SOME REMARKS ON THE AUTOMATA-HOMOMORPHISMS

Chin-Hong Park

Definition. (1) An automaton, $A=(M, X, \delta)$, is a triple where M is a nonempty set (the set of states), X is a nonempty set (the set of inputs), δ is a function (called the state transition function) mapping $M \times X$ into M. Also, we shall assume the useful property that $\delta(m, s t)=$ $\delta(\delta(m, s), t)$ for all $s, t \in X$ and $m \in M$.

Note. (i) An automaton A means a triple (M, X, δ) and M does not mean an automaton. But the attribute "automaton" will be sometimes used for M. (ii) Let X^{*} be the free monoid generated by X. Then δ^{*} : $M \times X^{*} \rightarrow M$ is the map defined as follows: For all $m \in M$ and $a \in X^{*}$, $\delta^{*}(m, a)=m$ if $a=e$ (empty string) and $\delta^{*}(m, a)=\delta\left(\delta^{*}(m, b), t\right)$ if $a=b t$ and $t \in X$.

Notation. For convenience we will denote $\delta(m, t)$ as $m t$ if $t \in X$ and $\delta^{*}(m, a)$ as $m a$ if $a \in X^{*}$, i.e., $\delta(m, t)=m t$ and $\delta^{*}(m, a)=m a$.

Note. (i) $\delta^{*}(m, t)=\delta(m, t)$ for all $m \in M$ and $t \in X$. (ii) $\delta^{*}(m, a b)$ $=\delta^{*}\left(\delta^{*}(m, a), b\right)$ for all $m \in M$ and $a, b \in X^{*}$, i.e., $m(a b)=(m a) b$.
(2) Let $A=\left(M, X, \delta_{A}\right)$ and $B=\left(N, Y, \delta_{B}\right)$ be automata. An automatahomomorphism (or a generalized $X Y$-homomorphism) of A into B is a pair (f, α) of mappings $f: M \rightarrow N$ and $\alpha: X \rightarrow Y$ such that $f(m a)=f(m) \alpha(a)$ for all $m \in M$ and $a \in X$.

Notation. We denote (f, α) as f^{α}, i.e., $f^{\alpha}=(f, \alpha)$.
(3) Let $A=\left(M, X, \delta_{A}\right)$ and $B=\left(N, X, \delta_{B}\right)$ be automata. Let $S=X^{+}=X^{*}-\{e\}$. Let $f: M \rightarrow N, \alpha: X \rightarrow X$ and $\alpha^{*}: S \rightarrow S$ (or $X^{*} \rightarrow X^{*}$) be maps. Then $f^{\alpha}: A \rightarrow B$ is an αX-homomorphism (or automata-homomorphism or a generalized X-homomorphism with respect to α) if $f(m a)=f(m) \alpha(a)$ for all $m \in M$ and $a \in X$. Also, $f^{\alpha^{*}}$ is an $\alpha^{*} S$-homomorphism (resp. $\alpha^{*} X^{*}$-homomorphism) if $f(m a)=$

Received January 20, 1993.
$f(m) \alpha^{*}(a)$ for all $m \in M$ and $a \in S$ (resp. $f(m a)=f(m) \alpha^{*}(a)$ for all $m \in M$ and $a \in X^{*}$). f^{α} is an αX-endomorphism if $A=B$ and it is an αX-homomorphism. f^{α} is an αX-isomorphism if it is an αX homomorphism and f, α are bijective. f^{α} is an αX-automorphism if it is an αX-isomorphism and $A=B$. Similarly, we can define $\alpha^{*} S$ and $\alpha^{*} X^{*}$-endomorphismS, $\alpha^{*} S$-and $\alpha^{*} X^{*}$-isomorphisms and $\alpha^{*} S$-and $\alpha^{*} X^{*}$-automorphismS. $f: M \rightarrow N$ (or $A \rightarrow B$) is an X-homomorphism (resp. S-homomorphism, X^{*}-homomorphism) if $f(m a)=f(m) a$ for all $m \in M$ and $a \in X$ (resp. for all $m \in M$ and $a \in S$, for all $m \in M$ and $a \in X^{*}$). Let f^{α} and g^{β} be an αX-homomorphism and an βX homomorphism respectively. Then we define $f^{\alpha}=g^{\beta}$ by letting $f=g$ and $\alpha=\beta$

