Comm. Korean Math. Soc. 8 (1993), No. 3, pp. 373-382

BOREL'S THEOREM ON NORMAL NUMBERS MODULO 2

JOONG S. HONG AND GEON H. CHOE

1. Spectrum and uniform distribution

Let (X, μ) be a probability space. A measurable transformation τ : $X \to X$ is said to be measure preserving or μ -invariant if $\mu(\tau^{-1}E) = \mu(E)$ for every measurable set E. A μ -invariant transformation τ on X is called *ergodic* if $\mu(\tau^{-1}E\Delta E) = 0$ implies that $\mu(E) = 0$ or 1. For example, irrational rotations on the unit circle are ergodic. If τ is ergodic and if $f(\tau x) = f(x)$ for almost every $x \in X$, then f is constant almost everywhere. A measure preserving transformation τ is said to be *mixing* if $\mu(\tau^{-n}E \cap F)$ converges to $\mu(E)\mu(F)$ as n tends to infinity. Mixing transformations are ergodic.

Consider the behavior of the sequence $\sum_{k=0}^{n-1} \chi_E(\tau^k x)$ which equals the number of times that the points $\tau^k x$ visit the set E. The Birkhoff Ergodic Theorem for ergodic transformations implies that the relative frequency of visits is proportional to the size of the set E, that is, $\frac{1}{n} \sum_{k=0}^{n-1} \chi_E(\tau^k x) \to \mu(E)$ almost everywhere.

One of the classical examples is the Kronecker-Weyl Theorem on uniform distribution of integral multiples of an irrational number modulo one. Another example is the Borel's Theorem on normal numbers which states that if $x \in [0, 1)$ is expanded into a form $\sum_{n=1}^{\infty} a_n 2^{-n}$, $a_n = 0, 1$, then for almost every x, the number of 1's in the first n digits of binary expansion of x is approximately $\frac{1}{2}$ for sufficiently large n. To see this, consider the mixing transformation τ on [0, 1) defined by $\tau x = 2x$ modulo 1 and note that $a_n = 1$ if and only if $\tau^n x \in [1/2, 1)$. For the general results on uniform distribution, see [5].

In this paper, we are interested in the uniform distribution of the sequence $y_n \in \{0, 1\}$ defined by $y_n(x) \equiv \sum_{k=0}^{n-1} \chi_E(\tau^k x) \pmod{2}$, at

Received June 15, 1993. Revised April 18, 1993.

The authors wish to thank the referee for his/her helpful suggestions

each point x of X for a measurable subset E in X when $\tau x = 2x$ modulo 1 on [0, 1). We want to know if the limit exists and equals $\frac{1}{2}$. Contrary to our intuition, the limit does not necessarily exist and even when it exists it is not equal to $\frac{1}{2}$, in general. This type of problem was first studied by Veech[9]. He considered the case when the transformations are given by irrational rotations on the unit circle and obtained results which showed that the length of the interval E and the rotational angle θ are closely related. For example, he proved that when the angle θ has bounded partial quotients in its continued fraction expansion, the sequence y_n is evenly distributed between 0 and 1 if and only if the length of the interval is not an integral multiple of θ modulo 1. For related results, see [1], [2], [7], [8].

First, we consider general ergodic transformations on a probability space (X, μ) . Now we define an isometry U on $L^2(X)$ by

$$(Uf)(x) = \exp(\pi i \chi_E(x)) f(\tau x), \quad f \in L^2(X).$$

Then for $n \geq 1$,

$$(U^n f)(x) = \exp(\pi i \sum_{k=0}^{n-1} \chi_E(\tau^k x)) f(\tau^n x)$$

and for the constant function 1,

$$(U^n 1)(x) = \exp(\pi i \sum_{k=0}^{n-1} \chi_E(\tau^k x)) = \exp(\pi i y_n(x)),$$

and now our problem is to study the existence of

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N (U^n 1)(x).$$

By the von Neumann's Mean Ergodic Theorem, we see that $\frac{1}{N}\sum_{n=1}^{N} (U^n 1)(x)$ converges to $P_H 1$ in $L^2(X)$ where P_H is the orthogonal projection onto the invariant subspace $H = \{h \in L^2(X) : Uh = h\}$.

