BOREL'S THEOREM ON
 NORMAL NUMBERS MODULO 2

Joong S. Hong and Geon H. Choe

1. Spectrum and uniform distribution

Let (X, μ) be a probability space. A measurable transformation τ : $X \rightarrow X$ is said to be measure preserving or μ-invariant if $\mu\left(\tau^{-1} E\right)=$ $\mu(E)$ for every measurable set E. A μ-invariant transformation τ on X is called ergodic if $\mu\left(\tau^{-1} E \Delta E\right)=0$ implies that $\mu(E)=0$ or 1 . For example, irrational rotations on the unit circle are ergodic. If τ is ergodic and if $f(\tau x)=f(x)$ for almost every $x \in X$, then f is constant almost everywhere. A measure preserving transformation τ is said to be mixing if $\mu\left(\tau^{-n} E \cap F\right)$ converges to $\mu(E) \mu(F)$ as n tends to infinity. Mixing transformations are ergodic.

Consider the behavior of the sequence $\sum_{k=0}^{n-1} \chi_{E}\left(\tau^{k} x\right)$ which equals the number of times that the points $\tau^{k} x$ visit the set E. The Birkhoff Ergodic Theorem for ergodic transformations implies that the relative frequency of visits is proportional to the size of the set E, that is, $\frac{1}{n} \sum_{k=0}^{n-1} \chi_{E}\left(\tau^{k} x\right) \rightarrow \mu(E)$ almost everywhere.

One of the classical examples is the Kronecker-Weyl Theorem on uniform distribution of integral multiples of an irrational number modulo one. Another example is the Borel's Theorem on normal numbers which states that if $x \in[0,1)$ is expanded into a form $\sum_{n=1}^{\infty} a_{n} 2^{-n}, a_{n}=0,1$, then for almost every x, the number of 1 's in the first n digits of binary expansion of x is approximately $\frac{1}{2}$ for sufficiently large n. To see this, consider the mixing transformation τ on $[0,1)$ defined by $\tau x=2 x$ modulo 1 and note that $a_{n}=1$ if and only if $\tau^{n} x \in[1 / 2,1)$. For the general results on uniform distribution, see [5].

In this paper, we are interested in the uniform distribution of the sequence $y_{n} \in\{0,1\}$ defined by $y_{n}(x) \equiv \sum_{k=0}^{n-1} \chi_{E}\left(\tau^{k} x\right)(\bmod 2)$, at

Received June 15, 1993. Revised April 18, 1993.
The authors wish to thank the referee for his/her helpful suggestions
each point x of X for a measurable subset E in X when $\tau x=2 x$ modulo 1 on $[0,1)$. We want to know if the limit exists and equals $\frac{1}{2}$. Contrary to our intuition, the limit does not necessarily exist and even when it exists it is not equal to $\frac{1}{2}$, in general. This type of problem was first studied by Veech[9]. He considered the case when the transformations are given by irrational rotations on the unit circle and obtained results which showed that the length of the interval E and the rotational angle θ are closely related. For example, he proved that when the angle θ has bounded partial quotients in its continued fraction expansion, the sequence y_{n} is evenly distributed between 0 and 1 if and only if the length of the interval is not an integral multiple of θ modulo 1 . For related results, see [1], [2], [7], [8].

First, we consider general ergodic transformations on a probability space (X, μ). Now we define an isometry U on $L^{2}(X)$ by

$$
(U f)(x)=\exp \left(\pi i_{X}(x)\right) f(\tau x), \quad f \in L^{2}(X) .
$$

Then for $n \geq 1$,

$$
\left(U^{n} f\right)(x)=\exp \left(\pi i \sum_{k=0}^{n-1} \chi_{E}\left(\tau^{k} x\right)\right) f\left(\tau^{n} x\right)
$$

and for the constant function 1 ,

$$
\left(U^{n} 1\right)(x)=\exp \left(\pi i \sum_{k=0}^{n-1} \chi_{E}\left(\tau^{k} x\right)\right)=\exp \left(\pi i y_{n}(x)\right),
$$

and now our problem is to study the existence of

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N}\left(U^{n} 1\right)(x)
$$

By the von Neumann's Mean Ergodic Theorem, we see that $\frac{1}{N} \sum_{n=1}^{N}\left(U^{n} 1\right)(x)$ converges to $P_{H} 1$ in $L^{2}(X)$ where P_{H} is the orthogonal projection onto the invariant subspace $H=\left\{h \in L^{2}(X): U h=h\right\}$.

