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SOME PROPERTIES OF CONVOLUTION

OPERATORS IN THE CLASS 'P0((3)

SANG HUN LEE AND YONG CHAN KIM

Making use of several families of convolution operators, we introduce
and study a certain general class 'Po(,8)(O ::; a < 1; (3 2:: 0) of analytic
functions in the open unit disk U. We also investigate the relationships
between the class 'P0((3) and the Hardy space 'Hoo (of bounded analytic
functions in U). Finally, we consider some interesting applications of the
results presented here to a class of generalized hypergeometric functions.

1. Introduction and definitions

Let A denote the class of (normalized) functions of the form:

(1.1 )
00

fez) = z + L anzn,
n=2

which are analytic in the open unit disk

U = {z : Izl < I}.

We also denote by S the subclass of A consisting of functions which are
univalent in U.

A function fez) E A is said to be in the class 'Po(O ::; a < 1) if and
only if it satisfies the inequality:

Re{j'(z)} > a (0::; a < 1; z E U).

The class 'Po was investigated systematically by MacGregor [8] who did
refer to numerous earlier studies involving functions whose derivative
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has a positive real part. Indeed, as readily implied by the Noshiro­
Warschawski theorem (d. e.g., Duren [3, p.47, Theorem 2.16]), Pa is a
subclass of the class S.

Let / and 9 be in the class A, with /(z) given by (1.1), and g(z) by
00

(1.3) g(z) = z +L bnzn.
n=2

For a given / E A, we define the convolution operator

0,,: A-+ A

by

(1.4)

where, as usual, / *9 denotes the Hadamard product of / and g:
00

(1.5) U *g)(z) = z + L anbnzn.
n=2

For a function / E A given by (1.1), Owa and Srivastava ([11]; see
also [12, p.338]) defined the generalized Libera integral operator :Fc by

c+l1z
(1.6) :Fc(f) = - tC-1/(t)dt(c > -1)

ZC 0

00

""c+ 1 it=Z +L" --anz .
n=2 c+ n

The operator :Fc' when c E N ={I, 2, 3, ... }, was introduced by Bernardi
[1]. In particular, the operator:F1 was studied earlier by Libera [6] and
Livingston [7].

Clearly, (1.6) yields

(1.7) /(z) E A=} :FcU) E A (c> -1).

(1.8)

Thus, we define :Fc by

;::U) = { ~:;;-I(J) (n EN),

(n = 0).

With a view to introducing an interesting generalization of the class
Pa , we now recall the following definition of a multiplier trans/ormation
(or fractional integral and fractional derivative):
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DEFINITION 1. (Flett [4, p.748]). Let the function
00

(1.9) 4>(z) = L cnzn (z E U)
n=O

be analytic in U and let A be a real number. Then the multiplier trans­
formation 1>'4> is defined by

00

(1.10) I>'4>(z) = L(n + 1)->'cnzn (z E U).
n=O

The function I>"</> is clearly analytic in U. It may be regarded as a
fractional integral (for A > 0) or fractional derivative (for A < 0) of </>,

and it is readily seen that

I>' III </> = I>"+1l </>

for all real numbers A and p.. Furthermore, in terms of the Gamma
function, we have

>. 1 1%[ Z]>'-1
(1.12) I </>(z) = Zr(A) 0 log t 4>(t)dt (A > 0)

1 t [ 1]>'-1= rCA) 10 log t </>(zt)dt (A > 0),

which can be verified fairly easily by term-by-term integration, using
some well-known r-function integrals.

Definition 1 leads us naturally to

DEFINITION 2. The fractional derivative D>'4> of order A~ 0, for an
analytic function </> gi~en by (1.9), is defined by

00

(1.13) D>'cp(z) = I->'</>(z) = L(n + 1)>'CnZ
n(A ~ OJ z E U).

n=O

It follows from Definition 2 that

(1.14) Dm4>(z) = [~ z]m </>(z) (m E No = N U{O}).

More importantly, making use of Definition 2, we now introduce an in­
teresting generalization of the class 'POt of functions in A which satisfy
the inequality (1.2).
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DEFINITION 3. A function j(z) E A is said to be in the class Pa (3)
(0 ~ a < 1; [3 2:: 0) if and only if

2-fJDfJj E Po (0 ~ a < 1i[3 ~ 0).

