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SOME REMARKS ON THE
AUTOMATA-HOMOMORPHISMS

CHIN-HONG PARK

DEFINITION. (1) An automaton, A = (M,X,¥), is a triple where
M is a nonempty set (the set of states), X is a nonempty set (the set
of inputs), § is a function (called the state transition function) mapping
M x X into M. Also, we shall assume the useful property that 6(m, st) =
8(6(m, s),t) for all s, € X and m € M.

NOTE. (i) An automaton A means a triple (M, X, §) and M does not
mean an automaton. But the attribute “automaton” will be sometimes
used for M. (ii) Let X™* be the free monoid generated by X. Then &* :
M x X* — M is the map defined as follows: For all m € M and a € X*,
6*(m,a) = m if a = e (empty string) and §*(m,a) = §(6*(m,b),t) if
a=>0bandt € X.

NOTATION. For convenience we will denote 6(m,t) as mt if t € X
and 6*(m, a) as ma if a € X*, i.e., §(m,t) = mt and §*(m,a) = ma.

NOTE. (i) 6*(m,t) =6(m,t)for allm € M and t € X. (ii) §*(m, ad)
= 6*(6*(m,a),bd) for all m € M and a,b € X*, i.e., m(ab) = (ma)b.

(2) Let A=(M,X,64) and B=(N,Y, ép) be automata. An automata-
homomorphism (or a generalized XY-homomorphism) of A into B is
a pair (f,a) of mappings f : M — N and a : X — Y such that
f(ma) = f(m)a(a) forall m € M and a € X.

NOTATION. We denote (f,a) as ¢, i.e., f* = (f,a).

(3) Let A = (M,X,64) and B = (N, X,6p) be automata. Let
S=Xt=X*—{e}. Let f: M - N,a: X - Xanda*:5— S
(or X* — X*) be maps. Then f* : A — B is an aX-homomorphism
(or automata-homomorphism or a generalized X-homomorphism with re-
spect to a) if f(ma) = f(m)a(a) for all m € M and ¢ € X. Also,

£ is an a*S-homomorphism (resp. o*X*-homomorphism) if f(ma) =

Received January 20, 1993.



800 Chin-Hong Park

f(m)a*(a) for all m € M and a € S (resp. f(ma) = f(m)a*(a) for
all m € M and a € X*). f%is an aX-endomorphism if A = B and
it is an aX-homomorphism. f¢ is an aX-isomorphism if it is an aX-
homomorphism and f,a are bijective. f® is an aX-automorphism if
it is an aX-isomorphism and A = B. Similarly, we can define a*S-
and a* X*-endomorphismS, a*S-and a* X*-isomorphisms and «*S-and
a* X *-automorphismS. f : M — N (or A — B) is an X-homomorphism
(resp. S-homomorphism, X*-homomorphism) if f(ma) = f(m)a for all
m € M and a € X (resp. forallm € M and a € S, forall m e M
and a € X*). Let f* and ¢® be an aX-homomorphism and an SX-
homomorphism respectively. Then we define f* = ¢ by letting f = ¢
and o =

NOTATION. (i) We denote fi¢ as f whereid: X — X (or S — S or
X* — X*) is the identity map.

(ii) ENDx(4) = ENDx(M) = {f*|f* is an aX-endomorphism

with amap a: X — X}.

AUTx(A) = AUTx(M) = {f*]| f® is an aX-automorphism with
amapa:X — X}
Endx(A) =Endx(M) ={f|f: M — M is an X-endomorphism}.
Autx(A) = Autx(M) = {f|f: M — M is an X-automorphism}.

PROPOSITION 1. Let A = (M, X,é) be an automaton. For any
f%,¢% € ENDx(A), we define f*gP = (f¢)*P. Then the following state-
ments hold: (1) ENDx(A) is a monoid and Endx(A) is a submonoid of
ENDx(A4).

(2) Autx(A) and AUT x(A) are groups where the product of maps
means the composition of maps.

LEMMA 2. Let A = (M, X,6) be an automaton. For any f%,¢° hY €
ENDx(A), we define two relations and operations on END x(A) as fol-
lows:

(fe,9)eop = f=g
(fg°)erge>a=4
(f*,gP)hY = (R, ¢%h7) and R (f*,¢°) = (R f*,h7¢").
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Then o and Tg are congruences relations on END x(A).