Notation. (i) We denote $f^{i d}$ as f where $i d: X \rightarrow X$ (or $S \rightarrow S$ or $X^{*} \rightarrow X^{*}$) is the identity map.
(ii) $\operatorname{END}_{X}(A)=\operatorname{END}_{X}(M)=\left\{f^{\alpha} \mid f^{\alpha}\right.$ is an αX-endomorphism with a map $\alpha: X \rightarrow X\}$.
$\operatorname{AUT}_{X}(A)=\operatorname{AUT}_{X}(M)=\left\{f^{\alpha} \mid f^{\alpha}\right.$ is an αX-automorphism with a map $\alpha: X \rightarrow X\}$.
$\operatorname{End}_{X}(A)=\operatorname{End}_{X}(M)=\{f \mid f: M \rightarrow M$ is an X-endomorphism $\}$.
$\operatorname{Aut}_{X}(A)=\operatorname{Aut}_{X}(M)=\{f \mid f: M \rightarrow M$ is an X-automorphism $\}$.
Proposition 1. Let $A=(M, X, \delta)$ be an automaton. For any $f^{\alpha}, g^{\beta} \in \mathrm{END}_{X}(A)$, we define $f^{\alpha} g^{\beta}=(f g)^{\alpha \beta}$. Then the following statements hold: (1) $\operatorname{END}_{X}(A)$ is a monoid and $\operatorname{End}(A)$ is a submonoid of $\operatorname{END}_{X}(A)$.
(2) $\operatorname{Aut}_{X}(A)$ and $\operatorname{AUT}_{X}(A)$ are groups where the product of maps means the composition of maps.

Lemma 2. Let $A=(M, X, \delta)$ be an automaton. For any $f^{\alpha}, g^{\beta}, h^{\gamma} \in$ $\operatorname{END}_{X}(A)$, we define two relations and operations on $\operatorname{END}_{X}(A)$ as follows:

$$
\begin{gathered}
\left(f^{\alpha}, g^{\beta}\right) \in \sigma_{E} \Longleftrightarrow f=g \\
\left(f^{\alpha}, g^{\beta}\right) \in \tau_{E} \Longleftrightarrow \alpha=\beta \\
\left(f^{\alpha}, g^{\beta}\right) h^{\gamma}=\left(f^{\alpha} h^{\gamma}, g^{\beta} h^{\gamma}\right) \text { and } h^{\gamma}\left(f^{\alpha}, g^{\beta}\right)=\left(h^{\gamma} f^{\alpha}, h^{\gamma} g^{\beta}\right) .
\end{gathered}
$$

Then σ_{E} and τ_{E} are congruences relations on $\operatorname{END}_{X}(A)$.
Proof. We will show that τ_{E} is a congruence relation on $\operatorname{END}_{X}(A)$. It is easy to show that τ_{E} is an equivalence relation. To show τ_{E} is a congruence relation, let $\left(f^{\alpha}, g^{\alpha}\right) \in \tau_{E}$. For any $h^{\beta} \in \operatorname{END}_{X}(A)$, $\left(f^{\alpha}, g^{\alpha}\right) h^{\beta}=\left(f^{\alpha} h^{\beta}, g^{\alpha} h^{\beta}\right)=\left((f h)^{\alpha \beta},(g h)^{\alpha \beta}\right) \in \tau_{E}$ and $h^{\beta}\left(f^{\alpha}, g^{\alpha}\right)=$ $\left(h^{\beta} f^{\alpha}, h^{\beta} g^{\alpha}\right)=\left((h f)^{\beta \alpha},(h g)^{\beta \alpha}\right) \in \tau_{E}$. Similarly, it is easy to show that σ_{E} is a congruence relation.

Note. (1) $\operatorname{AUT}_{X}(A) \leq \operatorname{END}_{X}(A)$ and σ_{A} and σ_{E} are relations on $\operatorname{AUT}_{X}(A)$ and $\mathrm{END}_{X}(A)$ resp. (2) Similarly, for any $f^{\alpha}, g^{\beta} \in \operatorname{AUT}_{X}(A)$ we can define two congruence relations on $\operatorname{AUT}_{X}(A)$ as follows:

$$
\begin{aligned}
& \left(f^{\alpha}, g^{\beta}\right) \in \sigma_{A} \Longleftrightarrow f=g \\
& \left(f^{\alpha}, g^{\beta}\right) \in \tau_{A} \Longleftrightarrow \alpha=\beta
\end{aligned}
$$

Then (1) σ_{A} and τ_{A} are congruence relations on $\operatorname{AUT}_{X}(A)$.
(2) $\sigma_{A} \leq \sigma_{E}, \tau_{A} \leq \tau_{E}$ and $\operatorname{AUT}_{X}(A) / \tau_{A}=\operatorname{AUT}_{X}(A) / \operatorname{Aut}_{X}(A)$.

