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BOREL'S THEOREM ON

NORMAL NUMBERS MODULO 2

JOONG S. HONG AND GEON H. CHOE

1. Spectrum and uniform distribution

Let (X, IJ) be a probability space. A measurable transformation r :
X -+ X is said to be ~ea.sure preserving or IJ-invariant if IJ(r-1E) =
IJ(E) for every measurable set E. A IJ-invariant transformation r on
X is called ergodic if IJ{r-1E6.E) =0 implies that IJ{E) = °or 1. For
example, irrational rotations on the unit circle are ergodic. IT r is ergodic
and if f( rx) = f( x) for almost every x EX, then f is constant almost
everywhere. A measure preserving transformation r is said to be mixing
if IJ(r-nEn F) converges to IJ(E)IJ(F) as n tends to infinity. Mixing
transformations are ergodic.

Consider the behavior of the sequence E::~ XE(rkx) which equals
the number of times that the points rkx visit the set E. The Birkhoff
Ergodic Theorem for ergodic transformations implies that the relative
frequency of visits is proportional to the size of the set E, that is,
~ 'E::~ XE(rkx) -+ IJ(E) almost everywhere.

One of the classical examples is the Kronecker-Weyl Theorem on uni­
form distribution of integral multiples of an irrational number modulo
one. Another example is the Borel's Theorem on normal numbers which
states that if x E [0,1) is expanded into a form E::l an2-n , an = 0,1,
then for almost every x, the number of 1'8 in the first n digits of binary
expansion of x is approximately ~ for sufficiently large n. To see this,
consider the mixing transformation r on [0, 1) defined by rx = 2x mod­
ulo 1 and note that an = 1 if and only if rnx E [1/2,1). For the general
results on uniform distribution, see [5].

In this paper, we are interested in the uniform distribution of the
sequence Yn E {O, 1} defined by Yn(x) == E:;~ XE(rkx) (mod 2), at
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each point x of X for a measurable subset E in X when rx = 2x modulo
1 on [0, 1). We want to know if the limit exists and equals i. Contrary to
our intuition, the limit does not necessarily exist and even when it exists
it is not equal to l, in general. This type of problem was first studied by
Veech(9). He considered the case when the transformations are given by
irrational rotations on the unit circle and obtained results which showed
that the length of the interval E and the rotational angle (J are closely
related. For example, he proved that when the angle (J has bounded
partial quotients in its continued fraction expansion, the sequence Yn
is evenly distributed between 0 and 1 if and only if the length of the
interval is not an integral multiple of (J modulo 1. For related results,
see [1], [2], (7), [8]. '

First, we consider general ergodic transformations on a probability
space (X,p.). Now we define an isometry U on L2(X) by

(Uf)(x) = exp(1riXE(x»f(rx), f E L 2(X).

Then for n 2: 1,

n-l

(Unf)(x) ~ exp(1l"i L XE(rkx»f(rnx)
k=O

and for the consta.nt-fundion 1, -

n-l

(Un1)(x) = exp(1ri L XE(rkx» = exp(1riYn(x»,
k=O

and now our problem is to study the existence of

N

lim N
1

'"'(Un1)(x).
N-oo L.J

n=l

By the von Neumann's Mean Ergodic Theorem, we see that
1L::=1(Un1)(x) converges to PH1 in L 2(X) where PH is the orthogonal
projection onto the invariant subspace H = {h E L2(X): Uh = h}.

Han isometry Uf(x) = A(x)/(rx), IA(x)1 = 1 a.e., has an-eigenvalue
.A, then we can choose q E L2(X) such that IIqll2 :;:: 1, Uq = .Aq. Hence
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A(x)q(x) = Aq(rx). Since IA(x)1 = 1, we have Iq(x)1 - IAllq(rx)l,
and Iql is an eigenfunction of U and IAI is an eigenvalue. Since r is
ergodic, we see that Iql is constant a.e. and IAI = 1 . Hence A is of
the form A(x) = Aq(x)q(rx). Recall that a function f(x) is called a
coboundary if f(x) = q(x)q(rx) where Iq(x)1 = 1 a.e. on X. Therefore U
has an eigenvalue if A(x) is a constant multiple of a coboundary. For an
invertible ergodic transformation r we have the induced unitary operator
Ur defined by Urf(x) = f(rx). In this case, (UJ)(x) = A(x)f(rx),
IA(x)1 = 1 a.e., is also unitary. For further details in the case that the
transformation is given by an irrational rotation, see [3], [4]. And for
recent results which extend [2], see [6].

