points, whose ends are embedded.

We will review their construction for T = 3. Identify Cpl with C u
{oo}, and set

M = CPl\{z E Cj z3 = I},

i.e., M = Cpl \{I, e271'i/3, e471'i/3}. Put

P - 1 P2 - e271'i/3 p - e4 71'i/31-, - ,3- .

For z E CpI we define
<p(z) = z2.

In the neighborhood of infinity CpI \ {O} we use the coordinate w, related
to the Euclidean coordinate via w = ~. Thus on CpI \ {O}

1 1
<pCz) = <pC - ) = 2""'w w

Similarly for z E C C CpI we define
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1 -w4 dw
JL(Z) = JL(w) = (l-w3)2·

Then restrict r..p and JL to M to obtain a Weierstrass pair on M.

'PCz) = {Z2 on M\{00},

-b on M\{O},

Z _ {(Z3~1)2 on M\{oo},
JLC ) - w 4 dw M\{O}{1-w3 )2 on .

The function r..p is meromorphic on M and JL is a holomorphic I-form on
M such that 'P has a pole of order m at .Pi and JL has a zero of 2m at Pi.
Restricting to M\ {(x)} we obtain holomorphic I-forms

1- z4
(I = 2(z3 _ 1)2 dz,

/"2 _ i(1 + z4) d
." - Z,2(Z3 -1)2

z2

(3 = (Z3 _ 1)2 dz.

We want to show that the (i,s satisfy condition (1), (2), (3) of Propo
sition 1. For this, note that since 'P has a pole of order 2 and JL has a
zero of order 4 at the Pi'S, Condition (1) and (2) hold. It remains to
show that the (i,s have no real periods on M. Observe that the period
condition is satisfied once

~e1(i = 0, 1 $ a, i $ 3,
'Yo

where 'Yo is a small circle about Po. We will compute the period with
respect to 'Y3:
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and we see that it has no real periods.
To take care of the point at infinity, we go to the neighborhood M\{O}

and obtain holomorphic I-forms

(1 = (w4
-l)dw

2(1 - w3 )2 ,

(2 = -i(w4 + I)dw
2(I-w3 )2 ,

(3 = -w
2
dw .

(1 - w3 )2

In this case, we have a holomorphic I-form J.l on M and a meromorphic
function <p on M such that J.l has a zero of order 4 and e.p has a pole of
order 2 at w = 0, and the conditions (1), (2) of Proposition 1 hold. The
verification of condition (3) is similar to that given for M\{oo}. Finally,
we will show that the arc-length of a curve approaching a puncture point
Pa is infinite. Consider a divergent path

,: [O,L) -+ M,

parameterized by arc-length. We can then write

Then lim r(s) = 0 and
s-L

3hl2 = leia(s)I·lr'(s) + i· a'(s). r(s)1 ~ r'(s).

For s sufficiently close to L, hi is close to 1, and 31,12 :s; A for some
constant A. Now the arc length is given by

The metric on M is given by

ds2 = h(z)dz . dz,
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Therefore,
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11 + IZ2 1
2

L(-y) = ..., I
Z

3 _ 1\21dzl

=11 +r'~\~)212 h'(s)lds (h'(s)1 = 1)

{L ds
~CI + C214 r(s)2 for some a E [O,L)

>C C2 fL Ir'(s)l d
- 1 + A 14 r(S)2 S

=CI +~ 1° ~:r (b = rea), and r is decreasing) = co.

The total curvature T, of M is -87r. This is a consequence of the fact
that cp covers CpI two times. Thus we have shown that the Jorge-Meeks
surface

CpI\{I, e2'll'i/3, e4'll'i/3} -+ R3

is a complete conformal minimal immersion of finite total curvature -87r.
We further observe that the ends are embedded. This is due to the Jorge
Meeks equality which states the T, = 27r(X(M) - r).

4. Linear Fractional Transformations and the Immersion
Theorem

We consider a linear fractional transformation (or a Mobius transfor
mation)

S : CpI -+ CpI,

where CpI = C U {co}. Such a map is given by

S(z) = az + b,
cz+d

where a, b, c, d are complex numbers with ad - be =1= O.
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We review some properties of Mobius transformations. If S is a
Mobius transformation, then S is the composition of translations, di
lations, and the inversion. Let Z2, Za, Z4 be any three points in Cpl.
Define S: Cpl -+ Cpl by

S(Z) =( Z - za )/( Z2 - za ) if C• Z2, Za, Z4 E ;
Z - Z4 Z2 - Z4

Z - Za
S(z) =-- if Z2 = 00;

Z - Z4

Z2 - Z4 •
S(z) = If za = 00;

Z - z4

Z - Za
S(z) = if Z4 = 00.