Observe that Pa(O) = Po. Furthermore, since j E .A, it follows from
(1.1) and (1.13) that

00

(1.15) 2-fJDfJ j(z) = z +L [n; l]fJanzn (z E U),
n=2

which shows that 2-/JDfJ j E A if j E A.
The object of the present paper is to investigate various useful prop­

erties of the general class Pa ([3) by using such families of convolution
operators as those mentioned above. We also relate the class P0([3) with
the Hardy space 11.00 of bounded analytic functions in U, and consider
several applications of our results to a class of generalized hypergeomet­
ric functions.

2. A Preliminary Lemma
In our present investigation of the general class Pa ([3)(O ~ a < 1; f3 ~

0), we shall require the following

LEMMA (MILLER AND MOCANU [9, P.301, THEOREM 10]). Let
M(z) and N(z) be analytic in U with

(2.1) M(O) = N(O) =0,

and let")' be a real number. If N(z) maps U onto a (possibly many­
sheeted) region which is starlike with respect to the origin, then

{
M'(z)} {M(z)}

(2.2) Re N'(z) > ")'(z E U) '* Re N(z) > ")'(z E U)

and

{
M'(z)} {M(z)}

(2.3) Re N'(z) < ")'(z E U) '* Re N(z) < -y(z E U).
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3. Examples of Convolution Operators with Integral Repre­
sentations

Throughout this section, let fez) E A be given by (1.1). Suppose also
that [ef. Equations (1.6) and (1.8)]

(3.1) Tp(f) = :FCi . ··:Fc,.(f)

I:
oo

(Cl + 1) ... (cp + 1) n
= z+ anz

n=2 (Cl + n) ... (cp + n)

(Cj > -l(j = 1, ... ,P)iP EN).

Then, in view of the definitions (1.5) and (1.6), it is not difficult to
express the functional Tp as a convolution operator given by

(3.2) Tp(f) = :Fci [1 ~ z] * ... * :Fc,. [1 ~ z] * f.

For various special choices for the parameters Cj(j = 1,··· ,p), the
function Tp(f) can be simplified considerably, giving us some (single)
integral representations which are contained in the following examples.

EXAMPLE 1. Setting

Cj =j +, (; > -2;j = 1,··· ,p)

in (3.1), we obtain

(3.3) Tp(f) = {B(p" + 2)}-111
f Y(I- t)p-l f(zt)dt(r > -2;p EN)

or, equivalently,
(3.4)

1% t
Tp(f) = {z"Y+1,B(p, , + 2)}-1 t"Y[I- _]P-l f(t)dt(r > -2iP EN),

o z

where B(a, f3) denotes the Beta function defined by

B( tl) = r(a )r(f3)
a, fJ rea + f3)"
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EXAMPLE 2. For'Y = r(r E No), the last integral representation (3.4)
can be written in the form

(3.5) T.(J)= (p+r+I)! z-r-11%tr [I-!.]P-l f (t)dt
P (p-I)!(r+1)! 0 z

(r E NoiP EN),

which, for r = 0, was given by Bernardi [1, p. 438, Example 3].

EXAMPLE 3. Setting Cj = I(j = 1, ... ,p) in (3.1), and making use of
(1.12), we have

(3.6) Tp(J) = :Ff(J) = 2PIP f(z)

2P 1% Z-1
=(p_I)!z-1 0 [logiV f(t)dt(pEN).

4. Inclusion Properties of the General Class 'PerU~)

We begin by stating a generalization of an interesting result due to
Bernardi [1, p. 432, Theorem 4] as

THEOREM 1. Let the function f( z) be in the class 'PerUi). Then :Fc(f)
defined by (1.6) is also in the class 'Per(3).

Proof. A simple calculation shows that

where the operators :Fc(c > -1) and D)o(A 2:: 0 are defined by (1.6) and
(1.13), respectively. In view of (4.1), we set

so that

(4.3)
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Since, by hypothesis, j E PaUl), the second member of (4.3) is greater
than a( z E U), and hence

(4.4) Re{ ~:gj} > a(O $ a < 1; z E U).

Thus, applying the lemma of Section 2, we have

(4.5) Re{ ~gj} = Re{2- fJ~nfJ (:Fc(f)) }a

(0 $ a < 1;.8 ~ 0; z E U),

which evidently completes the proof of Theorem 1.

REMARK 1. It follows from the definitions (1.6) and (1.13) that

which can be used to give an alternative proof of Theorem 1 along the
lines of Bernardi [1, p.432].