If an isometry $Uf(x) = A(x)f(\tau x)$, |A(x)| = 1 a.e., has an eigenvalue λ , then we can choose $q \in L^2(X)$ such that $||q||_2 = 1$, $Uq = \lambda q$. Hence

 $A(x)q(x) = \lambda q(\tau x)$. Since |A(x)| = 1, we have $|q(x)| = |\lambda| |q(\tau x)|$, and |q| is an eigenfunction of U and $|\lambda|$ is an eigenvalue. Since τ is ergodic, we see that |q| is constant a.e. and $|\lambda| = 1$. Hence A is of the form $A(x) = \lambda \overline{q(x)q(\tau x)}$. Recall that a function f(x) is called a *coboundary* if $f(x) = \overline{q(x)q(\tau x)}$ where |q(x)| = 1 a.e. on X. Therefore Uhas an eigenvalue if A(x) is a constant multiple of a coboundary. For an invertible ergodic transformation τ we have the induced unitary operator U_{τ} defined by $U_{\tau}f(x) = f(\tau x)$. In this case, $(Uf)(x) = A(x)f(\tau x)$, |A(x)| = 1 a.e., is also unitary. For further details in the case that the transformation is given by an irrational rotation, see [3], [4]. And for recent results which extend [2], see [6].

Let τ be an ergodic transformation on X and let U be the isometry on $L^2(X)$ given by $Uf(x) = A(x)f(\tau x)$ where A(x) is real-valued and |A(x)| = 1 a.e. on X. Define a subspace $H = \{h \in L^2(X) : Uh = h\}$. Then the dimension of H is 0 or 1. If dim H = 0, then

$$\frac{1}{N}\sum_{n=1}^{N}U^{n}1 \to 0 \text{ in } L^{2}(X).$$

If dim H = 1, then A(x) is a coboundary. And its converse is also true. In this case, if we take $q \in H$, $||q||_2 = 1$, then $|q(x)| \equiv 1$ a.e. and $A(x) = \overline{q(x)}q(\tau x)$. Furthermore, we may choose a real valued function for such q. In this case,

$$\frac{1}{N}\sum_{n=1}^{N}U^{n}1 \to \int_{X}q(x)\,d\mu \cdot q \quad \text{in } L^{2}(X).$$

2. Borel's theorem modulo 2

Now we consider Borel's theorem modulo 2 for the case E = [1/2, 1). We identify the half-open interval [0,1) with the unit circle |z| = 1. Hence $[a,b) = [a,1) \cup [0,b)$ for a > b. Define $Uf(x) = \exp(\pi i \chi_{[1/2,1)}(x))$ $f(\tau x)$ where $\tau : [0,1) \to [0,1)$ is defined by $\tau x = 2x \pmod{2}$. Let $H = \{h \in L^2(X) : Uh = h\}$. Then we can easily show dim H = 0. Hence we conclude that $\frac{1}{N} \sum_{1}^{N} U^n 1$ converges to 0 in $L^2(\mathbb{T})$. Now we consider τ on [0,1) with invariant measure μ_p and $Uf(x) = \exp(\pi i \chi_{[1/2,1)}) f(\tau x)$ in $L^2(X, \mu_p)$. Since the one-sided shift is mixing for any p, we see that the invariant space H is $\{0\}$. Therefore we may conclude that modulo 2 theorem on normal numbers is true with respect to any measure μ_p .

Note that for the set $[\frac{1}{6}, \frac{5}{6}]$, the function $q = \exp(\pi i \chi_I)$ is a coboundary since $I = E \bigtriangleup \tau^{-1}E$ for $E = [\frac{1}{3}, \frac{2}{3}]$. Hence in this case we have irregularities in the distribution of y_n since $\int q \, dx \neq 0$. And note that for $I = [\frac{1}{4}, \frac{3}{4})$, $q = \exp(\pi i \chi_I)$ is a coboundary since $I = E \bigtriangleup \tau^{-1}E$ for $E = [\frac{1}{2}, 1)$. But we have $\int q \, dx = 0$, hence we obtain the uniform distribution modulo 2 in this case even though the invariant subspace is not trivial.

3. The Main Result

From now on, the numbers $j, k, m, n, s, s_0, t, m, n, N, N_1, N_1^*, N_{\sigma}, M$, $M_0, M_1, M_{\sigma}, L_1, L_{\sigma}, K_0, K_1$ are positive integers. And by the abuse of notations the relation A = B denotes A = B modulo measure zero sets and $A \subset B$ denotes $A \subset B$ modulo measure zero sets for any measurable sets A, B.