Definition. Let $A=(M, X, \delta)$ be an automaton. Let $S=X^{*}-\{e\}$ and $a \in S$. (1) $T_{a}: M \rightarrow M$ is called a right translation if $T_{a}(m)=m a$ for all $m \in M$. (2) We define a congruence $\mu_{M} \subset S \times S$ on S through $(a, b) \in \mu_{M} \Longleftrightarrow T_{a}=T_{b}$ for $a, b \in S$. (3) A (or M) is cyclic iff $M=m S$ for some $m \in M$. Also, m is called a generator. (4) A (or M) is abelian iff $m(s t)=m(t s)$ for all $m \in M$ and $s, t \in S$. (5) A (or M) is strongly connected iff every element of M is a generator. (6) A (or M) is perfect iff A is strongly connected and abelian (see Fleck [4]).

Proposition 3. Let $A=(M, X, \delta)$ be an automaton. Then the following conditions are equivalent:
(1) $\mu_{M}=O$ on X where O is the identity relation.
(2) For all $a, b \in X, T_{a}=T_{b} \Longrightarrow a=b$.
(3) $\sigma_{A}=O$ on $\operatorname{AUT}_{X}(A)$.
(4) $\sigma_{E}=O$ on $\operatorname{END}_{X}(A)$ if A is perfect.

Proof. (1) $\Longleftrightarrow(2)$: Trivial. (2) $\Longrightarrow(3)$: Let $\left(f^{\alpha}, f^{\beta}\right) \in \sigma_{A}$. Since $f^{\alpha}, f^{\beta} \in \operatorname{AUT}_{X}(A), f(m a)=f(m) \alpha(a)=f(m) \beta(a)$ for all $m \in M$ and $a \in X$. This means $T_{\alpha(a)}(f(m))=T_{\beta(a)}(f(m))$. Since f is bijective, $T_{\alpha(a)}(m)=T_{\beta(a)}(m)$ for all $m \in M$. So, we have $T_{\alpha(a)}=T_{\beta(a)}$. By
assumption, $\alpha(a)=\beta(a)$ for all $\alpha \in X$. Hence $\alpha=\beta$. i.e., $\sigma_{A}=O$. (3) $\Longrightarrow(2):$ We define a map $\alpha: X \rightarrow X$ given by $\alpha(a)=b, \alpha(b)=a$ and $\alpha(t)=t$ for all $t \in X-\{a, b\}$. Then α is bijective with $\alpha(\alpha(a))=a$ and $\alpha(\alpha(b))=b$. Moreover, $I^{\alpha} \in \operatorname{AUT}_{X}(A)$ (it is easy to show this, using $T_{a}=T_{b}$) and ($\left.I^{\alpha}, I^{i d}\right) \in \sigma_{A}$ where $i d: X \rightarrow X$ is the identity map. Since $\sigma_{A}=O, I^{\alpha}=I^{i d}$. Hence $\alpha=i d$. This means that $a=b . \quad(2) \Longrightarrow(4): \operatorname{Let}\left(f^{\alpha}, f^{\beta}\right) \in \sigma_{E}$. Since $f^{\alpha}, f^{\beta} \in \operatorname{END}_{X}(A)$, $f(m a)=f(m) \alpha(a)=f(m) \beta(a)$ for all $m \in M$ and $a \in X$. This implies $T_{\alpha(a)}(f(m))=T_{\beta(a)}(f(m))$. Since M is perfect, from Lemma 1 of Park $[1]$ and $T_{S}=\operatorname{End}_{S}(M)$ we have $T_{\alpha(a)}=T_{\beta(a)}$ where $T_{S}=\left\{T_{a}: a \in S\right\}$. By assumption, $\alpha(a)=\beta(a)$ for all $a \in X$. Hence $\alpha=\beta$. i.e., $\sigma_{E}=O$. $(4) \Longrightarrow(2):$ Clear from $\sigma_{A} \leq \sigma_{E}=O$.

Definition. The automaton A is called faithful if one of the equivalent statements of Proposition 3 is satisfied (see Puskas [2]).

Note. For a set X, let $\alpha: X \rightarrow X$ be a map and let $\alpha^{*}: X^{*} \rightarrow X^{*}$ be the map defined by $\alpha^{*}(e)=e$ (empty string) and $\alpha^{*}\left(a_{1} a_{2} a_{3} \cdots a_{n}\right)=$ $\alpha\left(a_{1}\right) \alpha\left(a_{2}\right) \alpha\left(a_{3}\right) \cdots \alpha\left(a_{n}\right)$ for all $a_{1} a_{2} a_{3} \cdots a_{n} \in X^{*}-\{e\}$. Then the following statements hold:
(1) α^{*} is bijective if α is bijective.
(2) α^{*} is a monoid homomorphism.

Proposition 4. Let $A=(M, X, \delta)$ be an automaton. Let $T_{X}=$ $\left\{T_{a}: a \in X\right\}$ and let $\left\langle T_{X}\right\rangle$ be the semigroup generated by T_{X}. Then $S / \mu_{M} \cong\left\langle T_{X}\right\rangle$ where \cong means semigroup-isomorphic.

