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SOME REMARKS ON THE

AUTOMATA-HOMOMORPHISMS

CHIN-HONG PARK

DEFINITION. (1) An automaton, A = (M,X,c), is a triple where
M is a nonempty set (the set of states), X is a nonempty set (the set
of inputs), C is a function (called the state transition function) mapping
M x X into M. Also, we shall assume the useful property that c(m, st) =
c(c(m,s),t) for all s,t E X and m E M.

NOTE. (i) An automaton A means a triple (M, X, 8) and M does not
mean an automaton. But the attribute "automaton" will be sometimes
used for M. (ii) Let X* be the free monoid generated by X. Then c* :
M x X* --t 1\,f is the map defined as follows: For all m E M and a E X*,
C*(m,a) = m if a = e (empty string) and c*(m,a) = c(c*(m,b),t) if
a = bt and t EX.

NOTATION. For convenience we will denote 8(m,t) as mt ift E X
and c*(m,a) as ma if a E X*, i.e., D(m,t) = mt and c*(m,a) = mao

NOTE. (i) c*(m,t) = c(m,t) for all m E M and t EX. (ii) c*(m,ab)
= c*(c*(m, a), b) for all m E M and a, bE X*, i.e., m(ab) = (ma)b.

(2) Let A=(M,X,DA) and B=(N, Y, DB) be automata. An automata­
homomorphism (or a generalized XY-homomorphism) of A into B is
a pair (f, 0'.) of mappings f : M --t N and 0'. : X --t Y such that
f(ma) = f(m)a(a) for all m E M and a E X.

NOTATION. We denote (f,a) as rx, i.e., jOt = (f,a).
(3) Let A = (M,X,DA) and B = (N,X,CB) be automata. Let

S = X+ = X* - {e}. Let f : M --t N, 0'. : X --t X and 0'.* : S --t S
(or X* --t X*) be maps. Then r" : A --t B is an aX-homomorphism
(or automata-homomorphism or a generalized X -homomorphism with re­
spect to 0'.) if f(ma) = f(m)o:(a) for all m E M and a E X. Also,
r"* is an 0'.* S-homomorphism (resp. 0'.* X*-homomorphism) if f(ma) =
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f(m)a*(a) for all m E M and a E S (resp. f(ma) = f(m)a*(a) for
all m E M and a E X*). r:r is an aX-endomorphism if A = B and
it is an aX-homomorphism. r:r is an aX-isomorphism if it is an aX­
homomorphism and f, a are bijective. fOt is an aX-automorphism if
it is an aX-isomorphism and A = B. Similarly, we can define a*S­
and a*X* -endomorphismS, a*S-and a*X* -isomorphisms and a* S-and
a*X*-automorphismS. f : M ---4 N (or A ---4 B) is an X-homomorphism
(resp. S-homomorphism, X*-homomorphism) if f(ma) = f(m)a for all
m E M and a E X (resp. for all m E M and a E S, for all m E M
and a E X*). Let fOt and g13 be an aX-homomorphism and an {3X­
homomorphism respectively. Then we define r:r = gfJ by letting f = 9
anda={3

NOTATION. (i) We denote fid as f where id : X ---4 X (or S ---4 S or
X* -t X*) is the identity map.

(ii) ENDx (A) = ENDx (M) = {fOt Ir:r is an aX-endomorphism
with a map a : X ---4 X}.

AUTx(A) = AUTx(M) = {fOt Ir:r is an aX-automorphism with

a map a: X ---4 X}.

Endx(A) = Endx(M) = {f If: M ---4 M is an X-endomorphism}.

Autx(A) = Autx(M) = {f If: M ---4 M is an X-automorphism}.

PROPOSITION 1. Let A = (M, X, 8) be an automaton. For any
jOt,gfJ E ENDx(A), we define fOtgP = (fg)Ot13. Then the following state­
ments hold: (1) ENDx(A) is a monoid and Endx(A) is a submonoid of
ENDx(A).