For s > 0, let $\{0,1\}^{(s)}$ be the set of all real numbers of the form $\sum_{n=1}^{s} a_n 2^{-n}, a_n = 0, 1$. Denote $\sum_{n=1}^{s} a_n$ by $(a_1 a_2 \cdots a_s)$.

Recall that for a measurable subset of the real line E, the Lebesgue density theorem states that the *metric density* $d_E(x)$ of E at x defined by

$$\lim_{r\to 0+}\frac{\mu(E\cap(x-r,x+r))}{\mu(x-r,x+r)}$$

is equal to 1 for a.e. $x \in E$ and equal to 0 for a.e. $x \notin E$. We may define the *right* metric density using the interval (x, x + r).

THEOREM. If two real numbers a and b satisfy $a < b, a, b \in \{0, 1\}^{(s)}$ for some s > 0 and $I = [a, b] \subset [\frac{1}{2}, 1)$, then $\exp(\pi i \chi_I)$ is not a coboundary, hence we have uniform distribution modulo 2.

Proof. Suppose $\exp(\pi i \chi_I)$ is a coboundary, then there exists a measurable set E such that $I = [a, b] = E \Delta \tau^{-1} E$ modulo measure zero set. Define mappings f_0 , f_1 on [0, 1) by $f_0(x) = x/2$, $f_1(x) = x/2 + 1/2$ for $x \in [0, 1)$. Then $\tau^{-1}(x)$ consists of two points $f_0(x)$ and $f_1(x)$, hence

376

 $\tau^{-1}E = f_0 E \cup f_1 E$ which is a disjoint union. Note that I can be decomposed into a disjoint union $I = E \bigtriangleup \tau^{-1}E = (f_0 E - E) \cup \{E - (f_0 E \cup f_1 E)\} \cup (f_1 E - E).$

Since $E - f_0 E = ([0, \frac{1}{2}] \cap (E - f_0 E)) \cup ([\frac{1}{2}, 1) \cap E)$ (: $f_0 E \subset [0, \frac{1}{2}]$) and $E - f_1 E = \{[0, \frac{1}{2}] \cap E\} \cup \{[\frac{1}{2}, 1) \cap (E - f_1 E)\}$, so

$$E - (f_0 E \cup f_1 E) = (E - f_0 E) \cap (E - f_1 E)$$

$$(1) = \{[0, \frac{1}{2}] \cap (E - f_0 E)\} \cup \{[\frac{1}{2}, 1) \cap (E - f_1 E)\}.$$

And $E - (f_0 E \cup f_1 E) \subset I \subset [\frac{1}{2}, 1]$ implies $\mu([0, \frac{1}{2}] \cap (E - f_0 E)) = 0$. And $f_0 E - E \subset f_0 E \subset [0, \frac{1}{2}], f_0 E - E \subset I \subset [\frac{1}{2}, 1]$ implies $\mu(f_0 E - E) = 0$, which in turn implies $f_0 E \subset E$. Since $f_1 : [0, 1) \to [\frac{1}{2}, 1)$ is a bijection, $[\frac{1}{2}, 1) \cap (f_1 E)^c = f_1(E^c)$. So the interval I = [a, b] can be written as

(2)
$$I = (f_1 E - E) \cup \{ [\frac{1}{2}, 1) \cap (E \cap (f_1 E)^c) \} = (E^c \cap f_1 E) \cup (E \cap f_1(E^c)).$$

Now the remainder of the proof is split up into six steps.

Step 1. Both $f_1E - E$ and $[\frac{1}{2}, 1) \cap (E - f_1E) = E \cap f_1(E^c)$ have positive measure.

Proof. (i) Suppose $\mu(f_1E - E) = 0$, then $I = [a, b] = [\frac{1}{2}, 1) \cap (E - f_1E) = E \cap f_1(E^c)$, so $[a, b] \subset f_1(E^c)$ and $f_1^{-1}[a, b] = [2a - 1, 2b - 1) \subset E^c$. Let $f_{\sigma}E = f_{c_1}f_{c_2}\cdots f_{c_n}E$ for $\sigma = (c_1 c_2\cdots c_n) \in \{0, 1\}^{(n)}$. Then

Let $f_{\sigma}E = f_{c_1}f_{c_2}\cdots f_{c_n}E$ for $\sigma = (c_1 c_2\cdots c_n) \in \{0,1\}^{(n)}$. Then $f_0E \subset E$ and $f_1E \subset E$ implies $f_{\sigma}E \subset E$ for any $\sigma \in \{0,1\}^{(n)}$ and for any n. It implies that we can find n and $\sigma \in \{0,1\}^{(n)}$ such that $\mu(f_{\sigma}E \cap [2a-1,2b-1)) > 0$, which is a contradiction.