Proof. We will show that 7g is a congruence relation on END x(A).
It is easy to show that 7g is an equivalence relation. To show 7g is
a congruence relation, let (f*,g%) € 7g. For any h* € ENDx(A),
(fo 9P = (fR?,g°R?) = ((fh)*?,(gh)*?) € 7& and RP(f*,¢%) =
(RPfo, hBg*) = ((hf)P=,(hg)?*) € Tg. Similarly, it is easy to show that
oE is a congruence relation.

NoTE. (1) AUTx(A) < ENDx(A) and 04 and o are relations on
AUTx(A) and END x(A) resp. (2) Similarly, for any ¢, g € AUTx(A)
we can define two congruence relations on AUT x(4) as follows:

(f*9°)€oa<=f=g
(f*.9°) e Ta<=a=4.

Then (1) 04 and 74 are congruence relations on AUT x(A4).
(2) g4 <og, 7A < 7g and AUTx(A)/TA = AUTx(A)/Autx(A).

DEFINITION. Let A = (M, X, ) be an automaton. Let S = X™* — {e}
anda€ S. (1) T, : M — M is called a right translation if T,(m) = ma
for all m € M. (2) We define a congruence pupy C S x S on S through
(a,b) € ppy <= T, =Ty fora,be S. (3) A (or M) is cyclic iff M = mS
for some m € M. Also, m is called a generator. (4) A (or M) is abelian
iff m(st) = m(ts) for all m € M and s,t € S. (5) A (or M) is sitrongly
connected iff every element of M is a generator. (6) A (or M) is perfect
iff A is strongly connected and abelian {see Fleck [4]).

ProPOSITION 3. Let A = (M,X,6) be an automaton. Then the
following conditions are equivalent:

(1) pp = O on X where O is the identity relation.

(2) Foralla,be X, T, =T, = a=b.

(3) 04 =0 on AUTx(A).

(4) o = O on ENDx(A) if A is perfect.

Proof. (1) <= (2): Trivial. (2) = (3): Let (f*,f?#) € 54. Since
%, % € AUTx(4), f(ma) = f(m)a(a) = f(m)B(a) for all m € M and
a € X. This means Ty (,)(f(m)) = Tp(a)(f(m)). Since f is bijective,
To(a)(m) = Tga)(m) for all m € M. So, we have To(o) = Tpa)- By
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assumption, a(a) = f(a) for all @ € X. Hence a = 8. ie.,, 04 = 0. (3)
= (2): We define a map a : X — X given by a(a) = b, a(b) = a and
at) =t for all t € X — {a,b}. Then « is bijective with a(a(a)) = a
and a(a(b)) = b. Moreover, I* € AUTx(A) (it is easy to show this,
using T, = Tj) and (I, I'?) € 04 where id : X — X is the identity
map. Since 4 = O, I* = I'*, Hence a = id. This means that
a =5 (2) = (4): Let (f, f#) € og. Since f, f# € ENDx(A),
f(ma) = f(m)a(a) = f(m)B(a) for all m € M and a € X. This implies
To(a)(f(m)) = Tp(a)(f(m)). Since M is perfect, from Lemma 1 of Park
[1} and Ts = Ends(M) we have Ty (o) = Tg(s) where Ts = {T, : a € S}.
By assumption, a(a) = B(a) for all a € X. Hence a = . ie, o5 = O.
(4) => (2): Clear from o4 <o = 0.

DEFINITION. The automaton A is called fasthful if one of the equiv-
alent statements of Proposition 3 is satisfied (see Puskas [2]).

NOTE. For aset X,let a: X — X be a map and let o* : X* — X*
be the map defined by a*(e) = e (empty string) and a*(ayaq2a3 - - a,) =
afaq)a(az)al(as) - - ala,) for all ajazas---a, € X* — {e}. Then the
following statements hold:

(1) a* is bijective if a is bijective.

(2) o* is a monoid homomorphism.

PROPOSITION 4. Let A = (M, X,8) be an automaton. Let Tx =
{T. : a € X} and let (T'x) be the semigroup generated by Tx. Then
S/um = (Tx) where 2 means semigroup-isomorphic.

LEMMA 5. Let A = (M, X, 6) be an automaton.
(1) If f* € AUTx(A), then for any a,b € S,

(a,b) € pm < (a™(a),a"(b)) € pum
(2) If f* € ENDx(A) and A is perfect, then for any a,b € S,

(a,b) € ppr = (a*(a), (b)) € pu-
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Proof. For (1),

(a,0) € py <= Ty =Ty <= To(m) = Ty(m) forall me M
<= ma = mb < f(ma) = f(mb)
= f(m)a™(a = f(m)a™(b)
= Tor (o) (f(m)) = Tor 1) (f(m)) <= Tar(a) = Tor )
<= (a*(a),a™ (b)) € pum.