(2) Autx(A) and AUTx(A) are groups where the product of maps
means the composition of maps.

LEMMA 2. Let A = (M,X,D) be an automaton. For any fOt,gfJ, h'"Y E
ENDx(A), we define two relations and operations on ENDx(A) as fol­
lows:

(fOt, g13) E (FE {=} f = 9

(fOt, gfJ) E TE {=} a = f3
(fOt, g13)h '"Y = (fa h-r, g13 h'"Y) and h'"Y(fa, g/3) = (h '"Y fOt, h'"Y gfJ).
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Then (jE and TE are congruences relations on ENDX (A).

Proof. We will show that TE is a congruence relation on ENDx(A).
It is easy to show that TE is an equivalence relation. To show TE is
a congruence relation, let (JO',ga) E TE. For any hfJ E ENDx(A),
(fa,ga)h fJ = (pllhfJ,gah fJ ) = ((fh)afJ,(gh)afJ) E TE and hfJ(fa,ga) =
(h 13 fa, hfJga ) = ((hJ)fJa, (hg)I3O!) E TE. Similarly, it is easy to show that
(jE is a congruence relation.

NOTE. (1) AUTx(A) :::; ENDx(A) and (jA and (jE are relations on
AUTx(A) and ENDx(A) resp. (2) Similarly, for any f a ,g(3 E AUTx(A)
we can define two congruence relations on AUTX (A) as follows:

(F\ gl3) E (jA {::=} f = 9

(fa, gl3) ETA {::=} a = (3.

Then (1) (jA and T A are congruence relations on AUTX (A).
(2) (jA :::; (jE, TA:::; TE and AUTx(A)jTA = AUTx(A)jAutx(A).

DEFINITION. Let A = (M, X, 0) be an automaton. Let S = X* - {e}
and a E S. (1) Ta : M -4 M is called a right tran!Jlation if Ta(m) = ma
for all m E M. (2) We define a congruence J1.M C S X Son S through
(a, b) E J1.M {::=} Ta = n for a, bE S. (3) A (or M) is cyclic iff M = mS
for some m EM. Also, m is called a generator. (4) A (or M) is abelian
iff m(st) = m(ts) for all m E M and s,t E S. (5) A (or M) is strongly
connected iff every element of M is a generator. (6) A (or M) is perfect
iff A is strongly connected and abelian (see Fleck [4]).

PROPOSITION 3. Let A = (M,X,o) be an automaton. Then the
following conditions are equivalent:

(1) J1.M = 0 on X where 0 is the identity relation.
(2) For all a,b E X, Ta = n ===> a = b.
(3) (jA = 0 on AUTx(A).
(4) (jE = 0 on ENDx(A) if A is perfect.

Proof. (1) {::=} (2): Trivial. (2) ===> (3): Let (f0! ,JfJ) E (jA. Since
P\ffJ E AUTx(A), f(ma) = f(m)a(a) = f(m)(3(a) for all m E M and
a E X. This means Ta(a)(f(m)) = T13(a) (f(m)). Since f is bijective,
Ta(a)(m) = TfJ(a)(m) for all m E M. So, we have Ta(a) = T13(a). By
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assumption, a(a) = fJ(a) for all a EX. Hence a = fJ. i.e., O"A = O. (3)
===} (2): We define a map a : X ~ X given by a(a) = b, a(b) = a and
a(t) = t for all t E X - {a, b}. Then a is bijective with a(a(a)) = a
and a(a(b)) = b. Moreover, [a E AUTx(A) (it is easy to show this,
using Ta = Tb) and (fa ,lid) E 0A where id : X ~ X is the identity
map. Since (jA = 0, [a = [id. Hence a = id. This means that
a = b. (2) ===} (4): Let (f°,f{3) E (jE. Since f°,f{3 E ENDx(A),
f(ma) = f(m)a(a) = f(m)f3(a) for all m E M and a E X. This implies
To(a)(f(m)) = T{3(a)(f(m)). Since M is perfect, from Lemma 1 of Park
[1] and Ts = Ends(M) we have To(a) = T{3(a) where Ts = {Ta : a E 5}.
By assumption, a(a) = fJ(a) for all a E X. Hence a = fJ. i.e., (jE = O.
(4) ===} (2): Clear from (j A ~ (jE = O.

