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ISOMORPHIC ORE EXTENSIONS

OF MONOMORPHISM TYPE

JANG-Ho CHUN

1. Introduction

Throughout this paper, all rings have identity and all ring homomor
phisms preserve the identity. Let A be a ring and a be a monomorphism
on A. Let A[x : a] denote the set of all formal right polynomials in x
with coefficients in A written on right of powers of x. Define addition in
A[x : a] as usual and define a multiplication by assuming the distribu
tive laws and the rule ax = xaOl for all a E A. It is straightforward to
check that A[x : a] is a ring and this ring is called an Ore extension
of monomorphism type (or skew polynomial ring). Given two Ore ex
tensions (of the same type) A[x : a] and B[y : ,8], we denote the fact
that A[x : a] and B[y : ,8] are isomorphic via the ring isomorphism (j by

a
writing A[x; a] ~ B[y; ,8]. Suppose a is a monomorphism of A and ,8 is a
monomorphism of B. We say that A is Ore invariant of monomorphism

a
type if whenever A[x;a] ~ B[y;,8J, then we have A ~ B. IT, furthermore,
the isomorphism (j carries A onto B then A is said to be strongly Ore
invariant of monomorphism type.

The purpose of this paper is to decide the rings which are (strongly)
Ore invariant of monomorphism type. Several authors have considered
the invariance of polynomial ring problem which is a special case of
Ore invariance of monomorphism type (e.g., [2J,[4],[5]). In particular,
in [4], it is shown that every right or left Artinian ring is polynomial
invariant. In [2], the invariance of polynomial ring was extended to
n variables and they obtained that a finite direct sum of local rings
is n-invariant for each positive integer n. While in [6], an example of a
noninvariant commutative Noetherian domain was presented. Invariance
of Ore extensions of derivation type was considered in [1]. It was proved
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that any simple Artinian ring of characteristic zero or any regular self
injective P.I. ring with no Z-torsion is Ore invariant of derivation type.
In [3], the author observed the Ore invariance of automorphism type.
In this paper, we try to extend the results in [3] for the monomorphism
case. We obtain: that every semisimple Artinian ring is Ore invariant of
monomorphism type. The proof of this heavily depends on the structure
of the Ore extension of monomorphism type over a semisimple Artinian
ring which has been carried out by A. V. Jategaonkar in [9] and [10]. In
section 2, we will introduce some of his results which will be needed in
the proof of our theorems.

2. Notations and Preliminaries

In general, the structure of A[x : 0] is very complicate, but it is well
observed by A. V. Jategaonkar in [9] and [10]. Hence we introduce his
results in this section using the same notations.

Let K 1 ~ ••• ~ K m be a chain of rings and 'I' : K m -+ K 1 be
a monomorphism. Let Di = Ki[Z : '1'], i = 1, ... , m. Let P be the
subring of Mn(Dm), consisting of all those matrices (dij ) which satisfy
the following conditions: (1) dij E Dj for all i,j (2) dij E zDj if i >
j. It is straightforward to check that P is a subring of Mn(Dm). We
shall denote P by {Ki,m,'P,z}. The following theorem says that the
Ore extention of monomorphism type for self-basic semisimple ring isr .isomorphic to {Ki , m, '1', z}.

I

THEOREM. A ([9]). Let R be a semisimple Artinian ring, {II,·· .,Im}
be the set ofall distinct central primitive idempotents in R. Assume that
o : R -+ R is a monomorphism such that o(li) = 11r(i) where 1r is the
cycle on 1m = {1,2, ... ,m} defined by 1r(m) = 1 and 1r(i) = i + 1
otherwise. Then

(1) There exists a chain ofdivision rings K 1 ~ •.. ~ K m , a monomor
phism'P : K m -+ K1 and a positive integer n such that

o is an automorphism if and only if K 1 = ... = K m and 'I' is an
automorphism.

(2) R[x: 0] is a right and left hereditary, right and left Noetherian
prime ring of right rank m and a right order in a simple ring.



Isomorphic Ore extensions of monomorphism type 363

(3) H M is a finitely generated projective right R[x : a]-module,
then M can be uniquely expressed as

m

M ~ Ef)UiR[X : ann;
i=l

where the ni are nonnegative integers and R[x : a] has precisely m
distinct isomorphism classes ofuniform right projective modules; further,
{fiR: i E 1m } is a representative set of those isomorphism classes.

To prove the Ore invariance of monomorphism type for simple Ar
tinian rings, we need some properties of matrix rings which have been
established in [11] and [12]. Let p : S -+ R be an isomorphism of rings
and let A, B be left S- and R-modules, respectively. A map w : A -+ B
is called a p-semi-linear homomorphism if w is a homomorphism of addi
tive Abelian groups (A, +) to (B, +) and w(sa) = p(s)w(a) for all s E S
and a E A. Given a p-semi-1inear isomorphism w : A -+ B, the map

q : Ends(A) -+ EndR(B)

defined by afT = waw-1 , a E Ends(A) is called the isomorphism induced
byw.