If an isometry $U f(x)=A(x) f(\tau x),|A(x)|=1$ a.e., has an eigenvalue λ, then we can choose $q \in L^{2}(X)$ such that $\|q\|_{2}=1, U q=\lambda q$. Hence
$A(x) q(x)=\lambda q(\tau x)$. Since $|A(x)|=1$, we have $|q(x)|=|\lambda||q(\tau x)|$, and $|q|$ is an eigenfunction of U and $|\lambda|$ is an eigenvalue. Since τ is ergodic, we see that $|q|$ is constant a.e. and $|\lambda|=1$. Hence A is of the form $A(x)=\lambda \overline{q(x) q}(\tau x)$. Recall that a function $f(x)$ is called a coboundary if $f(x)=\overline{q(x)} q(\tau x)$ where $|q(x)|=1$ a.e. on X. Therefore U has an eigenvalue if $A(x)$ is a constant multiple of a coboundary. For an invertible ergodic transformation τ we have the induced unitary operator U_{τ} defined by $U_{\tau} f(x)=f(\tau x)$. In this case, $(U f)(x)=A(x) f(\tau x)$, $|A(x)|=1$ a.e., is also unitary. For further details in the case that the transformation is given by an irrational rotation, see [3], [4]. And for recent results which extend [2], see [6].

Let τ be an ergodic transformation on X and let U be the isometry on $L^{2}(X)$ given by $U f(x)=A(x) f(\tau x)$ where $A(x)$ is real-valued and $|A(x)|=1$ a.e. on X. Define a subspace $H=\left\{h \in L^{2}(X): U h=h\right\}$. Then the dimension of H is 0 or 1 . If $\operatorname{dim} H=0$, then

$$
\frac{1}{N} \sum_{n=1}^{N} U^{n} 1 \rightarrow 0 \text { in } L^{2}(X)
$$

If $\operatorname{dim} H=1$, then $A(x)$ is a coboundary. And its converse is also true. In this case, if we take $q \in H,\|q\|_{2}=1$, then $|q(x)| \equiv 1$ a.e. and $A(x)=\overline{q(x)} q(\tau x)$. Furthermore, we may choose a real valued function for such q. In this case,

$$
\frac{1}{N} \sum_{n=1}^{N} U^{n} 1 \rightarrow \int_{X} q(x) d \mu \cdot q \quad \text { in } L^{2}(X)
$$

2. Borel's theorem modulo 2

Now we consider Borel's theorem modulo 2 for the case $E=[1 / 2,1)$. We identify the half-open interval $[0,1)$ with the unit circle $|z|=1$. Hence $[a, b)=[a, 1) \cup[0, b)$ for $a>b$. Define $U f(x)=\exp \left(\pi \chi_{[1 / 2,1)}(x)\right)$ $f(\tau x)$ where $\tau:[0,1) \rightarrow[0,1)$ is defined by $\tau x=2 x(\bmod 2)$. Let $H=\left\{h \in L^{2}(X): U h=h\right\}$. Then we can easily show $\operatorname{dim} H=0$. Hence we conclude that $\frac{1}{N} \sum_{1}^{N} U^{n} 1$ converges to 0 in $L^{2}(\mathbb{T})$.

Now we consider τ on $[0,1)$ with invariant measure μ_{p} and $U f(x)=$ $\exp (\pi i \chi[1 / 2,1)) f(\tau x)$ in $L^{2}\left(X, \mu_{p}\right)$. Since the one-sided shift is mixing for any p, we see that the invariant space H is $\{0\}$. Therefore we may conclude that modulo 2 theorem on normal numbers is true with respect to any measure μ_{p}.

Note that for the set $\left[\frac{1}{6}, \frac{5}{6}\right]$, the function $q=\exp \left(\pi i \chi_{I}\right)$ is a coboundary since $I=E \Delta \tau^{-1} E$ for $E=\left[\frac{1}{3}, \frac{2}{3}\right]$. Hence in this case we have irregularities in the distribution of y_{n} since $\int q d x \neq 0$. And note that for $I=\left[\frac{1}{4}, \frac{3}{4}\right), q=\exp \left(\pi i \chi_{I}\right)$ is a coboundary since $I=E \triangle \tau^{-1} E$ for $E=\left[\frac{1}{2}, 1\right)$. But we have $\int q d x=0$, hence we obtain the uniform distribution modulo 2 in this case even though the invariant subspace is not trivial.