DEFINITION. The automaton A is called faithful if one of the equiv­
alent statements of Proposition 3 is satisfied (see Puskas [2]).

NOTE. For a set X, let a : X ~ X be a map and let a* : X* ~ X*
be the map defined by a*(e) = e (empty string) and a*(al aZa3 ... an) =
a(al )a(a2)a(a3) ... a(an) for all al a2a3 ... an E X* - {e}. Then the
following statements hold:

(1) a* is bijective if a is bijective.
(2) a* is a monoid homomorphism.

PROPOSITION 4. Let A = (M,X,8) be an automaton. Let Tx =
{Ta : .a E X} and let {Xx} be the scmigmup ge:nerated by Tx. Then
5jfLM :;;;:;! (Tx) where ~ means sernigroup-isomorphic.

LEMMA 5. Let A = (M,X,8) be an automaton.
(1) If fa E AUTx(A), then for any a, bE 5,

(a,b) E fLM <===? (a*(a),a*(b)) E fLM

(2) If fa E ENDx(A) and A is perfect, then for any a,b E 5,

(a,b) E fLM ===} (a*(a),a*(b)) E P.M·



Some remarks on the automata-homomorphisms

Proof. For (1),

(a, b) E /-lM {:::::} Ta = n {:::::} Ta(m) = n(m) for all m E M

{:::::} ma = mb {:::::} f( ma) = f( mb)

{:::::} f(m)Oi*(a = f(m)Oi*(b)

{:::::} Ta·(a)(f(m)) = Ta·(b)(f(m)) {:::::} Ta·(a) = Ta·(b)

{:::::} (Oi*(a), Oi*(b)) E /-lM.

For (2),

(a, b) E /-lM {:::::} Ta = Tb {:::::} Ta(m) = Tb(m) for all m EM

{:::::} ma = mb ==} f(ma) = f(mb)

{:::::} f(m)Oi*(a) = f(m)Oi*(b)

{:::::} Ta·(a)(f(m)) = Ta·(b)(f(m)) {:::::} Ta·(a) = Ta·(b)

{:::::} (a*(a),Oi*(b)) E /-lM.
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LEMMA 6. Let A = (M,X,o) be a perfect automaton and let a,f3:
X --7 X be maps. Let TIa and TI,8 be maps defined by TIo([a]) = [Oi*(a)]
and TI,8([a]) = [f3*(a)] fora E S respectively wbere [] = []/-lM. Tben for
any f a,g,8 E ENDx(A) tbe following statements bold:

(1) TIo and TI,8 are endomorpbisms.
(2) TI,8a = II.8TIo.
(3) TIo = II,8 {:::::} a = 13 if A is faitbful

wbere tbe product of maps means tbe composition of maps.

Proof. We note that lIa and lI,8 are well-defined from lemma 5(2).
For (1) and (2), it is easy to check them. For (3), for every t E X,
IIa([t]) = lI.8([t]). This implies [a*(t)] = [f3*(t)]. Hence (a*(t), f3*(t)) E
/-lM. Since t E X, a*(t) = aCt) and f3*(t) =f3(t). Moreover, (a(t),f3(t))E
/-lM {:::::} Ta(t) = T,8(t). Since A is faithful, we can conclude that To(t) =
T,8(t) ==} aCt) = f3(t). i.e., a = 13. The converse is trivial.

COROLLARY 6.1. Let A = (M,X,o) be an automaton. Let a,f3 :
X --7 X be bijective. Tben for any f a,g.8 E AUTx(A) tbe following
statements bold:
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(1) ITa and ITp are semigroup-automorphisms
(2) ITpa = ITpITa.
(3) ITa = ITp~ a = f3 if A is faithful.