For (2),

(a,0) e pyy =T, =Ty <> T,(m) = Ty(m) for al me M
<> ma = mb=> f(ma) = f(mb)
= fm)a*(a) = f(m)a*(8
= Tor (o) (F(M)) = Tor (1) (f(m)) <= Tom(ay = Tor )
> (a*(a),a*(b)) € pm-

LEMMA 6. Let A = (M, X,6) be a perfect automaton and let a, 3 :
X — X be maps. Let II, and Ilg be maps defined by I1,([a]) = [o*(a)]
and I1g([a]) = [B*(a)] for a € S respectively where [ | = [ ]un. Then for
any f®,g° € ENDx(A) the following statements hold:

(1) I, and Il are endomorphisms.

(2) Hga = IIpI1,.

(3) Oy =g <> a = B if A is faithful
where the product of maps means the composition of maps.

Proof. We note that II, and IIg are well-defined from lemma 5(2).
For (1) and (2), it is easy to check them. For (3), for every t € X,
I, ([t]) = I g([t]). This implies [a*(t)] = [3*(#)]. Hence (a*(t), 3*(t)) €
pm. Sincet € X, a*(t) = a(t) and §*(t) =5(t). Moreover, (a(t), 5(t)) €
pm <> To() = Tg(ey. Since A is faithful, we can conclude that Ty =
Tg1y = oft) = B(t). i.e., o = B. The converse is trivial.

COROLLARY 6.1. Let A = (M, X,6) be an automaton. Let a,f :
X — X be bijective. Then for any f*,g° € AUTx(A) the following
statements hold:
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(1) Iy and Ilg are semigroup-automorphisms
(2) Ngo = IpIl,.
(3) Iq =g <= a = B if A is faithful.

RECALL. Let S and T be semigroups. Let f : § — T be a ho-
momorphism. The Kernel of f is the set Ker f of all the elements of
S x S which are carried by f onto the same element of T. That is,

Ker f = {(a,b) € S x S : f(a) = f(b)}.

LEMMA 7. Let A = (M,X,8) be a perfect automaton and let
End(S/up) be the set of all endomorphisms (not X -endomorphisms)
on S/unm. Let h : ENDx(A) — End(S/pp) be a map defined by
h(f*)=1,. Then

(1) h is a homomorphism.

(2) Kerh = 1 if A is faithful.

Proof. (1) is trivial. For (2), Kerh = {(f*,¢?) : A(f*) = h(¢®)}.
Now, from h(f*) = h(g”) we have II, = II5. By Lemma 6(3), a = 8.
Hence Ker h = 7%.

LEMMA 8. Let A = (M, X,6) be an automaton and let Aut(S/punm)
be the set of all automorphisms (not X -automorphisms) on S/up. Let
h: AUT x(A) — Aut(S/pup) be a map defined by h(f*) = I,. Then

(1) h is a group-homomorphism.

(2) Ker h = Autx(M) if A is faithful.

Proof. (1) is trivial. For (2), Kerh = {f* € AUTx(4) : h(f*) =1
(identity map)}. Now, from I, = I we have II,([a]) = [a] for all a € X.
This implies [a*(a)] = [a(a)] = [a]. So, we have [a(a)] = [a] <=
(afa),a) € upyy <= Toa) = To => afa) = a for all @ € X. Hence
a = id and Ker h = Autx(M).

From Lemma 7 and Lemma 8 we can obtain the following proposition.

PROPOSITION 9. Let A = (M, X, é) be a faithful automaton. Then

(1) the factor group AUT x(A)/Autx(A) is isomorphic to a subgroup
of Aut(S/pn).

(2) ENDx(A)/7g is isomorphic to a submonoid of End(S/up) if A
is perfect.
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DEFINITION. Let A = (M, X,6) be an automaton. Let Qp = {f :
M — M is a transformation map}. i.e., the semigroup of all arbitrary
maps of M into M. (1) We define the centralizer C(Tx) and the nor-
malizer N(Tx) of Tx in Qs as follows:

C(Tx)={f€Qum:Tof = fT, for all T, € Tx}
N(Tx)={f € Qu:Txf = fTx}.

(2) We define the permutation centralizer (briefly p — centralizer)
Cp(Tx) and the permutation normalizer (briefly p-normalizer) N,(Tx)
of T'x as follows:

Cp(Tx) = C(Tx) N Sy and Np(Tx) = N(Tx) NSy

where Sy is the symmetric group over M (see Puscas [2]).