Z2 - Za

In all cases

and S is the only Mobius transfo~tion having this property.
It can be shown that given any pair of three distinct points {ql' q2, qa},

{PI, P2, pa} of CpI there exists a (unique) Mobius transformation taking
qi to Pi, 1 :5 i :5 3.

PROPOSITION 4. Suppose f : M -+ Ra is a complete conformal min
imal immersion of finite ~tal curvature. Also suppose \}1 : M -+ M is a
biholomorphism, where M is another Riemann surface. The f 0 \}1 is a
complete minimal conformal immersion of finite total curvature.

Proof. Since f is an immersion and \}1 is an immersion, f 0 'l1 is also
an immersion. We make an observation: Suppose F: Nl -+ (N2 , ds2 ) is
a diffeomorphism, where N l is a manifold, and ds2 is a complete metric
on N2 • Then F*ds2 is a complete metric.
Thus

is a complete metric on M by the observation.
Let Z = (x, y) be isothermal coordinates on M. This means that

ds2 = h(z)dz . dz
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for some local function h > O. Put w = z 0 \lI. Then

\lI*ds2 =\lI*(h(z)dz· dz)

=h(z 0 w)d(z 0 \11). d(z 0 \11)

=h(w)dw· dw.

Since \lI is biholomorphic, w is a holomorphic coordinate on M. And so
low is conformal.

Let us now look at the Gauss map of low, namely

- 2
()jo'P : M -+ CP .

It is not hard to see that ()/09 = ()/ 0 \lI. Since ()/ and W are both
holomorphic, ()/ 0 wis also holomorphic. By proposition 2 then, I 0 \11
is minimal.

Finally, we will show that low has finite total curvature. By the
Chern-Osserman Theorem, I has finite total curvature if and only if
()/ : M -+ C p 2 is algebraic. Since ()/ is algebraic, M is biholomorphic
to Mg \{P!'··· ,Pd}, where Mg is compact Riemann surface of genus g.

Since \lI is biholomorphic with \lI(qi) = Pi, Mis biholomorphic to

-where Mg is compact Riemann surface of genus g. Let

i).j = {z E C: Izi < I}

be a holomorphic coordinate system for M g centered at Pj. In i).j\{O},
the gauss map of I is given by

()/(z) = [oP joz, op joz, 013 joz).

Let ~j = {z E C : IZl < I} be a local holomorphic coordinate system
for Mg centered at qj. In Lij \ {O} we have

() (Z\ = [oU 0 \lI)1 oU 0 \lI)2 oU 0 \}1)3]
/09 Z J Oz' 0'£ ' 0'£ .
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We want to show that q»/0'" extends to all of Mg. we will show that

aU;:)i , 1 $ i $ 3, have at most a pole at O. Observe that if h : M ~

CpI = C u {oo} is a holomorphic map and if '1J : M - M is a biholo
morphism, then h 0 '1J is a holomorphic map; a meromorphic function is
just a holomorphic map into Cpl. Consequently, the functions aU;;)i
have at most a pole at 0: if one of the these functions had a pole at 0,
then one simply replaces (aU;;)i) by (? aU;:)i), where b is any inte
ger larger than the maximum order of the pole,~ereby "removing" the
pole. From this we see that q»/o", extends to all Mg. So q»/o", is algebraic
and by the Chern-Osserman Theorem, 7/

0
", < 00.

Combining Proposition 4 with the Jorge-Meeks construction we ob
tain the

Immersion Theorem. Given any r points Er on Cpl with 1 $
r $ 3, there exists a complete conformal minimal immersion of finite
total curvature (with embedded ends)

I: CPI\L: ~ R3
•

r

EXAMPLE. Suppose '1J : C pI \ {I, 0, oo} _ C pI \ {I, e27l'i/3 , e47l'i/3} is
a biholomorphism. Let

10: Cpl\{I,e27l'i/3,e47l'i/3} ~ R3

denote the Jorge-Meeks surface. Then

10o'1J: Cpl\{l,O,oo} _ R3

is a complete conformal minimal inirnersion with total curvature -871",
and the ends of CPI\{l,O,oo} are embedded. Explicitly, '1J is given by

w(z) = (a - z)/(az -1), a = (1- V3i)/2.

Let {jl, <P'} be the Weierstrass representative of '1J* 10 = 10 0 '1J. Then
{it, $} is given by

~ (a-z? _ (az-l)4·(I-a2 )dz
<p(z) = (az _ 1)2' j.L(z) = «a - Z)3 - (az - 1)3)2·
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