(ii) Suppose $\mu\{[\frac{1}{2},1)\cap(E-f_1E)\}=0$, then $\mu\{E-(f_0E\cup f_1E)\}=0$ and $E \subset f_0E \cup f_1E = \tau^{-1}E$. Since τ is ergodic, $\mu(E) = (\tau^{-1}E)$. It implies $E = \tau E$, so $\mu(E)$ is 0 or 1, which is a contradiction.

Now let $f_1E-E = A$, $[\frac{1}{2},1)\cap(E-f_1E) = B$, and $\mu(A) = \alpha, \mu(B) = \beta$ where $\alpha > 0, \beta > 0, \alpha + \beta = \mu(I) = b - a$. Without loss of generality, we may assume $\alpha \ge \beta$. Define $f_0^n x$ as n-th iterate of f_0 at x. Step 2. For all $n > 0, f_0^n A \subset E^c, f_0^n B \subset E$ where $f_0^n I = f_0^n A \cup f_0^n B$.

Proof. i) If $A \subset E^c$, then $f_0 A \subset f_0(E^c) = (f_0 E)^c \cap [0, \frac{1}{2}]$ and $f_0 A \cap E \subset (E - f_0 E) \cap [0, \frac{1}{2}]$. Since $\mu\{[0, \frac{1}{2}] \cap (E - f_0 E)\} = 0$, we have $\mu(f_0 A \cap E) \cap [0, \frac{1}{2}]$.

E) = 0, and $f_0 A \subset E^c$. Continuing the same method, we conclude that $f_0^n A \subset E^c$ for all n.

ii) If $B \subset E$, then $f_0B \subset f_0E$ and $f_0B \cap E^c \subset f_0E - E$. Since $\mu(f_0E - E) = 0$, we have $\mu(f_0B \cap E^c) = 0$ and $f_0B \subset E$. Similarly, $f_0^nB \subset E$ for all n.

Step 3. For a measurable subset $D \subset [0, 1)$ the following hold:

- i) If $D \subset E$, then $f_0 D \subset E$. If $D \subset E^c$, then $f_0 D \subset E^c$.
- ii) If $f_1D \subset I$, and $D \subset E$, then $f_1D \subset E^c$. If $f_1D \subset I$, and $D \subset E^c$, then $f_1D \subset E$.
- iii) If $f_1D \subset I^c$, and $D \subset E$, then $f_1D \subset E$. If $f_1D \subset I^c$, and $D \subset E^c$, then $f_1D \subset E^c$.

Proof. i) If $D \subset E$, then $f_0 D \subset f_0 E \subset E$. If $D \subset E^c$, then $f_0 D \subset f_0(E^c)$. So $f_0 D \cap E \subset E \cap f_0(E^c)$. Since $E \cap f_0(E^c)$ has measure zero by Step 1, we have $\mu(f_0 D \cap E) = 0$ and $f_0 D \subset E^c$.

ii) If $f_1 D \subset I$ and $D \subset E$, then $f_1 D \subset f_1 E \cap I = A = f_1 E - E$. If $f_1 D \subset I$, and $D \subset E^c$, then $f_1 D \subset f_1(E^c) \cap I = B$.

iii) If $f_1D \subset I^c$, and $D \subset E$, then $f_1D \subset f_1E \cap I^c = f_1E \cap A^c = f_1E \cap E$. If $f_1D \subset I^c$ and $D \subset E^c$, then

$$\begin{split} f_1 D \subset f_1(E^c) \cap I^c \subset f_1(E^c) \cap B^c \\ &= \{(f_1 E)^c \cap [\frac{1}{2}, 1)\} \cap \{E^c \cup f_1 E \cup [0, \frac{1}{2}]\} \\ &= (f_1 E)^c \cap [\frac{1}{2}, 1) \cap E^c. \end{split}$$

