Comm. Korean Math. Soc. 8 (1993), No. 3, pp. 403–408

STABLE RANKS AND REAL RANKS OF C*-ALGEBRAS

SANG OG KIM

For a unital C^* -algebra A, we denote the real rank of A to be the smallest integer, RR(A), such that for each *n*-tuple (x_1, x_2, \ldots, x_n) of self-adjoint elements in A with $n \leq RR(A) + 1$, and every $\epsilon > 0$, there is an *n*-tuple (y_1, y_2, \ldots, y_n) of elements in A_{sa} such that $\sum y_k^2$ is invertible and $\|\sum (x_k - y_k)^2\| \leq \epsilon$. Identifying each *n*-tuple (x_1, x_2, \ldots, x_n) with the matrix x in $M_n(A)$ that has x_1, x_2, \ldots, x_n as its first column and zero's elsewhere, and similarly for y, the estimate simply means that $||x-y|| \leq \epsilon$ in $M_n(A)$. Moreover, the invertibility of $\sum y_k^2$ is equivalently expressed by the equation $1 = \sum z_k y_k$ for a suitable ntuple (z_1, z_2, \ldots, z_n) . For any C^{*}-algebra A with identity we denote by $Lg_n(A)$ the set of all *n*-tuples of A which generates A as a left ideal. By the stable rank, denoted sr(A), we mean the least integer n such that $Lg_n(A)$ is dense in A^n for the product topology. If no such integer exists, we set $sr(A) = \infty$. If A has no identity element, then sr(A) or RR(A)are defined to be those of C^* -algebra \overline{A} obtained from A by adjoining an identity element. Note that the topological stable rank in [9] is the same as the stable rank for C^* -algebras ([6]).

Note that for a C^* -algebra A, sr(A) = 1 is equivalent to the fact that the set of invertible elements of A is dense in A and RR(A) = 0 is equivalent to the fact that the set of self-adjoint invertible elements of A is dense in A_{sa} (see [10],[11]).

In this note, we examine some properties about the stable ranks and real ranks of C^* -algebras, especially the cases sr(A) = 1 and RR(A) = 0, which seem to be the most tractable cases.

LEMMA 1([3]). Suppose that A is a unital C^{*}-algebra, p is a projection in A and $x \in A$ such that the element b = (1-p)x(1-p) is

Received November 18, 1992. Revised February 8, 1993.

This work was supported by GARC-KOSEF,1992.

invertible in (1-p)A(1-p). Then x is invertible if and only if $a-cb^{-1}d$ is invertible in pAp, where a = pxp, c = px(1-p) and d = (1-p)xp.

The following proposition was proved for real rank in [3].

PROPOSITION 2. If A is a unital C^{*}-algebra with sr(A) = 1, then sr(pAp) = 1 for every projection p in A. And if sr(pAp) = sr((1 - p)A(1 - p)) = 1 for some projection p in A, then sr(A) = 1.

Proof. Let $x \in pAp$ and $\epsilon > 0$ be given. Since sr(A) = 1, there exists an invertible element $y \in A$ such that $||x + 1 - p - y|| \leq \epsilon$. Letting b = (1-p)y(1-p), we have $||1-p-b|| = ||(1-p)(x+1-p-y)(1-p)|| \leq \epsilon$. Assuming $\epsilon < 1$, it follows that b is invertible in (1-p)A(1-p). By lemma 1, it follows that $z = pyp - py(1-p)b^{-1}(1-p)yp$ is invertible in pAp. Since $||b^{-1}|| = ||\sum_{n=0}^{\infty}[(1-p)-b]^n|| \leq \frac{1}{1-\epsilon}$, we have $||py(1-p)b^{-1}(1-p)yp|| \leq ||py(1-p)|| ||b^{-1}|| ||(1-p)yp|| \leq \frac{\epsilon^2}{1-\epsilon}$. This shows that the stable rank of pAp is equal to 1. Next, take $x \in A$ and write it as the obvious matrix notation $x = \begin{pmatrix} a & d \\ c & b \end{pmatrix}$. Given $\epsilon > 0$, we can take invertible $b_0 \in (1-p)A(1-p)$ such that $||b-b_0|| \leq \epsilon$. Considering $a - bd_0^{-1}c \in pAp$, there exists an element $z \in pAp$ such that $||z - (a - db_0^{-1}c)|| \leq \epsilon$. Let $y = z + db_0^{-1}c$. Then $z = y - db_0^{-1}c$ is invertible. Hence by lemma 1, $x_o = \begin{pmatrix} y & d \\ c & b_0 \end{pmatrix}$ is invertible. Note that $||y - a|| = ||y - db_0^{-1}c - (a - db_0^{-1}c)|| = ||z - (a - db_0^{-1}c)|| \leq \epsilon$. Therefore $||x - x_0|| = ||\begin{pmatrix} y - a & 0 \\ 0 & b - b_0 \end{pmatrix}|| \leq \epsilon$. This completes the proof.