RECALL. Let S and T be semigroups. Let f : S -t T be a ho­
momorphism. The Kernel of f is the set Ker f of all the elements of
S x S which are carried by f onto the same element of T. That is,
Ker f = ((a,b) E S x S: f(a) = feb)}.

LEMMA 7. Let A = (M,X,b) be a perfect automaton and let
End(Sj11M) be the set of all endomorphisms (not X -endomorphisms)
on S / f-l M . Let h : ENDX (A) -t End(S j f-l M) be a map defined by
h(fa) = ITa. Then

(1) h is a homomorphism.
(2) Ker h = TE ifA is faithful.

Proof. (1) is trivial. For (2), Ker h = {(fa, gf3) : h(fa) = h(gf3)}.
Now, from h(Ja) = h(gf3) we have ITa = ITp. By Lemma 6(3), a = f3.
Hence Ker h = TE.

LEMMA 8. Let A = (M,X,b) be an automaton and let Aut(Sjf-lM)
be the set of all automorphisms (not X -automorphisms) on S j f-l M. Let
h : AUTx(A) -t Aut(SjI1M) be a map defined by h(fa) = ITa. Then

(1) h is a group-homomorphism.
(2) Ker h = Autx(M) if A is faithful.

Proof. (1) is trivial. For (2), Ker h = {fa E AUTx(A) : h(fa) = I
(identity map)}. Now, from ITa = I we have ITa([a]) = [a] for all a E X.
This implies [a*(a)J = [a(a)] = [a]. So, we have [a(a)] = [a] ~
(a(a),a) E f-lM ~ Ta(a) = Ta ===} a(a) = a for all a E X. Hence
a = id and Ker h = Autx(M).

From Lemma 7 and Lemma 8 we can obtain the following proposition.

PROPOSITION 9. Let A = (M,X,b) be a faithful automaton. Then
(1) the factor group AUTx(A)jAutx(A) is isomorphic to a subgroup

of Aut(Sj f-lM)'
(2) ENDX (A) j TE is isomorphic to a submonoid of End( S j f-l M) if A

is perfect.
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DEFINITION. Let A = (M,X,8) be an automaton. Let QM = {f :
M -l- M is a transformation map}. i.e., the semigroup of all arbitrary
maps of Minto M. (1) We define the centralizer C(Tx ) and the nor­
malizer N(Tx ) of Tx in QM as follows:

C(Tx ) = {f E QM : Taf = fTa for all Ta E Tx}

N(Tx ) = {f E QM : Txf = fTx }.

(2) We define the permutation centralizer (briefly p - centralizer)
Cp(Tx) and the permutation normalizer (briefly p-normalizer) Np(Tx)
of Tx as follows:

where S M is the symmetric group over M (see Puscas [2]).

NOTE. N(Tx) is a monoid and C(Tx) :s: N(Tx) (a submonoid of
N(Tx )).

LEMMA 10. Let A = (M, X, 8) be a faithful automaton. Let f E

Np(Tx). Then for any Ta E Tx there is a unique Tb E Tx such that
fTb = Taf (or fTa = TbJ).

Proof. Suppose there is another Tc E Tx such that Taf = fTc' Then
fn = fTc and fTb(m) = fTc(m) for all m E M. This implies that
f(mb) = f(mc). Since f is 1-1, mb = mc. This means that Tb(m) =
Tc(m) for all mE M. i.e., n = Tc. Hence b = c.

LEMMA 11. Let A = (M,X,8) be an automaton. Then
(1) Endx(M) = C(Tx) and Autx(M) = Cp(Tx).
(2) Cp(Tx) is a normal subgroup of Np(Tx ).