NoTE. N(Tx) is a monoid and C(Tx) < N(Tx) (a submonoid of
N(Tx)).

LEMMA 10. Let A = (M, X,6) be a faithful automaton. Let f €
Ny(Tx). Then for any T, € Tx there is a unique Ty € Tx such that
fTy =Tof (or fT, = T f).

Proof. Suppose there is another T, € Tx such that T, f = fT.. Then
fTy = fT. and fTp(m) = fT.(m) for all m € M. This implies that
f(mb) = f(mec). Since f is 1 — 1, mb = mc. This means that Tp(m) =
T.(m) for all m € M. ie.,, Ty =T.. Hence b = c.

LEMMA 11. Let A = (M, X,6) be an automaton. Then
(1) Endx(M) = C(Tx) and Autx (M) = Cp(Tx).
(2) Cp(T'x) is a normal subgroup of N,(Tx).

Proof. For the first part of (1), Endx(M) C C(Tx): For any f €
Endx(M), it is enough to show that fT, = T, f for all T, € Tx. To do
this, choose any m € M. Then fT,(m) = f(ma) = f(m)a = Ty f(m).
Hence it holds. Similarly, the converse can be shown easily. The second
part of (1) follows from the first part of (1). For (2), for any f € Np(Tx),
g € Cp(Tx) and T, € Tx, Tofgf ! = fTygf ! for some T € Tx =
fahof ' = fgf ' T..
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PROPOSITION 12. Let A = (M, X, 6) be a faithful automaton. Then
the following statements hold:

(1) AUT x(A4) = N,(Tx).

(2) Np(Tx)/Cp(Tx) = a subgroup of Aut(S/pnm).

(3) Autx(A) is a normal subgroup of AUT x(A).

Proof. For (1), AUTx(A) C N,(Tx): To prove this, choose any f €
AUTx(A) and let f be an aX-automorphism. Then we have f(ma) =
f(m)a(a) for all m € M and a € X. This means that f[T,(m)] =
To)f(m)]. Also, this implies that fT, = T,,)f. Hence since a is
bijective, fTx = Txf. AUTx(A) D N,(Tx): By Lemma 10, for any
f € Np(Tx) and T, € Tx I T, € Tx such that fT, = T,f. Let
a : X — X be a map defined by a(a) = b with fT, = T3f. Claim: «
is bijective. (i) « is well-defined: To prove this, let t = u for t,u € X.
By Lemma 10, for 7; and T,3'T,,T; € Tx such that fT, = T.f and
fT, = Tgf. This implies T.f = T3f. Hence T, = T;. So, we have
¢ = d since X is reduced. Thus, a(t) =c=d = a(u). (i) a=1-1:
Suppose a(t) = a(u). Let a(t) = ¢ with fT; = T,.f and let a(u) = d
with fT, = T;f. Then from ¢ = d fTy = fT,. Hence T; = T,,. Thus,
we have t = u. (iii) a is onto : For any b € X, consider T} € Tx. By
Lemma 10 3! T, € Tx such that T, f = fT,. Hence 3 a € X such that
a(a) = bwith fT, =T f.

Now, we will show that f is an aX-homomorphism. For any m € M
and a € X,

F(m)a(a) = fm)b with T, = Ty
=Ty f(m) = fTa(m) = f(ma).
(2) follows from Proposition 9 and Lemma 11. (3) follows from Lemma
11(2).

NOTATION. Let A = (M, X, 6) be an automaton and @ : S — S be a
map. For m,q € M, Hpog={a€ S:ma(a) =g} and Hpy={a € S:
ma = q}.

The following lemma is a generalization of Lemma 18 of Park [1].

LEMMA 13. Let A = (M, X,64) and B = (N, X,6p) be automata.
Let m € M be a fixed element andlet« : S — S beamap. If f: M — N
is any map, then the following statements hold:
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(1) If f(mt) = f(m)a(t) for all t € S, then Hmg C H(m)as(q) for all
qge M.

(2) H Hpg C Hf(m)af(q) for some g € M, then f(mt) = f(m)a(t) for
allt € Hp,g.

(3) f(mt) = f(m)a(t) for all t € Hpg <= Hmg C Hy(m)ay(q) for all
geEM.

(4) Assume M is strongly connected. Then f(mt) = f(m)a(t) for all
te S qu C Hf(m)o:f(q) forallg e M.