3. The Main Result

From now on, the numbers $j, k, m, n, s, s_{0}, t, m, n, N, N_{1}, N_{1}^{*}, N_{\sigma}, M$, $M_{0}, M_{1}, M_{\sigma}, L_{1}, L_{\sigma}, K_{0}, K_{1}$ are positive integers. And by the abuse of notations the relation $A=B$ denotes $A=B$ modulo measure zero sets and $A \subset B$ denotes $A \subset B$ modulo measure zero sets for any measurable sets A, B.

For $s>0$, let $\{0,1\}^{(s)}$ be the set of all real numbers of the form $\sum_{n=1}^{s} a_{n} 2^{-n}, a_{n}=0,1$. Denote $\sum_{n=1}^{s} a_{n}$ by ($a_{1} a_{2} \cdots a_{s}$).

Recall that for a measurable subset of the real line E, the Lebesgue density theorem states that the metric density $d_{E}(x)$ of E at x defined by

$$
\lim _{r \rightarrow 0+} \frac{\mu(E \cap(x-r, x+r))}{\mu(x-r, x+r)}
$$

is equal to 1 for a.e. $x \in E$ and equal to 0 for a.e. $x \notin E$. We may define the right metric density using the interval $(x, x+r)$.

Theorem. If two real numbers a and b satisfy $a<b, a, b \in\{0,1\}^{(s)}$ for some $s>0$ and $I=[a, b] \subset\left[\frac{1}{2}, 1\right)$, then $\exp \left(\pi i \chi_{I}\right)$ is not a coboundary, hence we have uniform distribution modulo 2.

Proof. Suppose $\exp \left(\pi i \chi_{I}\right)$ is a coboundary, then there exists a measurable set E such that $I=[a, b]=E \Delta \tau^{-1} E$ modulo measure zero set. Define mappings f_{0}, f_{1} on $[0,1)$ by $f_{0}(x)=x / 2, f_{1}(x)=x / 2+1 / 2$ for $x \in[0,1)$. Then $\tau^{-1}(x)$ consists of two points $f_{0}(x)$ and $f_{1}(x)$, hence
$\tau^{-1} E=f_{0} E \cup f_{1} E$ which is a disjoint union. Note that I can be decomposed into a disjoint union $I=E \Delta \tau^{-1} E=\left(f_{0} E-E\right) \cup\left\{E-\left(f_{0} E \cup\right.\right.$ $\left.\left.f_{1} E\right)\right\} \cup\left(f_{1} E-E\right)$.

Since $E-f_{0} E=\left(\left[0, \frac{1}{2}\right] \cap\left(E-f_{0} E\right)\right) \cup\left(\left[\frac{1}{2}, 1\right) \cap E\right) \quad\left(\because f_{0} E \subset\left[0, \frac{1}{2}\right]\right)$ and $E-f_{1} E=\left\{\left[0, \frac{1}{2}\right] \cap E\right\} \cup\left\{\left[\frac{1}{2}, 1\right) \cap\left(E-f_{1} E\right)\right\}$, so

$$
\begin{align*}
E-\left(f_{0} E \cup f_{1} E\right) & =\left(E-f_{0} E\right) \cap\left(E-f_{1} E\right) \\
& =\left\{\left[0, \frac{1}{2}\right] \cap\left(E-f_{0} E\right)\right\} \cup\left\{\left[\frac{1}{2}, 1\right) \cap\left(E-f_{1} E\right)\right\} . \tag{1}
\end{align*}
$$