Lemma 5. Let $A=(M, X, \delta)$ be an automaton.
(1) If $f^{\alpha} \in \operatorname{AUT}_{X}(A)$, then for any $a, b \in S$,

$$
(a, b) \in \mu_{M} \Longleftrightarrow\left(\alpha^{*}(a), \alpha^{*}(b)\right) \in \mu_{M}
$$

(2) If $f^{\alpha} \in \operatorname{END}_{X}(A)$ and A is perfect, then for any $a, b \in S$,

$$
(a, b) \in \mu_{M} \Longrightarrow\left(\alpha^{*}(a), \alpha^{*}(b)\right) \in \mu_{M}
$$

Proof. For (1),

$$
\begin{aligned}
(a, b) \in \mu_{M} & \Longleftrightarrow T_{a}=T_{b} \Longleftrightarrow T_{a}(m)=T_{b}(m) \text { for all } m \in M \\
& \Longleftrightarrow m a=m b \Longleftrightarrow f(m a)=f(m b) \\
& \Longleftrightarrow f(m) \alpha^{*}\left(a=f(m) \alpha^{*}(b)\right. \\
& \Longleftrightarrow T_{\alpha^{*}(a)}(f(m))=T_{\alpha^{*}(b)}(f(m)) \Longleftrightarrow T_{\alpha^{*}(a)}=T_{\alpha^{*}(b)} \\
& \Longleftrightarrow\left(\alpha^{*}(a), \alpha^{*}(b)\right) \in \mu_{M}
\end{aligned}
$$

For (2),

$$
\begin{aligned}
(a, b) \in \mu_{M} & \Longleftrightarrow T_{a}=T_{b} \Longleftrightarrow T_{a}(m)=T_{b}(m) \text { for all } m \in M \\
& \Longleftrightarrow m a=m b \Longrightarrow f(m a)=f(m b) \\
& \Longleftrightarrow f(m) \alpha^{*}(a)=f(m) \alpha^{*}(b) \\
& \Longleftrightarrow T_{\alpha^{*}(a)}(f(m))=T_{\alpha^{*}(b)}(f(m)) \Longleftrightarrow T_{\alpha^{*}(a)}=T_{\alpha^{*}(b)} \\
& \Longleftrightarrow\left(\alpha^{*}(a), \alpha^{*}(b)\right) \in \mu_{M} .
\end{aligned}
$$

Lemma 6. Let $A=(M, X, \delta)$ be a perfect automaton and let α, β : $X \rightarrow X$ be maps. Let Π_{α} and Π_{β} be maps defined by $\Pi_{\alpha}([a])=\left[\alpha^{*}(a)\right]$ and $\Pi_{\beta}([a])=\left[\beta^{*}(a)\right]$ for $a \in S$ respectively where []$=[] \mu_{M}$. Then for any $f^{\alpha}, g^{\beta} \in \operatorname{END}_{X}(A)$ the following statements hold:
(1) Π_{α} and Π_{β} are endomorphisms.
(2) $\Pi_{\beta \alpha}=\Pi_{\beta} \Pi_{\alpha}$.
(3) $\Pi_{\alpha}=\Pi_{\beta} \Longleftrightarrow \alpha=\beta$ if A is faithful
where the product of maps means the composition of maps.
Proof. We note that Π_{α} and Π_{β} are well-defined from lemma $5(2)$. For (1) and (2), it is easy to check them. For (3), for every $t \in X$, $\Pi_{\alpha}([t])=\Pi_{\beta}([t])$. This implies $\left[\alpha^{*}(t)\right]=\left[\beta^{*}(t)\right]$. Hence $\left(\alpha^{*}(t), \beta^{*}(t)\right) \in$ μ_{M}. Since $t \in X, \alpha^{*}(t)=\alpha(t)$ and $\beta^{*}(t)=\beta(t)$. Moreover, $(\alpha(t), \beta(t)) \in$ $\mu_{M} \Longleftrightarrow T_{\alpha(t)}=T_{\beta(t)}$. Since A is faithful, we can conclude that $T_{\alpha(t)}=$ $T_{\beta(t)} \Longrightarrow \alpha(t)=\beta(t)$. i.e., $\alpha=\beta$. The converse is trivial.

Corollary 6.1. Let $A=(M, X, \delta)$ be an automaton. Let α, β : $X \rightarrow X$ be bijective. Then for any $f^{\alpha}, g^{\beta} \in \operatorname{AUT}_{X}(A)$ the following statements hold:
(1) Π_{α} and Π_{β} are semigroup-automorphisms
(2) $\Pi_{\beta \alpha}=\Pi_{\beta} \Pi_{\alpha}$.
(3) $\Pi_{\alpha}=\Pi_{\beta} \Longleftrightarrow \alpha=\beta$ if A is faithful.