Proof. For (1), for every a € H,,q; we have ma = ¢. This implies
f(g) = f(ma) = f(m)a(a). Hence a € Hf(m)af(q)- For (2), for every
t € Hpg we have mt = ¢ and also, since t € Hyf(m)af(q), We have
f(m)a(t) = f(g). This implies f(m)a(t) = f(mt). (3) is clear from
(1) and (2). For (4), suppose M is strongly connected. Then we have
M = mS. So, for every t € S, we have k = mt for some k € M.
This implies ¢ € Hmk C Hf(m)yask)- Thus, f(m)a(t) = f(k). Hence
f(mt) = f(k) = f(m)a(t). The converse is clear from (1).

The following proposition is a generalization of Proposition 19 of Park
[1].

PROPOSITION 14. Let A = (M, X,64) and B = (N, X,6B) be au-
tomata. Let f : M — N and a : S — S be maps. Then the following
statements are equivalent:

(1) f®: A— B is an aS-homomorphism.

(2) qu C Hf(m)af(q) for any m,q € M.

(3) f(gs) = f(q)a(s) for some g € M and all s € S if M is strongly
connected and « is a semigroup-homomorphism.

Proof. (1) = (2): Forall m € M and t € S, f(mt) = f(m)a(t).
Hence it holds by Lemma 13(1). (2) => (1): To show f(mt) = f(m)a(t)
forallme M andt € S, we recall S = U Hp4 (see Proposition 11 of

qEM
Park [1]). Now, for any ¢ € S, we have t € H,, for some ¢ € M. By the
assumption, t € Hpng C Hp(m)af(g)- Hence it holds from (2) of Lemma
13. (2) = (3): Since M is strongly connected, we have M = ¢S for
some ¢ € M. This means that for any s € S there is an k£ € M such
that £ = gs. This implies s € Hgx C Hyg)asx) by the assumption.
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Hence f(g)a(s) = f(k) = f(gs). (3) => (1): We have M = ¢S from
the strong connectedness of M. This implies that for any m € M there
is an a € S such that m = ga. So, we have ms = (ga)s. Hence for any
m € M and s € S we have f(ms) = f((¢ga)s) = f(g(as)) = f(g)a(as) =
f(g)aa)a(s) = [f(g)ala)la(s) = f(qa)a(s) = f(m)a(s).

COROLLARY 14.1. Let A = (M, X,6) be an automaton. Then f¢ :
M — M is an aS-automorphism <= f and a are permutations on M
and S respectively and Hmg C Hg(m)yaf(q) for any m,q € M.

The following lemma is a generalization of Lemma 1 of Park [1].

LEMMA 15. Let A = (M,X,64) and B = (N, X,ép) be automata.
Let HOM (A, B) be the set of all aS-homomorphisms of A into B for
all a’s where o : S — S is a map. If A is strongly connected, then for
every f,g# € HOMs(A,B), f* = ¢® < a = § and f(p) = g(p) for
some p € M.

Proof. To show f(m) = g(m) for all m € M, from the strong con-
nectedness of A we have M = ¢S for all ¢ € M. This implies that
M = pS. So, for every m € M, m = pt for some t € S. Hence
f(m) = f(pt) = f(p)a(t) = g(p)B(t) = g(pt) = g(m). The converse is
trivial.

NOTE. If f* € AUTs(M), then (f*)*" € AUT (M) for any nonneg-
ative integer n where f* = fff--- f (n times) and the product means
the composition of f’s.

DEFINITION. Let A = (M, X,6) be an automaton. Then we say that
a mapping a : S — S is an M-homomorphism if ma(a) = ma for all
m € M and a € S. We recall that f is a regular permutation on a set M
if f is a permutation on M and for every power, say f", of f, it is the
case that f(p) = p for some p € M implies f* = 1.

PROPOSITION 16. Let A = (M, X, 6) be strongly connected and let
f* € AUTs(M). Then f is a regular permutation on M ifa : S — S is
an M-homomorphism.

Proof. Suppose that for any n € N, f*(z) = z for some z € M.
Claim: f* = I (identity). (Proof). Since f® € AUTs(M), (f*)*" €
AUTg(M). So, this implies (f*)*” € ENDg(M). Also, I°* €ENDg(M).
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We will show this. For all m € M and a € S, I(ma) = ma = ma(a) =
I(m)a(a). This implies I* € AUTs(M) and (I")*" € AUTs(M). Since
I = I, we have I®" € AUTg(M). Hence I*" € ENDg(M). From
Lemma 15, we can conclude f™ = I.
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