COROLLARY 3. If A and B are unital C^* -algebras with $sr(A \otimes B) = 1$ and B has a minimal projection, then sr(A) = 1.

PROPOSITION 4. If a C^{*}-algebra A is the inductive limit of a net $(A_{\lambda})_{\lambda \in \Lambda}$ of C^{*}-algebras with stable ranks 1, then sr(A) = 1.

Proof. Let $x \in A$ and $\epsilon > 0$ be given. There exists an element $x_{\lambda} \in A_{\lambda}$ such that $||x - x_{\lambda}|| \leq \frac{\epsilon}{2}$ for some $\lambda \in \Lambda$. Since $sr(A_{\lambda}) = 1$, we can find

an invertible $y_{\lambda} \in A_{\lambda}$ such that $||x_{\lambda} - y_{\lambda}|| \leq \frac{\epsilon}{2}$. Thus $||x - y_{\lambda}|| \leq \epsilon$, completing the proof.

COROLLARY 5. If A is a unital C^* -algebra with sr(A) = 1 and B is an AF-algebra, then $sr(A \otimes B) = 1$.

There is no stably finite simple C^* -algebra known to have stable rank greater than one. Hence there arises a natural question: Does every stably finite simple C^* -algebra have the stable rank one? About this question, there is a partial result in [10]; If A is a unital simple C^* algebra, and B is a UHF-algebra, then A is stably finite if and only if $sr(A \otimes B) = 1$.

PROPOSITION 6. Let A be a unital simple C*-algebra. Then A is stably finite if and only if pAp and (1-p)A(1-p) are stably finite for some projection $p \in A$.

Proof. Let B be a UHF-algebra. Since A is stably finite if and only if $sr(A \otimes B) = 1$, $sr[(p \otimes 1)(A \otimes B)(p \otimes 1)] = sr[(1-p) \otimes 1](A \otimes B)[(1-p) \otimes 1] = 1$ if and only if pAp and (1-p)A(1-p) are stably finite.

COROLLARY 7. Let A be a unital simple C^* -algebra. Then A is stably finite if and only if $M_2(A)$ is stably finite.

A hereditary C^* -subalgebra H of a C^* -algebra A is said full if the norm closure of AHA is equal to A. Note that any hereditary C^* subalgebra of a simple C^* -algebra is full. For positive $x \in A$, denote by A_x the hereditary C^* -subalgebra of A generated by x. An element x of a unital C^* -algebra A is said to be well-supported if there is a projection $p \in A$ with x = xp and x^*x is invertible in pAp. Recall that x is well-supported if and only if A_x is unital ([1]).

REMARK 8. Blackadar ([1]) has made the following conjecture : "Let A be a C^* -algebra and if B is an arbitrary full hereditary C^* -subalgebra of A, then $sr(B) \ge sr(A)$."

The following proposition shows that this is not the case.

PROPOSITION 9. In the Cuntz algebra O_n , there is a hereditary C^* -subalgebra A_x such that $sr(A_x) < sr(O_n)$.

Proof. Let A be O_n . If we modify the proof of theorem 6 in [7], not every positive element of A is well-supported. Let x be a nonzero

Sang Og Kim

positive element which is not well-supported. Since O_n is purely infinite, A_y is either unital or stable for every nonzero positive $y \in A$, so that we have A_x is a stable C^* -subalgebra. Since $sr(A_x) = 1$ or 2 by [9] and $sr(A) = \infty$, we have the conclusion.

Recall that S. Zhang ([11]) showed that for a simple C^* -algebra A, RR(A) = 0 and every nonzero projection is infinite if and only if for every positive element x in A, there exists an infinite projection in A_x .

Let A be a C^* -algebra and $a, b \in A^+$. We write $a \approx b$ if there is a set of elements $\{x_i\}$ in A such that $a = \sum x_i^* x_i$ and $b = \sum x_i x_i^*$. An element a in A^+ is said to be ' \approx -finite' if $b \leq a$ and $a \approx b$ implies a = b. In [8], they used this equivalence relation to compare the positive elements of C^* -algebras as F. J. Murray and J. von Neumann introduced the well-known notion of equivalence between projections of von Neumann algebras. The following proposition generalizes the fact that every type III factor is purely infinite.

PROPOSITION 10. Let A be a unital monotone closed infinite simple C^* -algebra such that 'finite' implies ' \approx -finite' when restricted to the set of projections in A. Then RR(A) = 0 if and only if A is purely infinite.