And $E-\left(f_{0} E \cup f_{1} E\right) \subset I \subset\left[\frac{1}{2}, 1\right]$ implies $\mu\left(\left[0, \frac{1}{2}\right] \cap\left(E-f_{0} E\right)\right)=0$. And $f_{0} E-E \subset f_{0} E \subset\left[0, \frac{1}{2}\right], f_{0} E-E \subset I \subset\left[\frac{1}{2}, 1\right]$ implies $\mu\left(f_{0} E-E\right)=0$, which in turn implies $f_{0} E \subset E$. Since $f_{1}:[0,1) \rightarrow\left[\frac{1}{2}, 1\right)$ is a bijection, $\left[\frac{1}{2}, 1\right) \cap\left(f_{1} E\right)^{c}=f_{1}\left(E^{c}\right)$. So the interval $I=[a, b]$ can be written as
(2) $I=\left(f_{1} E-E\right) \cup\left\{\left[\frac{1}{2}, 1\right) \cap\left(E \cap\left(f_{1} E\right)^{c}\right)\right\}=\left(E^{c} \cap f_{1} E\right) \cup\left(E \cap f_{1}\left(E^{c}\right)\right)$.

Now the remainder of the proof is split up into six steps.
Step 1. Both $f_{1} E-E$ and $\left[\frac{1}{2}, 1\right) \cap\left(E-f_{1} E\right)=E \cap f_{1}\left(E^{c}\right)$ have positive measure.

Proof. (i) Suppose $\mu\left(f_{1} E-E\right)=0$, then $I=[a, b]=\left[\frac{1}{2}, 1\right) \cap(E-$ $\left.f_{1} E\right)=E \cap f_{1}\left(E^{c}\right)$, so $[a, b] \subset f_{1}\left(E^{c}\right)$ and $f_{1}^{-1}[a, b]=[2 a-1,2 b-1) \subset E^{c}$.

Let $f_{\sigma} E=f_{c_{1}} f_{c_{2}} \cdots f_{c_{n}} E$ for $\sigma=\left(c_{1} c_{2} \cdots c_{n}\right) \in\{0,1\}^{(n)}$. Then $f_{0} E \subset E$ and $f_{1} E \subset E$ implies $f_{\sigma} E \subset E$ for any $\sigma \in\{0,1\}^{(n)}$ and for any n. It implies that we can find n and $\sigma \in\{0,1\}^{(n)}$ such that $\mu\left(f_{\sigma} E \cap[2 a-1,2 b-1)\right)>0$, which is a contradiction.
(ii) Suppose $\mu\left\{\left[\frac{1}{2}, 1\right) \cap\left(E-f_{1} E\right)\right\}=0$, then $\mu\left\{E-\left(f_{0} E \cup f_{1} E\right)\right\}=0$ and $E \subset f_{0} E \cup f_{1} E=\tau^{-1} E$. Since τ is ergodic, $\mu(E)=\left(\tau^{-1} E\right)$. It implies $E=\tau E$, so $\mu(E)$ is 0 or 1 , which is a contradiction.