Step 4. If $0 < \epsilon \leq b$, then

$$\frac{\beta}{b} \leq \frac{\mu([0,\epsilon] \cap E)}{\epsilon} \leq 1 - \frac{\alpha}{b}.$$

Proof. Since $b/2 \leq a$, all $f_1^n I$'s are mutually disjoint. If $0 < \epsilon \leq b$, then for such ϵ , there exists M_0 such that $b/2^{M_0} < \epsilon \leq b/2^{M_0-1}$. So $f_0^n I \subset [0,\epsilon]$ for $n \geq M_0$, and by Step 2, $f_0^n A \subset E^c, f_0^n B \subset E$ for $n \geq M_0$.

Hence

$$\mu(f_0{}^{M_0}B\cup f_0{}^{M_0+1}B\cup\cdots)\leq \mu([0,\epsilon]\cap E)\leq \epsilon-\mu(f_0{}^{M_0}A\cup f_0{}^{M_0+1}A\cup\cdots),$$

. . . .

Borel's theorem on normal numbers modulo 2

$$\frac{\beta}{b} \leq \frac{\beta}{2^{M_0-1}\epsilon} \leq \frac{\mu([0,\epsilon] \cap E)}{\epsilon} \leq 1 - \frac{\alpha}{2^{M_0-1}\epsilon} \leq 1 - \frac{\alpha}{b}$$

Step 5. If $a > \frac{1}{2}$, then there exists integer N_1 such that $f_1 f_0^n A \subset E^c$ and $f_1 f_0^n B \subset E$ for $n \ge N_1$. And if $0 < \epsilon \le b/2^{N_1+1}$, then

$$\frac{\beta}{b} \leq \frac{\mu([\frac{1}{2},\frac{1}{2}+\epsilon] \cap E)}{\epsilon} \leq 1 - \frac{\alpha}{b}$$

If $a = \frac{1}{2}$, then there exists integer N_1^* such that $f_1 f_0^n A \subset E$ and $f_1 f_0^n B \subset E^c$ for $n \geq N_1^*$. And if $0 < \epsilon \leq b/2^{N_1^*+1}$, then

$$\frac{\alpha}{b} \leq \frac{\mu([\frac{1}{2}, \frac{1}{2} + \epsilon] \cap E])}{\epsilon} \leq 1 - \frac{\beta}{b}.$$

Proof. If $a > \frac{1}{2}$, then there exists N_1 such that

$$f_1 f_0^n I \subset I^c \quad \text{for } n \ge N_1.$$

By Step 2 and Step 3 (iii), $f_1 f_0^n A \subset E^c$, $f_1 f_0^n B \subset E$ for $n \geq N_1$. If $0 < \epsilon \leq b/2^{N_1+1}$, then there exists M_1 such that

$$\frac{b}{2^{M_1+1}} \le \epsilon \le \frac{b}{2^{M_1}}.$$

Since $f_1 f_0^n I = [\frac{1}{2} + \frac{a}{2^{n+1}}, \frac{1}{2} + \frac{b}{2^{n+1}}]$, so $f_1 f_0^n I \subset [\frac{1}{2}, \frac{1}{2} + \epsilon]$ for $n \ge M_1$. Hence,

$$\mu(f_1 f_0^{M_1} B \cup f_1 f_0^{M_1+1} B \cup \cdots) \le \mu([1/2, 1/2 + \epsilon] \cap E) \\ \le \epsilon - \mu(f_1 f_0^{M_1} A \cup f_1 f_0^{M_1+1} A \cup \cdots),$$

so

$$\frac{\beta}{b} \leq \frac{\beta}{2^{M_1}\epsilon} \leq \frac{\mu([\frac{1}{2},\frac{1}{2}+\epsilon]\cap E)}{\epsilon} \leq 1 - \frac{\alpha}{2^{M_1}\epsilon} \leq 1 - \frac{\alpha}{b}.$$

The case of $a = \frac{1}{2}$ is similar to the above.