Proof. For the first part of (1), Endx(M) c C(Tx): For any f E
Endx(M), it is enough to show that fTa = Taf for all Ta E Tx. To do
this, choose any m E M. Then fTa(m) = f(ma) = f(m)a = Taf(m).
Hence it holds. Similarly, the converse can be shown easily. The second
part of (1) follows from the first part of (1). For (2), for any f E Np(Tx),
g E Cp(Tx) and Ta E Tx, Tafgf-l = fTbgf-l for some Tb E Tx =
fgnf- I = fgf-ITa.
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PROPOSITION 12. Let A = (M,X,8) be a faithful automaton. Then
the following statements hold:

(1) AUTx(A) = Np(Tx ).
(2) Np(Tx)jCp(Tx ) ~ a subgroup of Aut(Sjf-lM).
(3) Autx(A) is a normal subgroup of AUTx(A).

Proof. For (1), AUTx(A) C Np(Tx): To prove this, choose any f E
AUTx(A) and let f be an aX-automorphism. Then we have f(ma) =
f(m)a(a) for all m E M and a E X. This means that f[Ta(m)] =
Ta(a) [f(m)]. Also, this implies that fTa = Ta(ad. Hence since a is
bijective, fTx = Txf. AUTx(A) ::::) Np(Tx ): By Lemma 10, for any
f E Np(Tx ) and Ta E Tx 3! n E Tx such that fTa = nf. Let
a : X ~ X be a map defined by a(a) = b with fTa = Tbf. Claim: a
is bijective. (i) a is well-defined: To prove this, let t = u for t, u EX.
By Lemma 10, for Tt and Tu 3!Te , Td E Tx such that fTt = Tcf and
fTu = Tdf. This implies Tcf = Tdf. Hence Te = Td. So, we have
c = d since X is reduced. Thus, aCt) = c = d = a(u). (ii) a = 1 - 1:
Suppose aCt) = a(u). Let aCt) = c with fTt = Tcf and let a(u) = d
with fTu = Tdf. Then from c = d fTt = fTu . Hence Tt = Tu • Thus,
we have t = u. (iii) a is onto: For any bE X, consider Tb E Tx . By
Lemma 10 3! Ta E Tx such that Tbf = fTa. Hence 3 a E X such that
a(a) = b with fTa = nf.

Now, we will show that f is an aX-homomorphism. For any m E M
and a EX,

f(m)Ol(a) = f(m)b with fTa = Tbf

= nf(m) = fTa(m) = f(ma).

(2) follows from Proposition 9 and Lemma 11. (3) follows from Lemma
11(2).

NOTATION. Let A = (M, X, 8) be an automaton and a : S ---+ S be a
map. For m,q E M, Hmaq = {a E S: maCa) = q} and Hmq = {a E S:
ma = q}.

The following lemma is a generalization of Lemma 18 of Park [1].

LEMMA 13. Let A = (M,X,8A ) and B = (N,X,8B ) be automata.
Letm EM be a fixed element andletOl: S ---+ S be a map. Hf: M ---+ N
is any map, then the following statements hold:
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(1) H f(mt) = f(m)a(t) {or all t E S, then H mq C Hf(m)af(q) {or all
qEM.

(2) H H mq C H f(m)af(q) {or some q E M, then f(mt) = f(m)a(t) {or
all t E H mq .

(3) f(mt) = f(m)a(t) {or all t E H mq {::=} H mq C Hf(m)af(q) {or all
qEM.

(4) Assume M is strongly connected. Then f(mt) = f(m)a(t) {or all
t E S {::=} H mq C Hf(m)af(q) {or all q E M.

Proof. For (1), for every a E H mq we have ma = q. This implies
f(q) = f(ma) = f(m)a(a). Hence a E Hf(m)af(q). For (2), for every
t E H mq we have mt = q and also, since t E Hf(m)af(q), we have
f(m)a(t) = f(q). This implies f(m)a(t) = f(mt). (3) is clear from
(1) and (2). For (4), suppose M is strongly connected. Then we have
M = mS. So, for every t E S, we have k = mt for some k E M.
This implies t E Hmk C Hf(m)af(k)' Thus, f(m)a(t) = f(k). Hence
f(mt) = f(k) = f(m)a(t). The converse is clear from (1).