Let r be an ergodic transformation on X and let U be the isometry
on L2(X) given by Uf(x) = A(x)f(rx) where A(x) is real-valued and
IA(x)1 = 1 a.e. on X. Define a subspace H = {h E L 2(X) : Uh = h}.
Then the dimension of H is °or 1. H dim H = 0, then

H climH = 1, then A(x) is a coboundary. And its converse is also true.
In this case, if we take q E H, IIqll2 = 1, then Iq(x)I·= 1 a.e. and
A(x) = q(x )q(rx). Furthermore, we may choose a real valued function
for such q. In this case,

1 N (
N ~ URI ~ Jx q(x)dp. q

2. Borel's theorem modulo 2

Now we consider Borel's theorem modulo 2 for the case E = [1/2,1).
We identify the half-open interval [0,1) with the unit circle Izi = 1.
Hence [a, b) = [a, 1) U [0, b) for a > b. Define Uf(x) = exp(1riX[1/2,1)(X»
f(rx) where r : [0, 1) ~ [0,1) is defined by rx = 2x (mod 2). Let
H = {h E L2(X) : Uh = h}. Then we can easily show climH = o.
Hence we conclude that 1Ef URI converges to °in L2(T).
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Now we consider T on [0,1) with invariant measure IJp and Uf(x) =
exp(?riX[1/2,1»f(TX) in L2(X,IJp). Since the one-sided shift is mixing
for any p, we see that the invariant space H is {O}. Therefore we may
conclude that modulo 2 theorem on normal numbers is true with respect
to any measure IJp'

Note that for the set [k, ~], the function q = exp(1riXI) is a cobound­
ary since I = E !:::J. T-1E for E = [1, i]. Hence in this case we have
irregularities in the distribution of Yn since Jq dx :/= 0. And note that
for I = [l, ~), q = exp(1riXI) is a coboundary since I = E !:::J. T-

1E for
E = [i, 1). But we have Jq dx = 0, hence we obtain the uniform distri­
bution modulo 2 in this case even though the invariant subspace is not
trivial.

3. The Main Result
From now on, the numbers j,k,m,n,s,so,t,m,n,N,Nt,N;,Ntr,M,

Mo,Mt,Mtr,Lt,Ltr,Ko,Kl are positive integers. And by the abuse of
notations the relation A = B denotes A = B modulo measure zero sets
and A c B denotes A c B modulo measure zero sets for any measurable
sets A, B.

For s > 0, let {O,l}(s) be the set of all real numbers of the form
:E~=l an 2-n, an = 0,1. Denote :E~=l an by (ala2 ... as).

Recall that for a measurable subset of the real line E, the Lebesgue
density theorem states that the metric density dE(x) of E at x defined
by

lim IJ(E n (x - r, x + r»
r-O+ IJ(x - r, x + r)

is equal to 1 for a.e. x E E and equal to °for a.e. x ¢ E. We may define
the right metric density using the interval (x, x + r).

THEOREM. If two real numbers a and b satisfy a < b, a, bE {O, 1}(s)
for some s > °and I = [a,b] c [i, 1), then exp(1riXI) is not a cobound­
my, hence we have uniform distribution modulo 2.

Proof. Suppose exp(?riXI) is a coboundary, then there exists a mea­
surable set E such that I = [a, b] = E 6. T-1E modulo measure zero set.
Define mappings fo, ft on [0,1) by fo(x) = x/2, ft(x) = x/2 + 1/2 for
x E [0,1). Then T-1(X) consists of two points fo(x) and ft(x), hence
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r-1E = foEUftE which is a disjoint union. Note that I can be decom­
posed into a disjoint union I = E f:!,. r- l E = (foE - E) U {E - (foE U
ftE)} U (fIE - E).

Since E - foE = ([0, i] n (E - foE» U([i, 1) n E) (.: foE C [O,!D
and E - ftE = {[O,!] n E} U ([i, 1) n (E - ftE)}, so

E - (foE U ftE) = (E - foE) n (E - ftE)
1 1

(1) = {[O, 2"] n (E - foE)} U H2"' 1) n (E - ftE)}.