THEOREM. B ([11], [12]). For a :fixed positive integer n, the follow
ing conditions on a ring R are equivalent.

(1) H P is a left R-module with pen) ~ R(n) then P ~ R as R
modules, where pen) means a direct sum of n copies of P.

(2) H S is a ring and

q : Mn(S) -+ Mn(R)

is an isomorphism, then there exists an isomorphism p : S -+ R
and a p-semi linear isomorphism w : sen) -+ R(n) such that 0" is
induced by w.

(3) Every endomorphism of Mn(R) is of the form x 1--+ uf(x)u-1

where f is an extended endomorphism of R and u is an element
in Mn(R).

A ring which satisfies the above equivalent conditions is called a P Fn 

ring. We know that every pri-domain satisfies the condition (1).
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3. Ore invariance of simple Artinian Rings

We first consider A[x : a) where A is a division ring. It is well
known ([7)) that A[x : a] has a right Euclidean algorithm so that.it is a
pri-domain. The proof presented here is a modification of the proof of
ordinary polynomial rings or Ore extensions of derivation type.

PROPOSITION 3.1. Let A be a division ring. Then A is strongly Ore
iT

invariant of monomorphism type, i.e., whenever A[x; a] ~ B[y; ,8], we
have utA) = B.

Proof. For a ring R, let R* denote the multiplicative group of units.
Since A[x : a] is a domain and noncommutative polynomial ring, we
have (A[x : a))* = A*. Therefore

u(A*) = q(A[x: aD* = (B[y : ,8])* = B*.

Hence q(A) ~ B. Next we will show that 1, u(x), 0'( X )2, . .. are linearly
independent over B. Suppose that

ao +u(x)al + ... +u(xtan = 0

for some ai E B.Letu(x) = bo+yb1+·· +ymbm, thenm ~ 1andbm #0.
The highest term of the above equation is ynm~n-l)m~n-2)m ••• bman.

Therefore ~n-l)m ••• bman = O. Since B is a domain and ~m # 0 for
all i = 0,1, ..., n - 1, an = O. Continuing this way, we get ao = al 
... = an = O. Let b be arbitrary element in B. Then

Since 1, 0'( X ), • " ,u(X ) n are linearly independent over B and u(a;) E B,
u(ao) = b. Hence u(A) = B.

iT

THEOREM 3.2. If A is a simple Artinian ring and A[x; a] ~ B[y; ,8],
then we have A '" B.

Proof. In general, A[x : a] is not necessary right Noetherian even if
A is right Artinian. For example, see [10]. But if A is a simple Artinian
ring, by [12], A[x : 0] is right Noetherian. So is B[y : ,8]. Since B is
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naturally isomorphic to B[y : f3]/(y), B is also right Noetherian. Next we
will show that B is right Artinian. We know that A ~ Mn(D) for some
division ring D and Mn(D)[x : a] ~ Mn(D[ux : p)) for some u E Mn(D).
Therefore we have

B C:! B[y : f3] C:! A[x: a] C:! Mn(D)[x : 0:] C:! Mn(D[ux : p]
- (y) - (q-l(y» - (q-l(y» - I

where I is an ideal of Mn(D[ux : p)). Since D[ux : p] is a pri-domain, I is
oftbe form (aO+xal +.. ·+xn)D[ux : p] where ai E D. D[ux : p] satisfies
the right division algorithm, and hence by the usual method, D[ux : p]/I
is right Artinian. This implies that B is right Artinian. By [10], A[x : a]
is a right order of simple Artinian ring and hence B is semisimple and f3
induces a cyclic permutation on the set of central primitive idempotents
on B. Suppose that {It, ... ,f m} is the set of all distinct central primitive
idempotents in B. Then by [9], B[y : f3] is right hereditary prime ring
of right rank m. Since A[x : 0:] ~ Mn(D[ux : p)) and pri-ring, n = l.
Therefore B is a simple Artinian ring, i.e., B ~ Ml(F) for some division
ring F. And then we get the following isomorphism

A[x : 0:] ~ Mn(D[ux : p)) ~ M,(F[vy : Jt)) ~ B[y : f3].

Since D[ux : p] is pri-domain, by theorem B, D[ux : p] ~ F[vy : Jt]. By
theorem 3.1, D~ F and hence A ~ B.

4. Ore invariance of semisimple Artinian ring

First we consider that A is a self-basic semisimple ring, i.e., A is a
finite sum of division rings.