Proof. Assume that there is a finite projection p in A. By Zhang ([12]), there exist mutually orthogonal projections r_1, \dots, r_n in A such that $1-p = \sum r_i$ and $r_1 \leq r_2 \leq \cdots \leq r_n \leq p$. So there exist projections q_1, \dots, q_n in A such that $r_i \sim q_i \leq p$. We claim each q_i is a finite projection. Suppose that q_i is infinite. Then there exists x such that $xx^* = q'_i < q_i = x^*x \leq p$. Then letting $\alpha = p - q_i$, $(q'_ixq_i + \alpha)^*(q'_ixq_i + \alpha)^*$ $\alpha) = q_i x^* q'_i x q_i + \alpha = q_i x^* x x^* x q_i + \alpha = q_i + \alpha = p \text{ and } (q'_i x q_i + \alpha)(q'_i x q_i + \alpha)$ $\alpha)^{*} = q'_{i}xq_{i}x^{*}q'_{i} + \alpha = q'_{i}xx^{*}xx^{*}q'_{i} + \alpha = q'_{i} + \alpha = p - (q_{i} - q'_{i}) < q'_{i}$ p. This is a contradiction to the fact that p is finite. Suppose that $r_i \sim r_0 \leq r_i$ for some r_o . Then there exist v, w in A such that $v^* v =$ $q_i, vv^* = r_i, w^*w = r_i$ and $ww^* = r_o$. Hence $(v^*wv)^*(v^*wv) = q_i$ and $(v^*wv)(v^*wv)^* = v^*r_0v \leq q_i$. Since q_i is finite, $v^*r_0v = q_i$. Hence $vv^*r_0vv^* = r_iv_0r_i = r_0 = vq_iv^* = vv^* = r_i$. This shows that r_i is also finite. Since A is monotone closed, the sum of finitely many finite projections is finite by [8]. This is a contradiction and there are no finite projections in A. Hence A is purely infinite, i.e. A_x has an infinite projection for every $x \in A^+$. The converse is clear ([3]).

Given $\epsilon > 0$, let

$$f_{\epsilon}(t) = \left\{egin{array}{ccc} 0 & ext{on} & 0 \leq t \leq rac{\epsilon}{2}\,, \ rac{2}{\epsilon}t-1 & ext{on} & rac{\epsilon}{2} < t < \epsilon, \ 1 & ext{on} & t \geq \epsilon. \end{array}
ight.$$

PROPOSITION 11. Let A be a unital simple C*-algebra. Then RR(A) = 0 if and only if $(A \otimes O_n)_{f_{\delta}(x)}$ has a nonzero projection for any x with $f_{\delta}(x) \neq 0, (x > 0, \delta > 0)$, where O_n is the Cuntz algebra.

Proof. Let $\phi_n : O_n \to O_n$ be an endomorphism such that $\phi_n(x) = \sum_{i=1}^{n} s_i x s_i^*$. By [5], ϕ_n is homotopic to the identity map; i.e. there is a continuous path $\eta : [0,1] \to End(O_n)$ such that $\eta_0 = \text{id}$ and $\eta_1 = \phi_n$. Consider $1 \otimes \phi_n : A \otimes O_n \to A \otimes O_n$. Then any nonzero projection p is equivalent to $\sum_{i=1}^{n} (1 \otimes s_i)p(1 \otimes s_i)^*$. Note that p is equivalent to $(1 \otimes s_i)p(1 \otimes s_i)^*$. This shows that p is an infinite projection. Therefore the 'if' part is proved by [2] and the converse is clear.

References

- B. Blackadar, Comparison theory for simple C*-algebras, London Math. Soc. Lect. Note Ser., vol. 135, 21-54, 1988.
- B. Blackadar, A. Kumjian, Skew product of relations and the structure of simple C*-algebras, Math. Z. 189 (1985), 55-63.
- L. Brown, G. K. Pedersen, C*-algebras of real rank zero, J. Funct. Anal. 99 (1991), 131-149.
- J. Cuntz, The structure of Multiplication and addition in simple C*-algebras, Math. Scand. 40 (1977), 215-233.
- 5. J. Cuntz, K-theory for certain C*-algebras, Ann. of Math. 113 (1981), 181-197.
- R. H. Herman, L. N. Vaserstein, The stable range of C^{*}-algebras, Invent. Math. 77 (1984), 553-555.
- 7. J. Jeong, S. Lee, On purely infinite C*-algebras, Proc. Amer. Math. Soc. (to appear).
- R. V. Kadison, G. K. Pedersen, Equivalence in operator algebras, Math. Scand. 27 (1970), 205-222.
- M. Rieffel, Dimension and stable rank in the K-theory of C*-algebras, Proc. London Math. Soc. 46 (1983), 301-333.
- M. Rørdam, On the structure of simple C*-algebras tensored with a UHF algebra, J. Funct. Anal. (to appear).

- 11. S. Zhang, Certain C*-algebras with real rank zero and their corona and multiplier algebras I, Pacific J. Math. 155 (1992), 169–197.
- 12. S. Zhang, C^{*}-algebras with real rank zero and the internal structure of their corona and multiplier algebras, Can. J. Math. 42 (1990), 159–190.

Department of Mathematics Hallym University Chuncheon 200-702, Korea

408