Now let $f_{1} E-E=A,\left[\frac{1}{2}, 1\right) \cap\left(E-f_{1} E\right)=B$, and $\mu(A)=\alpha, \mu(B)=\beta$ where $\alpha>0, \beta>0, \alpha+\beta=\mu(I)=b-a$. Without loss of generality, we may assume $\alpha \geq \beta$. Define $f_{0}^{n} x$ as n-th iterate of f_{0} at x.
Step 2. For all $n>0, f_{0}^{n} A \subset E^{c}, f_{0}^{n} B \subset E$ where $f_{0}^{n} I=f_{0}^{n} A \cup f_{0}^{n} B$.
Proof. i) If $A \subset E^{c}$, then $f_{0} A \subset f_{0}\left(E^{c}\right)=\left(f_{0} E\right)^{c} \cap\left[0, \frac{1}{2}\right]$ and $f_{0} A \cap$ $E \subset\left(E-f_{0} E\right) \cap\left[0, \frac{1}{2}\right]$. Since $\mu\left\{\left[0, \frac{1}{2}\right] \cap\left(E-f_{0} E\right)\right\}=0$, we have $\mu\left(f_{0} A \cap\right.$
$E)=0$, and $f_{0} A \subset E^{c}$. Continuing the same method, we conclude that $f_{0}^{n} A \subset E^{c}$ for all n.
ii) If $B \subset E$, then $f_{0} B \subset f_{0} E$ and $f_{0} B \cap E^{c} \subset f_{0} E-E$. Since $\mu\left(f_{0} E-E\right)=0$, we have $\mu\left(f_{0} B \cap E^{c}\right)=0$ and $f_{0} B \subset E$. Similarly, $f_{0}^{n} B \subset E$ for all n.
Step 3. For a measurable subset $D \subset[0,1)$ the following hold:
i) If $D \subset E$, then $f_{0} D \subset E$. If $D \subset E^{c}$, then $f_{0} D \subset E^{c}$.
ii) If $f_{1} D \subset I$, and $D \subset E$, then $f_{1} D \subset E^{c}$. If $f_{1} D \subset I$, and $D \subset E^{c}$, then $f_{1} D \subset E$.
iii) If $f_{1} D \subset I^{c}$, and $D \subset E$, then $f_{1} D \subset E$. If $f_{1} D \subset I^{c}$, and $D \subset E^{c}$, then $f_{1} D \subset E^{c}$.
Proof. i) If $D \subset E$, then $f_{0} D \subset f_{0} E \subset E$. If $D \subset E^{c}$, then $f_{0} D \subset$ $f_{0}\left(E^{c}\right)$. So $f_{0} D \cap E \subset E \cap f_{0}\left(E^{c}\right)$. Since $E \cap f_{0}\left(E^{c}\right)$ has measure zero by Step 1 , we have $\mu\left(f_{0} D \cap E\right)=0$ and $f_{0} D \subset E^{c}$.
ii) If $f_{1} D \subset I$ and $D \subset E$, then $f_{1} D \subset f_{1} E \cap I=A=f_{1} E-E$. If $f_{1} D \subset I$, and $D \subset E^{c}$, then $f_{1} D \subset f_{1}\left(E^{c}\right) \cap I=B$.
iii) If $f_{1} D \subset I^{c}$, and $D \subset E$, then $f_{1} D \subset f_{1} E \cap I^{c}=f_{1} E \cap A^{c}=$ $f_{1} E \cap E$. If $f_{1} D \subset I^{c}$ and $D \subset E^{c}$, then

$$
\begin{aligned}
f_{1} D \subset f_{1}\left(E^{c}\right) \cap I^{c} & \subset f_{1}\left(E^{c}\right) \cap B^{c} \\
& =\left\{\left(f_{1} E\right)^{c} \cap\left[\frac{1}{2}, 1\right)\right\} \cap\left\{E^{c} \cup f_{1} E \cup\left[0, \frac{1}{2}\right]\right\} \\
& =\left(f_{1} E\right)^{c} \cap\left[\frac{1}{2}, 1\right) \cap E^{c} .
\end{aligned}
$$

Step 4. If $0<\epsilon \leq b$, then

$$
\frac{\beta}{b} \leq \frac{\mu([0, \epsilon] \cap E)}{\epsilon} \leq 1-\frac{\alpha}{b} .
$$

Proof. Since $b / 2 \leq a$, all $f_{1}^{n} I$'s are mutually disjoint. If $0<\epsilon \leq b$, then for such ϵ, there exists M_{0} such that $b / 2^{M_{0}}<\epsilon \leq b / 2^{M_{0}-1}$. So $f_{0}^{n} I \subset[0, \epsilon]$ for $n \geq M_{0}$, and by Step $2, f_{0}^{n} A \subset E^{c}, f_{0}^{n} B \subset E$ for $n \geq M_{0}$.

Hence
$\mu\left(f_{0}{ }^{M_{0}} B \cup f_{0}{ }^{M_{0}+1} B \cup \cdots\right) \leq \mu([0, \epsilon] \cap E) \leq \epsilon-\mu\left(f_{0}{ }^{M_{0}} A \cup f_{0}{ }^{M_{0}+1} A \cup \cdots\right)$,

$$
\frac{\beta}{b} \leq \frac{\beta}{2^{M_{0}-1} \epsilon} \leq \frac{\mu([0, \epsilon] \cap E)}{\epsilon} \leq 1-\frac{\alpha}{2^{M_{0}-1} \epsilon} \leq 1-\frac{\alpha}{b}
$$

Step 5. If $a>\frac{1}{2}$, then there exists integer N_{1} such that $f_{1} f_{0}^{n} A \subset E^{c}$ and $f_{1} f_{0}^{n} B \subset E$ for $n \geq N_{1}$. And if $0<\epsilon \leq b / 2^{N_{1}+1}$, then

$$
\frac{\beta}{b} \leq \frac{\mu\left(\left[\frac{1}{2}, \frac{1}{2}+\epsilon\right] \cap E\right)}{\epsilon} \leq 1-\frac{\alpha}{b}
$$