Recall. Let S and T be semigroups. Let $f: S \rightarrow T$ be a homomorphism. The Kernel of f is the set Ker f of all the elements of $S \times S$ which are carried by f onto the same element of T. That is, $\operatorname{Ker} f=\{(a, b) \in S \times S: f(a)=f(b)\}$.

Lemma 7. Let $A=(M, X, \delta)$ be a perfect automaton and let $\operatorname{End}\left(S / \mu_{M}\right)$ be the set of all endomorphisms (not X-endomorphisms) on S / μ_{M}. Let $h: \operatorname{END}_{X}(A) \rightarrow \operatorname{End}\left(S / \mu_{M}\right)$ be a map defined by $h\left(f^{\alpha}\right)=\Pi_{\alpha}$. Then
(1) h is a homomorphism.
(2) Ker $h=\tau_{E}$ if A is faithful.

Proof. (1) is trivial. For (2), $\operatorname{Ker} h=\left\{\left(f^{\alpha}, g^{\beta}\right): h\left(f^{\alpha}\right)=h\left(g^{\beta}\right)\right\}$. Now, from $h\left(f^{\alpha}\right)=h\left(g^{\beta}\right)$ we have $\Pi_{\alpha}=\Pi_{\beta}$. By Lemma 6(3), $\alpha=\beta$. Hence Ker $h=\tau_{E}$.

Lemma 8. Let $A=(M, X, \delta)$ be an automaton and let $\operatorname{Aut}\left(S / \mu_{M}\right)$ be the set of all automorphisms (not X-automorphisms) on S / μ_{M}. Let $h: \operatorname{AUT}_{X}(A) \rightarrow \operatorname{Aut}\left(S / \mu_{M}\right)$ be a map defined by $h\left(f^{\alpha}\right)=\Pi_{\alpha}$. Then
(1) h is a group-homomorphism.
(2) $\operatorname{Ker} h=\operatorname{Aut}_{X}(M)$ if A is faithful.

Proof. (1) is trivial. For (2), $\operatorname{Ker} h=\left\{f^{\alpha} \in \operatorname{AUT}_{X}(A): h\left(f^{\alpha}\right)=I\right.$ (identity map) $\}$. Now, from $\Pi_{\alpha}=I$ we have $\Pi_{\alpha}([a])=[a]$ for all $a \in X$. This implies $\left[\alpha^{*}(a)\right]=[\alpha(a)]=[a]$. So, we have $[\alpha(a)]=[a] \Longleftrightarrow$ $(\alpha(a), a) \in \mu_{M} \Longleftrightarrow T_{\alpha(a)}=T_{\alpha} \Longrightarrow \alpha(a)=a$ for all $a \in X$. Hence $\alpha=i d$ and $\operatorname{Ker} h=\operatorname{Aut}_{X}(M)$.

From Lemma 7 and Lemma 8 we can obtain the following proposition.
Proposition 9. Let $A=(M, X, \delta)$ be a faithful automaton. Then
(1) the factor group $\operatorname{AUT}_{X}(A) / \operatorname{Aut}_{X}(A)$ is isomorphic to a subgroup of $\operatorname{Aut}\left(S / \mu_{M}\right)$.
(2) $\operatorname{END}_{X}(A) / \tau_{E}$ is isomorphic to a submonoid of $\operatorname{End}\left(S / \mu_{M}\right)$ if A is perfect.

Definition. Let $A=(M, X, \delta)$ be an automaton. Let $\Omega_{M}=\{f$: $M \rightarrow M$ is a transformation map \}. i.e., the semigroup of all arbitrary maps of M into M. (1) We define the centralizer $C\left(T_{X}\right)$ and the normalizer $N\left(T_{X}\right)$ of T_{X} in Ω_{M} as follows:

$$
\begin{aligned}
C\left(T_{X}\right) & =\left\{f \in \Omega_{M}: T_{a} f=f T_{a} \text { for all } T_{a} \in T_{X}\right\} \\
N\left(T_{X}\right) & =\left\{f \in \Omega_{M}: T_{X} f=f T_{X}\right\} .
\end{aligned}
$$

(2) We define the permutation centralizer (briefly p-centralizer) $C_{p}\left(T_{X}\right)$ and the permutation normalizer (briefly p-normalizer) $N_{p}\left(T_{X}\right)$ of T_{X} as follows:

$$
C_{p}\left(T_{X}\right)=C\left(T_{X}\right) \cap S_{M} \text { and } N_{p}\left(T_{X}\right)=N\left(T_{X}\right) \cap S_{M}
$$

where S_{M} is the symmetric group over M (see Puscas [2]).
Note. $N\left(T_{X}\right)$ is a monoid and $C\left(T_{X}\right) \leq N\left(T_{X}\right)$ (a submonoid of $N\left(T_{X}\right)$).

