SOME REMARKS ON THE AUTOMATA-HOMOMORPHISMS

CHIN-HONG PARK

DEFINITION. (1) An automaton, $A=(M,X,\delta)$, is a triple where M is a nonempty set (the set of states), X is a nonempty set (the set of inputs), δ is a function (called the state transition function) mapping $M \times X$ into M. Also, we shall assume the useful property that $\delta(m,st) = \delta(\delta(m,s),t)$ for all $s,t \in X$ and $m \in M$.

NOTE. (i) An automaton A means a triple (M, X, δ) and M does not mean an automaton. But the attribute "automaton" will be sometimes used for M. (ii) Let X^* be the free monoid generated by X. Then δ^* : $M \times X^* \to M$ is the map defined as follows: For all $m \in M$ and $a \in X^*$, $\delta^*(m, a) = m$ if a = e (empty string) and $\delta^*(m, a) = \delta(\delta^*(m, b), t)$ if a = bt and $t \in X$.

NOTATION. For convenience we will denote $\delta(m,t)$ as mt if $t \in X$ and $\delta^*(m,a)$ as ma if $a \in X^*$, i.e., $\delta(m,t) = mt$ and $\delta^*(m,a) = ma$.

- NOTE. (i) $\delta^*(m,t) = \delta(m,t)$ for all $m \in M$ and $t \in X$. (ii) $\delta^*(m,ab) = \delta^*(\delta^*(m,a),b)$ for all $m \in M$ and $a,b \in X^*$, i.e., m(ab) = (ma)b.
- (2) Let $A = (M, X, \delta_A)$ and $B = (N, Y, \delta_B)$ be automata. An automata-homomorphism (or a generalized XY-homomorphism) of A into B is a pair (f, α) of mappings $f : M \to N$ and $\alpha : X \to Y$ such that $f(ma) = f(m)\alpha(a)$ for all $m \in M$ and $a \in X$.

NOTATION. We denote (f, α) as f^{α} , i.e., $f^{\alpha} = (f, \alpha)$.

(3) Let $A = (M, X, \delta_A)$ and $B = (N, X, \delta_B)$ be automata. Let $S = X^+ = X^* - \{e\}$. Let $f: M \to N$, $\alpha: X \to X$ and $\alpha^*: S \to S$ (or $X^* \to X^*$) be maps. Then $f^{\alpha}: A \to B$ is an αX -homomorphism (or automata-homomorphism or a generalized X-homomorphism with respect to α) if $f(ma) = f(m)\alpha(a)$ for all $m \in M$ and $a \in X$. Also, f^{α^*} is an α^*S -homomorphism (resp. α^*X^* -homomorphism) if $f(ma) = f(m)\alpha(a)$

 $f(m)\alpha^*(a)$ for all $m \in M$ and $a \in S$ (resp. $f(ma) = f(m)\alpha^*(a)$ for all $m \in M$ and $a \in X^*$). f^{α} is an αX -endomorphism if A = B and it is an αX -homomorphism. f^{α} is an αX -isomorphism if it is an αX -homomorphism and f, α are bijective. f^{α} is an αX -automorphism if it is an αX -isomorphism and A = B. Similarly, we can define $\alpha^* S$ -and $\alpha^* X^*$ -endomorphismS, $\alpha^* S$ -and $\alpha^* X^*$ -isomorphisms and $\alpha^* S$ -and $\alpha^* X^*$ -automorphismS. $f: M \to N$ (or $A \to B$) is an X-homomorphism (resp. S-homomorphism, X^* -homomorphism) if f(ma) = f(m)a for all $m \in M$ and $a \in X$ (resp. for all $m \in M$ and $a \in S$, for all $m \in M$ and $a \in X^*$). Let f^{α} and g^{β} be an αX -homomorphism and an βX -homomorphism respectively. Then we define $f^{\alpha} = g^{\beta}$ by letting f = g and $\alpha = \beta$

NOTATION. (i) We denote f^{id} as f where $id: X \to X$ (or $S \to S$ or $X^* \to X^*$) is the identity map.

(ii) $\text{END}_X(A) = \text{END}_X(M) = \{ f^{\alpha} \mid f^{\alpha} \text{ is an } \alpha X \text{-endomorphism}$ with a map $\alpha : X \to X \}$.

$$\operatorname{AUT}_X(A) = \operatorname{AUT}_X(M) = \{ f^{\alpha} \mid f^{\alpha} \text{ is an } \alpha X \text{-automorphism with}$$

a map $\alpha : X \to X \}.$

$$\operatorname{End}_X(A) = \operatorname{End}_X(M) = \{f \mid f : M \to M \text{ is an } X\text{-endomorphism}\}.$$

 $\operatorname{Aut}_X(A) = \operatorname{Aut}_X(M) = \{f \mid f : M \to M \text{ is an } X\text{-automorphism}\}.$

PROPOSITION 1. Let $A = (M, X, \delta)$ be an automaton. For any $f^{\alpha}, g^{\beta} \in \text{END}_X(A)$, we define $f^{\alpha}g^{\beta} = (fg)^{\alpha\beta}$. Then the following statements hold: (1) $\text{END}_X(A)$ is a monoid and $\text{End}_X(A)$ is a submonoid of $\text{END}_X(A)$.