The following proposition is a generalization of Proposition 19 of Park
[1].

PROPOSITION 14. Let A = (M, X, DA) and B = (N, X, DB) be au­
tomata. Let f : M -t N and a : S -+ S be maps. Then the following
statements are equivalent:

(1) fa : A -+ B is an as-homomorphism.

(2) H mq C Hf(m)af(q) for any m,q E M.
(3) f(qs) = f(q)a(s) {or some q E M and all s E S if M is strongly

connected and a is a semigroup-homomorphism.

Proof. (1) ==} (2): For all m E M and t E S, f(mt) = f(m)a(t).
Hence it holds by Lemma 13(1). (2) ==} (1): To show f(mt) = f(m)a(t)

for all m E M and t E S, we recall S = U Hmq (see Proposition 11 of
qEM

Park [1]). Now, for any t E S, we have t E H mq for some q E M. By the
assumption, t E H mq C Hf(m)af(q). Hence it holds from (2) of Lemma
13. (2) ==} (3): Since M is strongly connected, we have M = qS for
some q EM. This means that for any s E S there is an k E M such
that k = qs. This implies s E H qk C H f(q)af(k) by the assumption.
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Hence f(q)a(s) = f(k) = f(qs). (3) ==* (1): We have M = qS from
the strong connectedness of M. This implies that for any m E M there
is an a E S such that m = qa. So, we have ms = (qa )s. Hence for any
mE M and s E S we have f(ms) = f((qa)s) = f(q(as» = f(q)a(as) =
f(q)a(a)a(s) = [f(q)a(a)]a(s) = f(qa)a(s) = f(m)a(s).

COROLLARY 14.1. Let A = (M,X,8) be an automaton. Then fa :
M --T M is an as-automorphism {:=} f and a are permutations on M
and S respectively and H mq C Hf(m)af(q) for any m,q E M.

The following lemma is a generalization of Lemma 1 of Park [1].

LEMMA 15. Let A = (M,X,8A ) and B = (N,X,8B ) be automata.
Let HOMs(A, B) be the set of all as-homomorphisms of A into B for
all a's where a : S --T S is a map. If A is strongly connected, then for
every j<\gf3 E HOMs(A,B), fa = gf3 {:=} a = f3 and f(p) = g(p) for
somep EM.

Proof. To show f( m) = g(m) for all m EM, from the strong con­
nectedness of A we have M = qS for all q E M. This implies that
M = pS. So, for every m E M, m = pi for some i E S. Hence
f(m) = f(pi) = f(p)a(i) = g(p)f3(i) = g(pi) = gem). The converse is
trivial.

NOTE. If j<){ E AUTs(M), then (fn)'){n E AUTs(M) for any nonneg­
ative integer n where fn = f f f ... f (n times) and the product means
the composition of 1's.

DEFINITION. Let A = (M,X,8) be an automaton. Then we say that
a mapping a : S --T S is an M -homomorphism if maea) = ma for all
m E M and a E S. We recall that f is a regular permutation on a set M
if f is a permutation on M and for every power, say fn, of f, it is the
case that fn(p) = p for some p E M implies fn = 1.

PROPOSITION 16. Let A = (M,X, 8) be strongly connected and let
j<){ E AUTs(M). Then f is a regular permutation on M if a: S --T S is
an M -homomorphism.

Proof. Suppose that for any n E N, fn(x) = x for some x EM.
Claim: fn = I (identity). (Proof). Since j<){ E AUTs(M), (fny,n E

AUTs(M). So, this implies (fn)'){n EENDs(M). Also, IanEENDs(M).
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We will show this. For all m E M and a E 5, I(ma) = rna = maCa) =
I(m)a(a). This implies Ia E AUTs(M) and (In)a

n
E AUTs(M). Since

rn = I, we have Ian E AUTs(M). Hence Ian E ENDs(M). From
Lemma 15, we can conclude fn = 1.
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