LEMMA 4.1. Let A be a seH-basic semisimple ring and {fll ... , f m}
be the set of all distinct primitive idempotents of A. Let 'Ir be the cycle
on 1m defined by 'Ir(m) = 1 and 'Ir(i) = i + 1 for i =I m. Assume that
a is a monomorphism on A such that aUi) = fzr(i) and 0: is not an
automorphism. Then A[x : a] ~ {Ki,m,c.p,z} and every nonzero ideal
of A[x : a] is of the form (ZEi j Dj ) where Eij ~ O.

Proof. See [9].



366 Jang-Ho Chun

LEMMA 4.2. Let A be a semisimple Artinian ring and a a cycle per
mutation on the set of all central primitive idempotents {el' ... , em}. If

tT

A[x; a] ~ B[y;,8]' then B is also semisimple Artinian.

Proof. The proof is divided into two parts, one is ais an automor
phism and the other is a is not an automorphism.
Case I. a is an automorphism. Define f(a) to be the constant term of
u(a) for all a E A. Then clearly f is a homomorphism from A into
B. Since any element in (y) cannot be an idempotent, for any nonzero
idempotent e E A, fee) is a nonzero idempotent in B. Since (y) is a
proper ideal in B[y : ,8], u-l«y)) n A is also a proper ideal in A. If
u-l«y)) n A i- 0, then u-l«y)) n A contains at least one ei, because
every nonzero ideal in A is of the form EjEJ ejA where 0 f J <; In. This
is a contradiction to the above observation. Hence u-l«y)) n A = O.
Therefore f is a one-to-one homomorphism. Since E?=l.ei = 1, we also
have E?=l f(ei) = 1 in B. Therefore b = E?=l bf(ed for all bE B. Let

u(x) = bo + ybl + ... + ytbt .

Then B is generated by f(A) and bo as a ring, because for any element
b E B, there exists

ao + xal +... + x'a, E A[x : a]

such that
u(ao) +u(x)u(aI) +... +u(x)'u(al) =b,

I.e.,
b = f(ao) +bof(aI) +... +b&f(a,).

Specially,
bo = f(C()) + bof(el) +... + lIaf(cp )

for some Ci E A. Then

bof(ei) = f(C()ei) +bof(clei) +... + lIaf(Cpei)'

If f(ei)bo = 0 for all i, then bo = O. This means u(x) E (y). If

u(do +xdl +... + xjdj) = y,
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then q(do) E (y). But q-l«y)) n A = 0 implies that do = o. Therefore
q«;c» = (y). Then q induces an isomorphism

_ A[x: a] B[y : ,8]
q: (x) -+ (y) .

This says that A ;::; B. Hence we may assume that be,f (ei) :/= 0 for some i.
H bof(ei) =1= 0, then for some k, f(Ckei) =1= o. Choose ki maximal among
f(Ckei) =1= o. Since f(ck;)f(ei) E f(A)f(ei) and f(A)f(ei) is a simple
ring with identity f(ei), there exists Sij, tij E A such that

Lf(Sijei)f(Ckiei)f(tijei) = f(ei).
j

The relation ax = xaOi implies that q(a)q(x) = q(x)q(aOi ). Hence
f(a)bo = bof(aOi ). In general, f(a)b~ = b~f(aOif) for all nonnegative
integers t. Since a is an automorphism, we may choose f(t~jei) such
that f(t~jei)b~; = b~; f(tijei). Then we have

f(Sijei)bof(ei)f(t~jei) = f(sijei)f(cOei)f(t~jed

+ ... + b~; f(Sijei)f(ck;ei)f(tijei)

for each j. Therefore b~; f(ei) :.- E;'::~ll1oaiP where aip E f(A). Choose
k = max{kd. Then

where aip E f(A). This means that B is a finitely generated f(A)
module. Hence B is right Artinian.
Case II. a is not an automorphism. Clearly B ~ A[x : a]j(q-l(y». By
Lemma 4.1, (q-l(y» is of the form (Zfii Dj) where fij ~ 0 and by [9],
A[x : a]j(q-l(y» is a generalized uniserial ring. Therefore in both cases
B is right Artinian. By [10], B[y : ,8] is right order in a simple Artinian
ring and B is a semisimple Artinian.
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LEMMA 4.3. R ={Ki, n, cp, z} is PFp-ring for all positive integer p.

Proof. Suppose that pep) '" R(p) where P is a left R-module. Since
R is right and left hereditary and P is a finitely generated projective
R-module, by [9], P ~ EBi(eiR)n•. Then we have

pep) ~ EB(eiR)pn; .
i

And since
E9(eiR)P ~ R(p)

i

and pep) ~ R(p) , by the uniqueness of the expression of finitely generated
projective R-modules prti = p, i.e., ni = 1 for all i. Hence

n

P~EBeiR~R
i=l

as left R-modules.