(2) $Aut_X(A)$ and $AUT_X(A)$ are groups where the product of maps means the composition of maps.

LEMMA 2. Let $A = (M, X, \delta)$ be an automaton. For any $f^{\alpha}, g^{\beta}, h^{\gamma} \in \text{END}_X(A)$, we define two relations and operations on $\text{END}_X(A)$ as follows:

$$(f^{\alpha}, g^{\beta}) \in \sigma_E \iff f = g$$

$$(f^{\alpha}, g^{\beta}) \in \tau_E \iff \alpha = \beta$$

$$(f^{\alpha}, g^{\beta})h^{\gamma} = (f^{\alpha}h^{\gamma}, g^{\beta}h^{\gamma}) \text{ and } h^{\gamma}(f^{\alpha}, g^{\beta}) = (h^{\gamma}f^{\alpha}, h^{\gamma}g^{\beta}).$$

Then σ_E and τ_E are congruences relations on $END_X(A)$.

Proof. We will show that τ_E is a congruence relation on $\mathrm{END}_X(A)$. It is easy to show that τ_E is an equivalence relation. To show τ_E is a congruence relation, let $(f^\alpha, g^\alpha) \in \tau_E$. For any $h^\beta \in \mathrm{END}_X(A)$, $(f^\alpha, g^\alpha)h^\beta = (f^\alpha h^\beta, g^\alpha h^\beta) = ((fh)^{\alpha\beta}, (gh)^{\alpha\beta}) \in \tau_E$ and $h^\beta(f^\alpha, g^\alpha) = (h^\beta f^\alpha, h^\beta g^\alpha) = ((hf)^{\beta\alpha}, (hg)^{\beta\alpha}) \in \tau_E$. Similarly, it is easy to show that σ_E is a congruence relation.

NOTE. (1) $\operatorname{AUT}_X(A) \leq \operatorname{END}_X(A)$ and σ_A and σ_E are relations on $\operatorname{AUT}_X(A)$ and $\operatorname{END}_X(A)$ resp. (2) Similarly, for any $f^{\alpha}, g^{\beta} \in \operatorname{AUT}_X(A)$ we can define two congruence relations on $\operatorname{AUT}_X(A)$ as follows:

$$(f^{\alpha}, g^{\beta}) \in \sigma_A \iff f = g$$

 $(f^{\alpha}, g^{\beta}) \in \tau_A \iff \alpha = \beta.$

Then (1) σ_A and τ_A are congruence relations on $AUT_X(A)$.

(2)
$$\sigma_A \leq \sigma_E$$
, $\tau_A \leq \tau_E$ and $AUT_X(A)/\tau_A = AUT_X(A)/Aut_X(A)$.

DEFINITION. Let $A = (M, X, \delta)$ be an automaton. Let $S = X^* - \{e\}$ and $a \in S$. (1) $T_a : M \to M$ is called a right translation if $T_a(m) = ma$ for all $m \in M$. (2) We define a congruence $\mu_M \subset S \times S$ on S through $(a,b) \in \mu_M \iff T_a = T_b$ for $a,b \in S$. (3) A (or M) is cyclic iff M = mS for some $m \in M$. Also, m is called a generator. (4) A (or M) is abelian iff m(st) = m(ts) for all $m \in M$ and $s,t \in S$. (5) A (or M) is strongly connected iff every element of M is a generator. (6) A (or M) is perfect iff A is strongly connected and abelian (see Fleck [4]).

PROPOSITION 3. Let $A = (M, X, \delta)$ be an automaton. Then the following conditions are equivalent:

- (1) $\mu_M = O$ on X where O is the identity relation.
- (2) For all $a, b \in X$, $T_a = T_b \Longrightarrow a = b$.
- (3) $\sigma_A = O$ on $AUT_X(A)$.
- (4) $\sigma_E = O$ on $END_X(A)$ if A is perfect.