If $a=\frac{1}{2}$, then there exists integer N_{1}^{*} such that $f_{1} f_{0}^{n} A \subset E$ and $f_{1} f_{0}^{n} B \subset$ E^{c} for $n \geq N_{1}^{*}$. And if $0<\epsilon \leq b / 2^{N_{1}^{*}+1}$, then

$$
\frac{\alpha}{b} \leq \frac{\left.\mu\left(\left[\frac{1}{2}, \frac{1}{2}+\epsilon\right] \cap E\right]\right)}{\epsilon} \leq 1-\frac{\beta}{b}
$$

Proof. If $a>\frac{1}{2}$, then there exists N_{1} such that

$$
f_{1} f_{0}^{n} I \subset I^{c} \quad \text { for } n \geq N_{1}
$$

By Step 2 and Step 3 (iii), $f_{1} f_{0}^{n} A \subset E^{c}, f_{1} f_{0}^{n} B \subset E$ for $n \geq N_{1}$. If $0<\epsilon \leq b / 2^{N_{1}+1}$, then there exists M_{1} such that

$$
\frac{b}{2^{M_{1}+1}} \leq \epsilon \leq \frac{b}{2^{M_{1}}}
$$

Since $f_{1} f_{0}^{n} I=\left[\frac{1}{2}+\frac{a}{2^{n+1}}, \frac{1}{2}+\frac{b}{2^{n+1}}\right]$, so $f_{1} f_{0}^{n} I \subset\left[\frac{1}{2}, \frac{1}{2}+\epsilon\right]$ for $n \geq M_{1}$. Hence,

$$
\begin{aligned}
\mu\left(f_{1} f_{0}^{M_{1}} B \cup f_{1} f_{0}^{M_{1}+1} B \cup \cdots\right) & \leq \mu([1 / 2,1 / 2+\epsilon] \cap E) \\
& \leq \epsilon-\mu\left(f_{1} f_{0}^{M_{1}} A \cup f_{1} f_{0}^{M_{1}+1} A \cup \cdots\right)
\end{aligned}
$$

so

$$
\frac{\beta}{b} \leq \frac{\beta}{2^{M_{1}} \epsilon} \leq \frac{\mu\left(\left[\frac{1}{2}, \frac{1}{2}+\epsilon\right] \cap E\right)}{\epsilon} \leq 1-\frac{\alpha}{2^{M_{1}} \epsilon} \leq 1-\frac{\alpha}{b}
$$

The case of $a=\frac{1}{2}$ is similar to the above.

Step 6. For any m and $\sigma \in\{0,1\}^{(m)}$, there exist N_{σ} such that if $0<\epsilon \leq b / 2^{m+N_{\sigma}+1}$ then

$$
\frac{\beta}{b} \leq \frac{\mu\left(\left[f_{\sigma}\left(\frac{1}{2}\right), f_{\sigma}\left(\frac{1}{2}\right)+\epsilon\right] \cap E\right)}{\epsilon} \leq 1-\frac{\beta}{b} .
$$

Proof. Given m and $\sigma=\left(c_{1}, \cdots, c_{m}\right) \in\{0,1\}^{(m)}$ with $c_{j} \in\{0,1\}$, then $f_{\sigma}\left(\frac{1}{2}\right) \in[a, b)$ or $f_{\sigma}\left(\frac{1}{2}\right) \in[0, a) \cup[b, 1)$. So there exists N_{σ} such that

$$
\begin{array}{lll}
f_{\sigma} f_{1} f_{0}^{n} I \subset I & \text { for } & n \geq N_{\sigma} \\
f_{\sigma} f_{1} f_{0}^{n} I \subset I^{c} & \text { for } & n \geq N_{\sigma} .
\end{array}
$$

By Step 5 and Step 3,

$$
\begin{aligned}
& f_{\sigma} f_{1} f_{0}^{n} A \subset E \quad \text { and } \quad f_{\sigma} f_{1} f_{0}^{n} B \subset E^{c} \quad \text { for } \quad n \geq N_{\sigma} \quad \text { or } \\
& f_{\sigma} f_{1} f_{0}^{n} A \subset E^{c} \quad \text { and } \quad f_{\sigma} f_{1} f_{0}^{n} B \subset E \quad \text { for } \quad n \geq N_{\sigma} .
\end{aligned}
$$