Lemma 10. Let $A=(M, X, \delta)$ be a faithful automaton. Let $f \in$ $N_{p}\left(T_{X}\right)$. Then for any $T_{a} \in T_{X}$ there is a unique $T_{b} \in T_{X}$ such that $f T_{b}=T_{a} f\left(\right.$ or $\left.f T_{a}=T_{b} f\right)$.

Proof. Suppose there is another $T_{c} \in T_{X}$ such that $T_{a} f=f T_{c}$. Then $f T_{b}=f T_{c}$ and $f T_{b}(m)=f T_{c}(m)$ for all $m \in M$. This implies that $f(m b)=f(m c)$. Since f is $1-1, m b=m c$. This means that $T_{b}(m)=$ $T_{c}(m)$ for all $m \in M$. i.e., $T_{b}=T_{c}$. Hence $b=c$.

Lemma 11. Let $A=(M, X, \delta)$ be an automaton. Then
(1) $\operatorname{End}_{X}(M)=C\left(T_{X}\right)$ and Aut $X_{X}(M)=C_{p}\left(T_{X}\right)$.
(2) $C_{p}\left(T_{X}\right)$ is a normal subgroup of $N_{p}\left(T_{X}\right)$.

Proof. For the first part of (1), $\operatorname{End}_{X}(M) \subset C\left(T_{X}\right)$: For any $f \in$ $\operatorname{End}_{X}(M)$, it is enough to show that $f T_{a}=T_{a} f$ for all $T_{a} \in T_{X}$. To do this, choose any $m \in M$. Then $f T_{a}(m)=f(m a)=f(m) a=T_{a} f(m)$. Hence it holds. Similarly, the converse can be shown easily. The second part of (1) follows from the first part of (1). For (2), for any $f \in N_{p}\left(T_{X}\right)$, $g \in C_{p}\left(T_{X}\right)$ and $T_{a} \in T_{X}, T_{a} f g f^{-1}=f T_{b} g f^{-1}$ for some $T_{b} \in T_{X}=$ $f g T_{b} f^{-1}=f g f^{-1} T_{a}$.

Proposition 12. Let $A=(M, X, \delta)$ be a faithful automaton. Then the following statements hold:
(1) $\operatorname{AUT}_{X}(A)=N_{p}\left(T_{X}\right)$.
(2) $N_{p}\left(T_{X}\right) / C_{p}\left(T_{X}\right) \cong$ a subgroup of $\operatorname{Aut}\left(S / \mu_{M}\right)$.
(3) $\operatorname{Aut}_{X}(A)$ is a normal subgroup of $\operatorname{AUT}_{X}(A)$.

Proof. For (1), $\operatorname{AUT}_{X}(A) \subset N_{p}\left(T_{X}\right)$: To prove this, choose any $f \in$ $\operatorname{AUT}_{X}(A)$ and let f be an αX-automorphism. Then we have $f(m a)=$ $f(m) \alpha(a)$ for all $m \in M$ and $a \in X$. This means that $f\left[T_{a}(m)\right]=$ $T_{\alpha(a)}[f(m)]$. Also, this implies that $f T_{a}=T_{\alpha(a)} f$. Hence since α is bijective, $f T_{X}=T_{X} f . \operatorname{AUT}_{X}(A) \supset N_{p}\left(T_{X}\right)$: By Lemma 10, for any $f \in N_{p}\left(T_{X}\right)$ and $T_{a} \in T_{X} \exists!T_{b} \in T_{X}$ such that $f T_{a}=T_{b} f$. Let $\alpha: X \rightarrow X$ be a map defined by $\alpha(a)=b$ with $f T_{a}=T_{b} f$. Claim: α is bijective. (i) α is well-defined: To prove this, let $t=u$ for $t, u \in X$. By Lemma 10, for T_{t} and $T_{u} \exists!T_{c}, T_{d} \in T_{X}$ such that $f T_{t}=T_{c} f$ and $f T_{u}=T_{d} f$. This implies $T_{c} f=T_{d} f$. Hence $T_{c}=T_{d}$. So, we have $c=d$ since X is reduced. Thus, $\alpha(t)=c=d=\alpha(u)$. (ii) $\alpha=1-1$: Suppose $\alpha(t)=\alpha(u)$. Let $\alpha(t)=c$ with $f T_{t}=T_{c} f$ and let $\alpha(u)=d$ with $f T_{u}=T_{d} f$. Then from $c=d f T_{t}=f T_{u}$. Hence $T_{t}=T_{u}$. Thus, we have $t=u$. (iii) α is onto : For any $b \in X$, consider $T_{b} \in T_{X}$. By Lemma $10 \exists!T_{a} \in T_{X}$ such that $T_{b} f=f T_{a}$. Hence $\exists a \in X$ such that $\alpha(a)=b$ with $f T_{a}=T_{b} f$.