In conjunction with the first part of the definition (3.1), Theorem 1
readily yields.

COROLLARY 1. Let the function j(z) be in the class Pa (.8). Then
the function T,(f) defined by (3.1) is also in the class Pa (.8).

The next inclusion property of the classPa (.8), contained in Theorem 2
below, would involve the operator :Ft(>. > 0) defined by

(4.7)

which, for -X = pEN, was considered already in (3.6). Clearly, we have

(4.8) j(z) E A:::} :Fr(f) E A (-X> 0).
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THEOREM 2. Let the function fez) be in the class 'PO/({J). Then the
function :Ft(J)(>" > 0) defined by (4.7) is also in the class 'PO/({J).

Proof. Making use of (1.10) and (1.13), the definition (4.7) immedi­
ately yields [d. Equation (4.6»)

Therefore, setting

(4.10) g(z) = 2- fJn fJf and G(z) = :Ft(g),

we must show that

(4.11) Re{G'(z)} > a (0:5 a < 1jz E U)

whenever f E 'P0/({1).
From the second integral representation in (1.i2), we obtain

() '( 2'\ t [ 1] ,\-1 ,
4.12 G z) = r(>..) 10 log t tg (zt)dt(>" > 0),

so that

2'\ t 1 ,\-1
(4.13) Re{G'(z)} = r(>..) 10 [logt] tRe{g'(zt)}dt(>" > 0),

Since f E 'PO/({J), we have

(4.14) Re{g'(zt)} > a(O :5 a < Ij z E Uj 0:5 t :5 1),

and hence (4.13) yields

·2'\ t 1 ,\ 1
(4.15) Re{G'(z)} > r(>..) a 10 [log't] - tdt = a(O :5 a < Ij>" > 0,

which completes the proof of Theorem 2.
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COROLLARY 2. HO ~ 0 < 1 and 0 ~ fJ < " tben 1'0(,) C 1'o(fJ).

Proof. Setting..\ = , - fJ > 0 in Theorem 2, we observe that

(4.16) fez) E 1'0(,) =* n-fJ(f) E Po ("()

<=> {2-'YD'Y(n-fJ(!»} E Po
{:} 2-fJDIlf E Po

<=> ! E Po(fJ),

and the proof of Corolla.ry 2 is completed.
Next we define a function h(z) E A by

00 n + 1 z - !z2
(4.17) h(z) = ~ [-2-]zn = (1_ 2z)2(Z EU).

Then, in terms of the convolution operator 0 1 defined by (1.4), we have

1
(4.18) Oh(f) = (h * f)(z) = 2{!(z) + zj'(z)} (f E A),

which, when compared with (1.14) with m = 1, yields

1
Oh(f) = 2D1f (f E A).

We now state and prove yet another inclusion property of the class
l'o(fJ), which is given by

THEOREM 3. If0 =5 0 < 1 and fJ ~ 0, then

[
40: + 1](4.20) Po(fJ + 1) C Pp(fJ) p. = 5 .

Proof. In view of (4.19) and Theorem 2 of Owa and Nunokawa [10,
p.580], we have

(4.21) f E Po(fJ +1) <=> 2-fJ- 1DfJ+If E Po

=* llh (2-fJDfJf) E Po

=* 2-fJDfJf E l'p [p. = 40
5
+ 1]

4a+l
<=> ! E pp(fJ)[p. = 5 ],

which evidently proves Theorem 3.
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REMARK 2. Since 0 ~ a < 1, we have

40:+1
p. = 5 > a,

and hence Pp «(3) c POI «(3).

REMARK 3. Since nh(PO) ¢. Po, as observed by Livingston [7, p.356],
we can apply the relationship (4.19) to conclude that 2-1Dl f need not
be contained in Po whenever f E Po. Thus, by Definition 3,

Po(O) ¢. Po(1).

5. Relationships with the Hardy Space

For a function f analytic in U, we define the integral means by

(5.1)

The Hardy space 1-£P(O < P ~ (0) is the class of all functions f analytic
in U for which

(5.2) lim{Mp(r,f)} < 00 (0 < p ~ (0).
r-+l

For the general theory of 1-£P spaces, see (for example) Duren [2] and
Koosis [5].

A simple relationship between the class P01«(3) and the Hardy space
llP is given by

THEOREM 4. Po(1) c 1-£00.