By Step 3, there are six cases. But it suffices to prove only one of them because the remaining cases are identical. We consider the following case.
(1) $c_{1}=1$,
(2) $f_{c_{2}} f_{c_{3}} \cdots f_{c_{n}} f_{1} f_{0}^{n} A \subset E$ and $f_{c_{2}} f_{c_{3}} \cdots f_{c_{n}} f_{1} f_{0}^{n} B \subset E^{c}$ for $n \geq N_{\sigma}$,
(3) $f_{\sigma} f_{1} f_{0}^{n} I \subset I$ for $n \geq N_{\sigma}$.

Then by Step 3 (ii), $f_{\sigma} f_{1} f_{0}^{n} A \subset E^{c}$ and $f_{\sigma} f_{1} f_{0}^{n} B \subset E$ for $n \geq N_{\sigma}$. Since $f_{1} f_{0}^{n} I=\left[1 / 2+a / 2^{n+1}, 1 / 2+b / 2^{n+1}\right]$ and

$$
f_{1}(x+y)=f_{1} x+\frac{y}{2}, \quad f_{0}(x+y)=f_{0} x+\frac{y}{2}
$$

we have

$$
f_{\sigma} f_{1} f_{0}^{n} I=\left[f_{\sigma}\left(\frac{1}{2}\right)+\frac{a}{2^{n+m+1}}, f_{\sigma}\left(\frac{1}{2}\right)+\frac{b}{2^{n+m+1}}\right] .
$$

Let $0<\epsilon \leq b / 2^{m+N_{\sigma}+1}$. For such ϵ, there exists M_{σ} such that $b / 2^{m+M_{\sigma}+1} \leq \epsilon \leq b / 2^{m+M_{\sigma}}$. Then $f_{\sigma} f_{1} f_{0}^{n} I \subset\left[f_{\sigma}\left(\frac{1}{2}\right), f_{\sigma}\left(\frac{1}{2}\right)+\epsilon\right]$ for $n \geq M_{\sigma}$. Hence

$$
\begin{aligned}
& \mu\left(f_{\sigma} f_{1} f_{0}^{M_{\sigma}} B \cup f_{\sigma} f_{1} f_{0}^{M_{\sigma}+1} B \cup \cdots\right) \leq \mu\left(\left[f_{\sigma}\left(\frac{1}{2}\right), f_{\sigma}\left(\frac{1}{2}\right)+\epsilon\right] \cap E\right) \\
& \leq \epsilon-\mu\left(f_{\sigma} f_{1} f_{0}^{M_{\sigma}} A \cup f_{\sigma} f_{1} f_{0}^{M_{\sigma}+1} A \cup \cdots\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{\beta}{b} \leq \frac{\beta}{2^{m+M_{\sigma} \epsilon}} \leq \frac{\mu\left(\left[f_{\sigma}\left(\frac{1}{2}\right), f_{\sigma}\left(\frac{1}{2}\right)+\epsilon\right] \cap E\right)}{\epsilon} \\
& \leq 1-\frac{\alpha}{2^{m+M_{\sigma} \epsilon}} \leq 1-\frac{\alpha}{b} \leq 1-\frac{\beta}{b}
\end{aligned}
$$

Step 7. Now as a final step we show that there is no measurable subset E for which $I=E \Delta \tau^{-1} E$. Without loss of generality, we may assume $a \in\{0,1\}^{(s)}-\{0,1\}^{(s-1)}$. For any $\sigma \in\{0,1\}^{(s)}$, there exists N_{σ} by Step 6. We can choose M such that $M \geq \max _{\sigma \in\{0,1\}^{(a)}} N_{\sigma}$, and $f_{\sigma} f_{1} f_{0}{ }^{M}(b)-$ $f_{\sigma}\left(\frac{1}{2}\right)<1 / 2^{s}$. Since $a \in\{0,1\}^{(s)}-\{0,1\}^{(s-1)}$ with $s \geq t$, so for any $\sigma \in\{0,1\}^{(m)}$ with $m \geq s$,

$$
\begin{equation*}
f_{\sigma} f_{1} f_{0}^{n} I \subset I \quad \text { or } \quad f_{\sigma} f_{1} f_{0}^{n} I \subset I^{c} \quad \text { for } \quad n \geq M \tag{3}
\end{equation*}
$$