Now, we will show that f is an αX-homomorphism. For any $m \in M$ and $a \in X$,

$$
\begin{aligned}
f(m) \alpha(a) & =f(m) b \text { with } f T_{a}=T_{b} f \\
& =T_{b} f(m)=f T_{a}(m)=f(m a)
\end{aligned}
$$

(2) follows from Proposition 9 and Lemma 11. (3) follows from Lemma 11(2).

Notation. Let $A=(M, X, \delta)$ be an automaton and $\alpha: S \rightarrow S$ be a map. For $m, q \in M, H_{m \alpha q}=\{a \in S: m \alpha(a)=q\}$ and $H_{m q}=\{a \in S:$ $m a=q\}$.

The following lemma is a generalization of Lemma 18 of Park [1].
Lemma 13. Let $A=\left(M, X, \delta_{A}\right)$ and $B=\left(N, X, \delta_{B}\right)$ be automata. Let $m \in M$ be a fixed element and let $\alpha: S \rightarrow S$ be a map. If $f: M \rightarrow N$ is any map, then the following statements hold:
(1) If $f(m t)=f(m) \alpha(t)$ for all $t \in S$, then $H_{m q} \subset H_{f(m) \alpha f(q)}$ for all $q \in M$.
(2) If $H_{m q} \subset H_{f(m) \alpha f(q)}$ for some $q \in M$, then $f(m t)=f(m) \alpha(t)$ for all $t \in H_{m q}$.
(3) $f(m t)=f(m) \alpha(t)$ for all $t \in H_{m q} \Longleftrightarrow H_{m q} \subset H_{f(m) \alpha f(q)}$ for all $q \in M$.
(4) Assume M is strongly connected. Then $f(m t)=f(m) \alpha(t)$ for all $t \in S \Longleftrightarrow H_{m q} \subset H_{f(m) \alpha f(q)}$ for all $q \in M$.

Proof. For (1), for every $a \in H_{m q}$ we have $m a=q$. This implies $f(q)=f(m a)=f(m) \alpha(a)$. Hence $a \in H_{f(m) \alpha f(q)}$. For (2), for every $t \in H_{m q}$ we have $m t=q$ and also, since $t \in H_{f(m) \alpha f(q)}$, we have $f(m) \alpha(t)=f(q)$. This implies $f(m) \alpha(t)=f(m t)$. (3) is clear from (1) and (2). For (4), suppose M is strongly connected. Then we have $M=m S$. So, for every $t \in S$, we have $k=m t$ for some $k \in M$. This implies $t \in H_{m k} \subset H_{f(m) \alpha f(k)}$. Thus, $f(m) \alpha(t)=f(k)$. Hence $f(m t)=f(k)=f(m) \alpha(t)$. The converse is clear from (1).

The following proposition is a generalization of Proposition 19 of Park [1].

Proposition 14. Let $A=\left(M, X, \delta_{A}\right)$ and $B=\left(N, X, \delta_{B}\right)$ be automata. Let $f: M \rightarrow N$ and $\alpha: S \rightarrow S$ be maps. Then the following statements are equivalent:
(1) $f^{\alpha}: A \rightarrow B$ is an αS-homomorphism.
(2) $H_{m q} \subset H_{f(m) \alpha f(q)}$ for any $m, q \in M$.
(3) $f(q s)=f(q) \alpha(s)$ for some $q \in M$ and all $s \in S$ if M is strongly connected and α is a semigroup-homomorphism.

Proof. (1) $\Longrightarrow(2):$ For all $m \in M$ and $t \in S, f(m t)=f(m) \alpha(t)$. Hence it holds by Lemma $13(1) .(2) \Longrightarrow(1)$: To show $f(m t)=f(m) \alpha(t)$ for all $m \in M$ and $t \in S$, we recall $S=\bigcup_{q \in M} H_{m q}$ (see Proposition 11 of Park [1]). Now, for any $t \in S$, we have $t \in H_{m q}$ for some $q \in M$. By the assumption, $t \in H_{m q} \subset H_{f(m) \alpha f(q)}$. Hence it holds from (2) of Lemma 13. (2) $\Longrightarrow(3)$: Since M is strongly connected, we have $M=q S$ for some $q \in M$. This means that for any $s \in S$ there is an $k \in M$ such that $k=q s$. This implies $s \in H_{q k} \subset H_{f(q) \alpha f(k)}$ by the assumption.