And E-(foEUftE) C Ie [!' 1] implies p([O, !]n(E-foE» = 0. And
foE - E c foE C [0, i],foE - E c Ie [l, 1] implies p{foE - E) = 0,
which in turn implies foE c E. Since ft : [0,1) --t [i, 1) is a bijection,
[l, 1) n (ftEY = ft(EC). So the interval I = [a, b] can be written as

(2) I = (ftE-E)U{[~, l)n(En(flE)C)} = (ECnf1E)U(Enft(EC».
Now the remainder of the proof is split up into six steps.

Step 1. Both ftE -E and [l, 1)n(E - ftE) = Enft(EC) have positive
measure.

Proof. (i) Suppose p(ftE - E) = 0, then I = [a, b) = [l, 1) n (E ­
ftE) = Enft(EC),so(a,b] c ft(EC) and f11[a, b] = [2a"":1,2b-1) C EC.

Let flTE = fClfC2 ···fc.,E for (J' = (CIC2···Cn) E {0,1}(n). Then
foE C E and ftE C E implies frTE C E for any (J' E {O, 1}(n) and
for any n. It implies that we can find n and (J' E {O,l}(n) such that
p(fITE n [2a - 1, 2b - 1» > 0, which is a contradiction.

(li) Suppose pHl, 1) n (E - ftE)} = 0, then p{E - (foEU ftE)} = °
and E C foE U ftE = r-l E. Since r is ergodic, peE) = (r- l E). It
implies E = rE, so peE) is °or 1, which is a contradiction.

Now let ftE-E = A, [l, l)n(E- ftE) = B, and p(A) = 0, p(B) = {3
where 0 > 0, (3 > 0,0 + fJ = p.(I) = b- a. Without loss of generality, we
may assume 0 ~ (3. Define fox as n-th iterate of fo at x.
Step 2. For all n > 0, foA c EC, foB C E where foI = foAU foB.

Proof· i) If A c EC, then foA C fo(EC) = (JoEy n [0, l] and foA n
E C (E - foE)n[O, l]. Since pnO, l]n(E- foE)} = 0, we have p(JoAn
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E) = 0, and foA c EC. Continuing the same method, we conclude that
f£:A c EC for all n.

ii) If BeE, then foB c foE and foB n EC c foE - E. Since
Jt(/oE - E) = 0, we have Jt(foB n EC) = °and- foB C E. Similarly,
f£:B C E for all n.

Step 3. For a measurable subset D C [0, 1) the following hold:

i) If DeE, then foD C E. H Dc EC, then foD C EC.
ii) If fID C I, and DeE, then fID C EC. If fID C I, and

DC EC, then fID C E.
iii) If fID C IC, and DeE, then fID C E. If fID c Ic, and

Dc EC, then fID C EC.

Proof. i) If DeE, then foD C foE C E. If D C EC, then foD C
fo(EC). So foD nEe En fo(EC). Since En fo(EC) has measure zero
by Step 1, we have Jt(/oD n E) = °and foD c EC.

ii) If fID c I and DeE, then !ID c fIE n I = A = fIE - E. If
fI DeI, and D c EC , then fID C fI (EC) n I = B.

iii) If !ID C IC, and DeE, then fID C fIE n IC = !IE n AC =
!IE n E. If fID CIC and D C EC, then

fID C fI(EC) n I CC fI(EC) n BC

={(hEr n [~, In n {ECU!IE U[0, ~n

= (fIE)C n [~, 1) n EC.

Step 4. If°< € ~ b, then

f!- < Jt([O, €] n E) < 1 _ a.
b - € - b

Proof. Since b/2 ~ a , all ff1's are mutually disjoint. If °< € ~ b,
then for such €, there exists Mo such that b/2Mo < € ~ b/2Mo - I . So
f£:I C [o,€] for n ~ Mo, and by Step 2, f£:A C EC,flfB c E for
n~Mo.

Hence
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{3 < {3 < p([O, e] nE) < 1 _ a < 1 _ a.
b - 2Mo - I e - e - 2Mo - I e - b
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Step 5. H a > i, then there exists integer NI such that It10A c EC
and II/oB c E for n;::: NI. And if 0 < e:::; b/2N1 +t, then

{3 p([i, i + e] n E) a- < < 1--.b - e - b

Ha = i, then there exists integer Ni such that IdoACE and It10B C

EC for n;::: Ni. And if 0 < e:::; b/2N :+ I , then

Prool. H a> !' then there exists NI such that

By Step 2 and Step 3 (iii), Id:A c EC, IdoB c E for n ;::: N I . H
0< e :::; b/2Nl+I , then there exists MI such that

Since III:l = [i + 2na+i,i + 2n6+1], so Idol c [i,i +e] for n;::: MI·
Hence,

p{fI/oMl B U ftlt'l+I BU··· ) :::; p([1/2, 1/2 + e] n E)

:::; f - pUI/t'l AU Itlr1+1AU·" ),

so

t!.. < --.f!.- < p([i, i + e] n E) < 1-~ < 1- a.
b - 2M l e - e - 2M1 e - b

The case of a = i is similar to the above.
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for n;::: NO' or

for n;::: NO'.