Suppose the metric density $d_{E}(x)$ of E at x is 1 for $x \in[0,1)$, then the right metric density of E^{c} at x is 0 . So for any $\delta>0$, there exists $0<\epsilon<$ $\left(\frac{1}{2}\right)^{s}$ such that $\mu\left([x, x+\epsilon] \cap E^{c}\right) / \epsilon \leq \delta$. For such ϵ, there exists $s_{0} \geq s$ such that $\left(\frac{1}{2}\right)^{s_{0}+1} \leq \epsilon<\left(\frac{1}{2}\right)^{s_{0}}$. Then there exist $\sigma_{1}, \sigma_{2} \in\{0,1\}^{\left(s_{0}+1\right)}$ such that $\left[f_{\sigma_{1}}\left(\frac{1}{2}\right), f_{\sigma_{2}}\left(\frac{1}{2}\right)\right] \subset[x, x+\epsilon]$. Since $s_{0}+1>s$, by (3)
(4) $\quad f_{\sigma_{1}} f_{1} f_{0}^{n} A \subset E \quad$ and $\quad f_{\sigma_{1}} f_{1} f_{0}^{n} B \subset E^{c} \quad$ for $\quad n \geq M \quad$ or
(5) $\quad f_{\sigma_{1}} f_{1} f_{0}^{n} A \subset E^{c} \quad$ and $\quad f_{\sigma_{1}} f_{1} f_{0}^{n} B \subset E \quad$ for $\quad n \geq M$.

Suppose that (4) holds. Then we have

$$
\begin{aligned}
\mu\left([x, x+\epsilon] \cap E^{c}\right) & \geq \mu\left(\left[f_{\sigma_{1}}\left(\frac{1}{2}\right), f_{\sigma_{2}}\left(\frac{1}{2}\right)\right] \cap E^{c}\right) \\
& \geq \mu\left(f_{\sigma_{1}} f_{1} f_{0}^{M} B \cup f_{\sigma_{1}} f_{1} f_{0}^{M+1} B \cup \cdots\right) \\
& =\frac{\beta}{2^{s_{0}+M+1}}
\end{aligned}
$$

so

$$
\frac{\mu\left([x, x+\epsilon] \cap E^{c}\right)}{\epsilon} \geq \frac{\beta}{2^{s_{0}+M+1} \epsilon} \geq \frac{\beta}{2^{M+1}}
$$

Since $\delta>\beta / 2^{M+1}$ and since δ can be chosen arbitrarily small, it is a contradiction. Now suppose that (5) holds true, then $\mu(E)=0$, which is also a contradiction.

References

1. G. H. Choe, Ergodicity and irrational rotations, Proc. Royal Irish Acad. (to appear).
2. \qquad Products of operators with singular continuous spectra, Proc. Sympos. in Pure Math. vol. 51, 65-68, Amer. Math. Soc., Providence, R.I. 1990.
3. __ Spectral Types of Multiplicative Cocycles, Ph.D. Thesis, Univ. of California, Berkeley, 1987.
4. H. Helson, Cocycles on the circle, J. Operator Theory 16 (1986), 189-199.
5. L. Kuipers and H. Niederreiter, Uniform Distributions of Sequences, John Wiley and Sons, New York, 1974.
6. H. Medina, Hilbert Space Openators Arising from Irrational Rotations on the Circle Group, Ph.D. Thesis, Univ. of California, Berkeley, 1992.
7. K.D. Merrill, Cohomology of step functions under irrational rotations, Israel J. Math. 52 (1985), 320-340.
8. M. Stewart, Irregularities of uniform distribution, Acta Math. Sci. Hungar. 37 (1981), 185-221.
9. W.A. Veech, Strict ergodicity in zero-dimensional dynamical systems and Kro-necker-Weyl theorem mod 2, Trans. Amer. Math. Soc. 140 (1968), 1-33.

Department of Mathematics
Korea Advanced Institute of Science and Technology
373-1 Kusongdong, Yusonggu
Taejon 305-701, Korea