Step 6. For any m and $\sigma \in \{0,1\}^{(m)}$, there exist N_{σ} such that if $0 < \epsilon \leq b/2^{m+N_{\sigma}+1}$ then

$$\frac{\beta}{b} \leq \frac{\mu([f_{\sigma}(\frac{1}{2}), f_{\sigma}(\frac{1}{2}) + \epsilon] \cap E)}{\epsilon} \leq 1 - \frac{\beta}{b}.$$

Proof. Given m and $\sigma = (c_1, \dots, c_m) \in \{0, 1\}^{(m)}$ with $c_j \in \{0, 1\}$, then $f_{\sigma}(\frac{1}{2}) \in [a, b)$ or $f_{\sigma}(\frac{1}{2}) \in [0, a) \cup [b, 1)$. So there exists N_{σ} such that

$$f_{\sigma}f_{1}f_{0}^{n}I \subset I \quad \text{for} \quad n \ge N_{\sigma} \quad \text{or} \\ f_{\sigma}f_{1}f_{0}^{n}I \subset I^{c} \quad \text{for} \quad n \ge N_{\sigma}.$$

By Step 5 and Step 3,

$$\begin{aligned} f_{\sigma}f_{1}f_{0}^{n}A \subset E \quad \text{and} \quad f_{\sigma}f_{1}f_{0}^{n}B \subset E^{c} \quad \text{for} \quad n \geq N_{\sigma} \quad \text{or} \\ f_{\sigma}f_{1}f_{0}^{n}A \subset E^{c} \quad \text{and} \quad f_{\sigma}f_{1}f_{0}^{n}B \subset E \quad \text{for} \quad n \geq N_{\sigma}. \end{aligned}$$

By Step 3, there are six cases. But it suffices to prove only one of them because the remaining cases are identical. We consider the following case.

(1)
$$c_1 = 1$$
,

(2)
$$f_{c_2}f_{c_3}\cdots f_{c_n}f_1f_0^nA\subset E$$
 and $f_{c_2}f_{c_3}\cdots f_{c_n}f_1f_0^nB\subset E^c$ for $n\geq N_\sigma$,

(3) $f_{\sigma}f_1f_0^n I \subset I$ for $n \geq N_{\sigma}$.

Then by Step 3 (ii), $f_{\sigma}f_1f_0^nA \subset E^c$ and $f_{\sigma}f_1f_0^nB \subset E$ for $n \geq N_{\sigma}$. Since $f_1f_0^nI = [1/2 + a/2^{n+1}, 1/2 + b/2^{n+1}]$ and

$$f_1(x+y) = f_1x + \frac{y}{2}, \quad f_0(x+y) = f_0x + \frac{y}{2},$$

we have

$$f_{\sigma}f_{1}f_{0}^{n}I = \left[f_{\sigma}(\frac{1}{2}) + \frac{a}{2^{n+m+1}}, f_{\sigma}(\frac{1}{2}) + \frac{b}{2^{n+m+1}}\right].$$

Let $0 < \epsilon \leq b/2^{m+N_{\sigma}+1}$. For such ϵ , there exists M_{σ} such that $b/2^{m+M_{\sigma}+1} \leq \epsilon \leq b/2^{m+M_{\sigma}}$. Then $f_{\sigma}f_1f_0^nI \subset [f_{\sigma}(\frac{1}{2}), f_{\sigma}(\frac{1}{2}) + \epsilon]$ for $n \geq M_{\sigma}$. Hence

$$\mu(f_{\sigma}f_{1}f_{0}^{M_{\sigma}}B\cup f_{\sigma}f_{1}f_{0}^{M_{\sigma}+1}B\cup\cdots) \leq \mu\left([f_{\sigma}(\frac{1}{2}),f_{\sigma}(\frac{1}{2})+\epsilon]\cap E\right)$$
$$\leq \epsilon - \mu(f_{\sigma}f_{1}f_{0}^{M_{\sigma}}A\cup f_{\sigma}f_{1}f_{0}^{M_{\sigma}+1}A\cup\cdots)$$

380

and

$$\frac{\beta}{b} \leq \frac{\beta}{2^{m+M_{\sigma}}\epsilon} \leq \frac{\mu([f_{\sigma}(\frac{1}{2}), f_{\sigma}(\frac{1}{2}) + \epsilon] \cap E)}{\epsilon} \\ \leq 1 - \frac{\alpha}{2^{m+M_{\sigma}}\epsilon} \leq 1 - \frac{\alpha}{b} \leq 1 - \frac{\beta}{b}$$