Step 6. For any m and (1 E {O, 1}(m), there exist NO' such that if°< f ~ b/2m +Ntr +1 then

f!- < I-'([Iu(~), lu(~) + f] n E) < 1- f!-.
b - f - b

Proof. Given m and (1 = (CI,'" ,cm) E {0,1}(m) with Cj E {0,1},
then lu(!) E [a, b) or lu(!) E [O,a)U [b, 1). So there exists NO' such that

ItThl:: I c I

luhl::Ie I C

By Step 5 and Step 3,

luhl/:AcE and luftl::Be EC for

luhl/:A c EC and lultl::BeE for

By Step 3, there are six cases. But it suffices to prove only one of them
because the remaining cases are identical. We consider the following
case.

(1) CI = 1,
(2) IC2/c3'" Ic..hl:;A C E and IC2/c3'" Ic.. hf:;B C EC for n? NO',
(3) luhl:: I c I for n ;::: N tT .

Then by Step 3 (ll), liliI!:A c EC and ItT II I:;BeE for n ;::: NO'.
Since hi:;1= [1/2 + a/2n+ l

, 1/2 + b/2n+I] and
y y

II(X+Y)=hx+2, lo(x+ Y)= /o x+ 2,

we have

luhl:: I = [ltT(~) + 2n: m+I ' lu(~) + 2n+~+1 ] .

Let °< f ~ bj2m+Ntr +l. For such f, there exists M tT such that
bj2m+Mtr +1 ~ f ~ b/2m+Mtr . Then ItThl::I c [ftT(!),ltT(!) + e] for
n ? M tT . Hence

J1.(ftT/l/tttr B U ItThltttr+1BU···) ~ I-' ([/tT(~),ftT(~) + e] n E)

~ e - J1.(fuhltttr AU ItThIrtr +I Au·· . )
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and

f!.. < (j ~ p([fITn), fIT (t) + e] n E)
b - 2m+Mcr e - e

381

<1- a <I_a <I-f!...
- 2m+Mcr e - b - b

Step 7. Now as a final step we show that there is no measurable subset
E for which I = EAT-1E. Without loss of generality, we may assume
a E {O, 1}(s) - {O, 1}(S-l). For any u E {O, l}(s), there exists NIT by Step
6. We can choose M such that M :2: maxITE{O,l}(') NIT, and fITftfo M (b)­
fIT(t) < 1/2s . Since a E {O,l}(s) - {O,I}(S-l) with s :2: t, so for any
u E {O,I}(m) with m :2: S,

(3) fIThfoRlel or fIThfoRlelc for n:2:M.

Suppose the metric density dE(x) of E at x is 1 for x E [0,1), then the
right metric density of EC at x is 0. So for any 6 > 0, there exists°< e <
(t)S such that p([x, x + e] n EC)/ f ~ 6. For such f, there exists So :2: S
such that (~)so+l ~ e < (~)so. Then there exist Ul,U2 E {O,I}(so+I)
such that [fITl (t ),!IT2( t)] e [x, x + e] . Since So + 1 > s, by (3)

(4)

(5)

~hMAeE ~ ~hMBe~ b

~hMAe~ and ~hMBeE b

n:2: M or

n :2: M.

so

Suppose that (4) holds. Then we have

p([x, x + e] n EC) :2: p([fITl (~), f IT2 (~)] n EC)

:2: p(fulflfrB U fuJdtt+I BU·· . )

- (j
- 280+M +1 '

:-p(=[x....:.,_x_+_e]:-n_E_c-:...) > {j > _{3_
e - 2so+M +I e - 2M +I .

Since 6 > (3/2M +I and since 6 can be chosen arbitrarily small, it is a
contradiction. Now suppose that (5) holds true, then p(E) = 0, which
is also a contradiction.
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