Proof. Suppose that f E Po(l). Then, by Definition 3, we have

(5.3)
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which, in view of a known result [2, p.34, Theorem 3.2], implies that

(5.4) (2-1D I f)' E 1iP (p < 1).

By the Hardy-Littlewood theorem [2, p.88, Theorem 5.12], (5.4) shows
that DIf E 1iP for all p < 00. Also, by Corollary 2, we have

(5.5) f E 'Po(1) C 'Po(O) = 'Po,

which yields the inequality:

(5.6) Re{f'(z)} > 0 (z E U).

Therefore, by using the same arguments as above, we find from (5.6)
that f E 1iP for all p < 00. Thus, in particular, f E 1iI and DI f E 1iI •

Next, by comparing (4.18) and (4.19), we obtain .

(5.7) f'(z) = !{DI f(z) - f(z)},
z

or equivalently,

(5.9)

Proceeding to the limit as r -+ 1, we find from this last inequality (5.9)
that

(5.10)

showing that f' E 1iI • Thus, by applying another known result [2, p.42,
Theorem 3.11], we conclude that f is continuous in

U =U u au = {z : Iz I :5 1}.

Finally, since U is compact, f is bounded in 11. Hence f is a bounded
analytic function in U, which completes the proof of Theorem 4.

As an interesting consequence of Theorem 4 and Corollary 2, we have
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COROLLARY 3. If

(5.11) f E Pa({J) (0 ~ a <"1; f3 ~ 1),

then f is a bounded univalent function in U.

6. Applications Involving Generalized Hypergeometric
Functions

Let Pj(j = 1, ... , r) and (1j(j = 1, ... , s) be complex numbers with

(6.1) (1j #0,-1,-2, ... (j = 1, ... ,s):

Then the generalized hypergeometric function rFs(z) is defined by (cf.,
e.g., [12, p.333])

where (..\)n denotes the Pochhammer symbol defined by

(6.3) (..\)n = r(..\ + n) = { 1 (n = 0)
r(..\) ..\(..\ + 1)··· (..\ + n - 1) (n EN).

We note that the rFs(z) series in (6.2) converges absolutely for Izi < 00

if r < s + 1, and for z E U if r = s + 1.

Applying Theorem 3 to the generalized hypergeometric function de­
fined by (6.2), we can derive an interesting (presumably new) property
of this important class of functions involving the space Pex(f3). More
generally, we shall prove

THEOREM 5. Let the function
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be in the class 'PCl(3). Then the function

zrF.(Pll ... ,Pr; Ull· .. ,U.; z)
is in the class 'P6(fJ) for 6 given by

A+2e:t
(6.4) 6 = A+2 (A > 0; 0 :5 e:t < 1).

Proof. From (1.15), (6.2), and (6.3), we have

(6.5) 2-PDP(zr+l F.+1(PI , ... , Pr), 1 + A-I; Ul,"" U., A-I; z»

= z +E[n + 1]p (Pl)n'" (Pr)n (1 + A-I zn+l
n=1 2 (Ul)n",(u.)n (A- 1 )n n!

=z +E[n + 1]P(An +1) (pdn'" (Pr)n zn+l
n=1 2 (udn'" (u.)n n!

= (1- A)W(Z) + AZW'(Z),

where, for convenience,

(6.6) w(z) = Z+f [n + l]p (pdn'" (Pr)n ZR+l

n=1 2 (O'I)n'" (O'.)n n!

= 2-PDP(zrF.(Pll'" ,pr;Ub ... ,U,; z».

Now, in view of Definition 3 and a known result [10, p.580, Theorem 2],
the assertion of Theorem 5 follows immediately from (6.5) and (6.6).

A special case of Theorem 5 when A = l (so that 6 = M u, where
6 and Mu are given by (6.4) and (4.20), respectively) can indeed be
derived directly from Theorem 3.

Finally, by applying Theorem 1 and Corollary 1, we obtain

THEOREM 6. Let the function

ZrF.(Pb'" ,Prj Ub··" U.; z) (r:5 s +"1)
be in the class 'PCI({:J). Then the function

zr+pF.+p(Pl"" ,PnCl + 1, ... ,cp+ 1; 0'1,." ,00.,Cl + 2, ... , Cp + 2; z)
is also in the class Pc,,(fJ) for Cj > -1(j = 1, ... ,pl.

The proof of Theorem 6 is much akin to that of Theorem 4 (and
Corollary 3) of Owa and Srivastava [11, p.128]. The details may be
omitted.
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