Step 7. Now as a final step we show that there is no measurable subset E for which $I = E \Delta \tau^{-1} E$. Without loss of generality, we may assume $a \in \{0,1\}^{(s)} - \{0,1\}^{(s-1)}$. For any $\sigma \in \{0,1\}^{(s)}$, there exists N_{σ} by Step 6. We can choose M such that $M \geq \max_{\sigma \in \{0,1\}^{(s)}} N_{\sigma}$, and $f_{\sigma} f_1 f_0^M(b) - f_{\sigma}(\frac{1}{2}) < 1/2^s$. Since $a \in \{0,1\}^{(s)} - \{0,1\}^{(s-1)}$ with $s \geq t$, so for any $\sigma \in \{0,1\}^{(m)}$ with $m \geq s$,

(3)
$$f_{\sigma}f_1f_0{}^nI \subset I$$
 or $f_{\sigma}f_1f_0{}^nI \subset I^c$ for $n \geq M$.

Suppose the metric density $d_E(x)$ of E at x is 1 for $x \in [0,1)$, then the right metric density of E^c at x is 0. So for any $\delta > 0$, there exists $0 < \epsilon < (\frac{1}{2})^s$ such that $\mu([x, x + \epsilon] \cap E^c)/\epsilon \le \delta$. For such ϵ , there exists $s_0 \ge s$ such that $(\frac{1}{2})^{s_0+1} \le \epsilon < (\frac{1}{2})^{s_0}$. Then there exist $\sigma_1, \sigma_2 \in \{0, 1\}^{(s_0+1)}$ such that $[f_{\sigma_1}(\frac{1}{2}), f_{\sigma_2}(\frac{1}{2})] \subset [x, x + \epsilon]$. Since $s_0 + 1 > s$, by (3)

- (4) $f_{\sigma_1}f_1f_0^nA \subset E$ and $f_{\sigma_1}f_1f_0^nB \subset E^c$ for $n \ge M$ or
- (5) $f_{\sigma_1}f_1f_0^nA \subset E^c$ and $f_{\sigma_1}f_1f_0^nB \subset E$ for $n \ge M$.

Suppose that (4) holds. Then we have

$$\mu([x, x + \epsilon] \cap E^c) \ge \mu([f_{\sigma_1}(\frac{1}{2}), f_{\sigma_2}(\frac{1}{2})] \cap E^c)$$

$$\ge \mu(f_{\sigma_1}f_1f_0^M B \cup f_{\sigma_1}f_1f_0^{M+1} B \cup \cdots)$$

$$= \frac{\beta}{2^{s_0+M+1}},$$

so

$$\frac{\mu([x,x+\epsilon]\cap E^c)}{\epsilon} \geq \frac{\beta}{2^{s_0+M+1}\epsilon} \geq \frac{\beta}{2^{M+1}}$$

Since $\delta > \beta/2^{M+1}$ and since δ can be chosen arbitrarily small, it is a contradiction. Now suppose that (5) holds true, then $\mu(E) = 0$, which is also a contradiction.

References

- 1. G. H. Choe, *Ergodicity and irrational rotations*, Proc. Royal Irish Acad. (to appear).
- Products of operators with singular continuous spectra, Proc. Sympos. in Pure Math. vol. 51, 65–68, Amer. Math. Soc., Providence, R.I. 1990.
- _____, Spectral Types of Multiplicative Cocycles, Ph.D. Thesis, Univ. of California, Berkeley, 1987.
- 4. H. Helson, Cocycles on the circle, J. Operator Theory 16 (1986), 189-199.
- 5. L. Kuipers and H. Niederreiter, Uniform Distributions of Sequences, John Wiley and Sons, New York, 1974.
- 6. H. Medina, Hilbert Space Operators Arising from Irrational Rotations on the Circle Group, Ph.D. Thesis, Univ. of California, Berkeley, 1992.
- K.D. Merrill, Cohomology of step functions under irrational rotations, Israel J. Math. 52 (1985), 320-340.
- 8. M. Stewart, Irregularities of uniform distribution, Acta Math. Sci. Hungar. 37 (1981), 185-221.
- 9. W.A. Veech, Strict ergodicity in zero-dimensional dynamical systems and Kronecker-Weyl theorem mod 2, Trans. Amer. Math. Soc. 140 (1968), 1-33.

Department of Mathematics Korea Advanced Institute of Science and Technology 373-1 Kusongdong, Yusonggu Taejon 305-701, Korea