THEOREM 4.4. Let A be a semisimple Artinian ring and a a cycle
permutation on the set ofcentral idempotents {e1, ... , en}. Suppose that

~

A[x; a} e:! B[y; P}, then A ~ B.

Proof. By Lemma 4.3, B is also a semisimple Artinian ring. Hence
A[x : a] ~ Mp({Ki,n,cp,z}) ~ Mq({Li,n,¢,w}) ~ B[y : ,8] for some
positive integers p and q. Since {Ki, n, cp, z} is prime Noetherian, it
has a total quotient ring Q({Ki , n, cp, z}) and by [9], the set P consist
ing of diagonal matrices (dii ) such that degdii = degdjj is the exhaust
divisor set of {Ki, n, cp, z}. Therefore an easy calculation shows that
Q({Ki,n,cp,z}) '" Mn(Q(Kn[z: cp])). Therefore

Q(A[x : a]) ~ Mnp(Q(Kn[z : cp))) ~ Mnq(Q(Ln[w : ¢])) '" Q(B[y : ,8)).

Since Q(K[z : cp]) is a division ring, np = nq, i.e., p = q. Hence
Mp({Ki,n,cp,z}) ~ Mp{{Li,n,,,p,w}). By Lemma 4.3, {Ki,n,cp,z} is

"a PFn-ring and hence R = {Ki, n, cp, z} ~ {Li, n, ¢, w} = S for some
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isomorphism "I. Let !i and hi be the standard orthogonal idempotents
in R and S, respectively. Then {rJUd}i=l is also a set of orthogonal
idempotents in S. Then

n n

S = {Li' n, t/J, w} ~ ED hiS ~ ED rJ(!i)S
i=l i=l

as S-modules. Since liR is uniform projective for each i, rJ(!iR) = rJ(!i)S
are also uniform projectives. Since {/iR}i=l is a representative set of
uniform projectives, {rJ(!i)S}i=l are mutually nonisomorphic uniform
projective S-modules. Therefore by suitable reordering, T/(!i)S ~ hiS,
for all i E In. This implies that Ends(rJ(Ji)S) ~ Ends(hiS). Clearly the
isomorphism "I induces an isomorphism r; : JiRli -t rJ(Ji)SrJ(!i). Hence
we have an isomorphism

ii
Kj[z : ep] ~ hRh ~ rJ(h)SrJ(Ji) ~ Ends(rJ(h)S)

~ Ends(hiS) ~ hjShi ~ Lj[w : t/Jl.

Since K i is a division ring, Ki ~ Li. Therefore we get

A ~ $ Mp(Ki) ~ ED Mp(L i ) ~ B,
i i

completing the proof.

As a corollary we obtain one of the principal results of this paper.
0'

THEOREM 4.5. H A is semisimple Artinian and A[x; a] ~ B[y; ,8],
then A ~ B.

Proof. Let {II,··· ,1m} be the set of all distinct central primitive
idempotents of A. Since a is a monomorphism, by [9], there exists a
unique permutation 7r on 1m , such that Ii = f1r(i). Let 7r = 7rl ••• 7rt

be a decomposition of 7r into mutually disjoint cycles (we write I-cycles
also). Put

9' = L h, 1= 1, ... ,t,
iE1r/
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where i E ?r, means i occurs in the cycle notation of ?r,. Then for each
1E It, a(g,) = g,. Also a induces an isomorphism

and {Ii : i E ?r,} is the set of all distinct primitive idempotents in g,A.
Then

t

A[x : a] ~ EB(g,A)[g,x : ad·
'=1

For each I, g,A is semisimple Artinian. Since {g,} is a set of central or
thogonal idempotents in A[x : a] and 2::=1 g, = 1, so is {u(g,)}. Let f(a)
be the constant term of u(a) for all a E A. Then by the same reasoning
as in Lemma 4.2, {f(g,)} is a set of central orthogonal idempotents in
B and 2::=1 f(g,) = 1. Therefore

t

B ~ EB f(g,)B.
'=1

.. Since u(g,)y = yu(g,), we have /(g,) = f(g,)P. Therefore

t t

A[x : a] ~ (EB g,A)[x : a] ~ EB(g,A)[g,x : a,]
'=1 '=1

t

~ EBU(g,)B)[f(g,)y : ,8,] ~ B[y : ,8].
'=1

Therefore
(f(g,)B)[f(g,)y : ,8,] ~ (g,A)[g,x : a,].

By the previous theorem, f(g,)B ~ g,A for each I. Hence A ~ B, as
desired. .
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