Hence $f(q) \alpha(s)=f(k)=f(q s)$. (3) $\Longrightarrow(1)$: We have $M=q S$ from the strong connectedness of M. This implies that for any $m \in M$ there is an $a \in S$ such that $m=q a$. So, we have $m s=(q a) s$. Hence for any $m \in M$ and $s \in S$ we have $f(m s)=f((q a) s)=f(q(a s))=f(q) \alpha(a s)=$ $f(q) \alpha(a) \alpha(s)=[f(q) \alpha(a)] \alpha(s)=f(q a) \alpha(s)=f(m) \alpha(s)$.

Corollary 14.1. Let $A=(M, X, \delta)$ be an automaton. Then f^{α} : $M \rightarrow M$ is an αS-automorphism $\Longleftrightarrow f$ and α are permutations on M and S respectively and $H_{m q} \subset H_{f(m) \alpha f(q)}$ for any $m, q \in M$.

The following lemma is a generalization of Lemma 1 of Park [1].
Lemma 15. Let $A=\left(M, X, \delta_{A}\right)$ and $B=\left(N, X, \delta_{B}\right)$ be automata. Let $\mathrm{HOM}_{S}(A, B)$ be the set of all αS-homomorphisms of A into B for all α 's where $\alpha: S \rightarrow S$ is a map. If A is strongly connected, then for every $f^{\alpha}, g^{\beta} \in \operatorname{HOM}_{S}(A, B), f^{\alpha}=g^{\beta} \Longleftrightarrow \alpha=\beta$ and $f(p)=g(p)$ for some $p \in M$.

Proof. To show $f(m)=g(m)$ for all $m \in M$, from the strong connectedness of A we have $M=q S$ for all $q \in M$. This implies that $M=p S$. So, for every $m \in M, m=p t$ for some $t \in S$. Hence $f(m)=f(p t)=f(p) \alpha(t)=g(p) \beta(t)=g(p t)=g(m)$. The converse is trivial.

Note. If $f^{\alpha} \in \operatorname{AUT}_{S}(M)$, then $\left(f^{n}\right)^{\alpha^{n}} \in \operatorname{AUT}_{S}(M)$ for any nonnegative integer n where $f^{n}=f f f \cdots f(n$ times $)$ and the product means the composition of f 's.

Definition. Let $A=(M, X, \delta)$ be an automaton. Then we say that a mapping $\alpha: S \rightarrow S$ is an M-homomorphism if $m \alpha(a)=m a$ for all $m \in M$ and $a \in S$. We recall that f is a regular permutation on a set M if f is a permutation on M and for every power, say f^{n}, of f, it is the case that $f^{n}(p)=p$ for some $p \in M$ implies $f^{n}=1$.

Proposition 16. Let $A=(M, X, \delta)$ be strongly connected and let $f^{\alpha} \in \operatorname{AUT}_{S}(M)$. Then f is a regular permutation on M if $\alpha: S \rightarrow S$ is an M-homomorphism.

Proof. Suppose that for any $n \in N, f^{n}(x)=x$ for some $x \in M$.
Claim: $f^{n}=I$ (identity). (Proof). Since $f^{\alpha} \in \operatorname{AUT}_{S}(M),\left(f^{n}\right)^{\alpha^{n}} \in$ $\operatorname{AUT}_{S}(M)$. So, this implies $\left(f^{n}\right)^{\alpha^{n}} \in \operatorname{END}_{S}(M)$. Also, $I^{\alpha n} \in \operatorname{END}_{S}(M)$.

We will show this. For all $m \in M$ and $a \in S, I(m a)=m a=m \alpha(a)=$ $I(m) \alpha(a)$. This implies $I^{\alpha} \in \operatorname{AUT}_{S}(M)$ and $\left(I^{n}\right)^{\alpha^{n}} \in \operatorname{AUT}_{S}(M)$. Since $I^{n}=I$, we have $I^{\alpha^{n}} \in \operatorname{AUT}_{S}(M)$. Hence $I^{\alpha^{n}} \in \operatorname{END}_{S}(M)$. From Lemma 15 , we can conclude $f^{n}=I$.

References

1. C. H. Park, Algebraic properties associated with input semigroup S of an automaton, Bull. Korean Math. Soc. 27 (1990), 69-83.
2. __, On right congruences associated with the input semigroup S of $A u-$ tomata, Semigroup Forum, to appear.
3. Cs. Puskas, On the generalized automorphism groups of automata without outputs, Papers on automata theory vol. 1, The Department of Mathematics and Computer Science, Karl Marx University of Economics, Budapest (1980).
4. A. C. Fleck, Isomorphism groups of automata, J. ACM 9 (1962), 469-476.
5. R. H. Oehmke, On right congruences of semigroups, Semigroup Forum 16 (1978), 393-401.

Department of Mathematics
The SungHwa University
Cheon An, Korea