Proof. (1) \iff (2): Trivial. (2) \implies (3): Let $(f^{\alpha}, f^{\beta}) \in \sigma_A$. Since $f^{\alpha}, f^{\beta} \in \operatorname{AUT}_X(A), f(ma) = f(m)\alpha(a) = f(m)\beta(a)$ for all $m \in M$ and $a \in X$. This means $T_{\alpha(a)}(f(m)) = T_{\beta(a)}(f(m))$. Since f is bijective, $T_{\alpha(a)}(m) = T_{\beta(a)}(m)$ for all $m \in M$. So, we have $T_{\alpha(a)} = T_{\beta(a)}$. By

assumption, $\alpha(a) = \beta(a)$ for all $\alpha \in X$. Hence $\alpha = \beta$. i.e., $\sigma_A = O$. (3) \Longrightarrow (2): We define a map $\alpha: X \to X$ given by $\alpha(a) = b$, $\alpha(b) = a$ and $\alpha(t) = t$ for all $t \in X - \{a,b\}$. Then α is bijective with $\alpha(\alpha(a)) = a$ and $\alpha(\alpha(b)) = b$. Moreover, $I^{\alpha} \in \operatorname{AUT}_X(A)$ (it is easy to show this, using $T_a = T_b$) and $(I^{\alpha}, I^{id}) \in \sigma_A$ where $id: X \to X$ is the identity map. Since $\sigma_A = O$, $I^{\alpha} = I^{id}$. Hence $\alpha = id$. This means that a = b. (2) \Longrightarrow (4): Let $(f^{\alpha}, f^{\beta}) \in \sigma_E$. Since $f^{\alpha}, f^{\beta} \in \operatorname{END}_X(A)$, $f(ma) = f(m)\alpha(a) = f(m)\beta(a)$ for all $m \in M$ and $a \in X$. This implies $T_{\alpha(a)}(f(m)) = T_{\beta(a)}(f(m))$. Since M is perfect, from Lemma 1 of Park [1] and $T_S = \operatorname{End}_S(M)$ we have $T_{\alpha(a)} = T_{\beta(a)}$ where $T_S = \{T_a: a \in S\}$. By assumption, $\alpha(a) = \beta(a)$ for all $a \in X$. Hence $\alpha = \beta$. i.e., $\sigma_E = O$. (4) \Longrightarrow (2): Clear from $\sigma_A \leq \sigma_E = O$.

DEFINITION. The automaton A is called *faithful* if one of the equivalent statements of Proposition 3 is satisfied (see Puskas [2]).

NOTE. For a set X, let $\alpha: X \to X$ be a map and let $\alpha^*: X^* \to X^*$ be the map defined by $\alpha^*(e) = e$ (empty string) and $\alpha^*(a_1a_2a_3 \cdots a_n) = \alpha(a_1)\alpha(a_2)\alpha(a_3)\cdots\alpha(a_n)$ for all $a_1a_2a_3\cdots a_n \in X^* - \{e\}$. Then the following statements hold:

- (1) α^* is bijective if α is bijective.
- (2) α^* is a monoid homomorphism.

PROPOSITION 4. Let $A = (M, X, \delta)$ be an automaton. Let $T_X = \{T_a : a \in X\}$ and let $\langle T_X \rangle$ be the semigroup generated by T_X . Then $S/\mu_M \cong \langle T_X \rangle$ where \cong means semigroup-isomorphic.

LEMMA 5. Let $A = (M, X, \delta)$ be an automaton.

(1) If $f^{\alpha} \in AUT_X(A)$, then for any $a, b \in S$,

$$(a,b) \in \mu_M \iff (\alpha^*(a),\alpha^*(b)) \in \mu_M$$

(2) If $f^{\alpha} \in \text{END}_X(A)$ and A is perfect, then for any $a, b \in S$,

$$(a,b) \in \mu_M \Longrightarrow (\alpha^*(a),\alpha^*(b)) \in \mu_M$$

Proof. For (1),

$$(a,b) \in \mu_{M} \iff T_{a} = T_{b} \iff T_{a}(m) = T_{b}(m) \text{ for all } m \in M$$

$$\iff ma = mb \iff f(ma) = f(mb)$$

$$\iff f(m)\alpha^{*}(a = f(m)\alpha^{*}(b)$$

$$\iff T_{\alpha^{*}(a)}(f(m)) = T_{\alpha^{*}(b)}(f(m)) \iff T_{\alpha^{*}(a)} = T_{\alpha^{*}(b)}$$

$$\iff (\alpha^{*}(a), \alpha^{*}(b)) \in \mu_{M}.$$

For (2),

$$(a,b) \in \mu_{M} \iff T_{a} = T_{b} \iff T_{a}(m) = T_{b}(m) \text{ for all } m \in M$$

$$\iff ma = mb \implies f(ma) = f(mb)$$

$$\iff f(m)\alpha^{*}(a) = f(m)\alpha^{*}(b)$$

$$\iff T_{\alpha^{*}(a)}(f(m)) = T_{\alpha^{*}(b)}(f(m)) \iff T_{\alpha^{*}(a)} = T_{\alpha^{*}(b)}$$

$$\iff (\alpha^{*}(a), \alpha^{*}(b)) \in \mu_{M}.$$

LEMMA 6. Let $A=(M,X,\delta)$ be a perfect automaton and let $\alpha,\beta:X\to X$ be maps. Let Π_{α} and Π_{β} be maps defined by $\Pi_{\alpha}([a])=[\alpha^*(a)]$ and $\Pi_{\beta}([a])=[\beta^*(a)]$ for $a\in S$ respectively where $[\]=[\]\mu_M$. Then for any $f^{\alpha},q^{\beta}\in \mathrm{END}_X(A)$ the following statements hold:

- (1) Π_{α} and Π_{β} are endomorphisms.
- (2) $\Pi_{\beta\alpha} = \Pi_{\beta}\Pi_{\alpha}$.
- (3) $\Pi_{\alpha} = \Pi_{\beta} \iff \alpha = \beta$ if A is faithful where the product of maps means the composition of maps.

Proof. We note that Π_{α} and Π_{β} are well-defined from lemma 5(2). For (1) and (2), it is easy to check them. For (3), for every $t \in X$, $\Pi_{\alpha}([t]) = \Pi_{\beta}([t])$. This implies $[\alpha^*(t)] = [\beta^*(t)]$. Hence $(\alpha^*(t), \beta^*(t)) \in \mu_M$. Since $t \in X$, $\alpha^*(t) = \alpha(t)$ and $\beta^*(t) = \beta(t)$. Moreover, $(\alpha(t), \beta(t)) \in \mu_M \iff T_{\alpha(t)} = T_{\beta(t)}$. Since A is faithful, we can conclude that $T_{\alpha(t)} = T_{\beta(t)} \implies \alpha(t) = \beta(t)$. i.e., $\alpha = \beta$. The converse is trivial.

COROLLARY 6.1. Let $A = (M, X, \delta)$ be an automaton. Let α, β : $X \to X$ be bijective. Then for any $f^{\alpha}, g^{\beta} \in AUT_X(A)$ the following statements hold:

- (1) Π_{α} and Π_{β} are semigroup-automorphisms
- (2) $\Pi_{\beta\alpha} = \Pi_{\beta}\Pi_{\alpha}$.
- (3) $\Pi_{\alpha} = \Pi_{\beta} \iff \alpha = \beta \text{ if } A \text{ is faithful.}$

RECALL. Let S and T be semigroups. Let $f: S \to T$ be a homomorphism. The Kernel of f is the set Ker f of all the elements of $S \times S$ which are carried by f onto the same element of T. That is, Ker $f = \{(a, b) \in S \times S : f(a) = f(b)\}.$

LEMMA 7. Let $A = (M, X, \delta)$ be a perfect automaton and let $\operatorname{End}(S/\mu_M)$ be the set of all endomorphisms (not X-endomorphisms) on S/μ_M . Let $h : \operatorname{END}_X(A) \to \operatorname{End}(S/\mu_M)$ be a map defined by $h(f^{\alpha}) = \Pi_{\alpha}$. Then

- (1) h is a homomorphism.
- (2) Ker $h = \tau_E$ if A is faithful.

Proof. (1) is trivial. For (2), Ker $h = \{(f^{\alpha}, g^{\beta}) : h(f^{\alpha}) = h(g^{\beta})\}$. Now, from $h(f^{\alpha}) = h(g^{\beta})$ we have $\Pi_{\alpha} = \Pi_{\beta}$. By Lemma 6(3), $\alpha = \beta$. Hence Ker $h = \tau_E$.

LEMMA 8. Let $A = (M, X, \delta)$ be an automaton and let $\operatorname{Aut}(S/\mu_M)$ be the set of all automorphisms (not X-automorphisms) on S/μ_M . Let $h: \operatorname{AUT}_X(A) \to \operatorname{Aut}(S/\mu_M)$ be a map defined by $h(f^{\alpha}) = \Pi_{\alpha}$. Then

- (1) h is a group-homomorphism.
- (2) Ker $h = Aut_X(M)$ if A is faithful.

Proof. (1) is trivial. For (2), Ker $h = \{f^{\alpha} \in AUT_X(A) : h(f^{\alpha}) = I \text{ (identity map)}\}$. Now, from $\Pi_{\alpha} = I$ we have $\Pi_{\alpha}([a]) = [a]$ for all $a \in X$. This implies $[\alpha^*(a)] = [\alpha(a)] = [a]$. So, we have $[\alpha(a)] = [a] \iff (\alpha(a), a) \in \mu_M \iff T_{\alpha(a)} = T_\alpha \implies \alpha(a) = a$ for all $a \in X$. Hence $\alpha = id$ and Ker $h = Aut_X(M)$.

From Lemma 7 and Lemma 8 we can obtain the following proposition.

PROPOSITION 9. Let $A = (M, X, \delta)$ be a faithful automaton. Then

- (1) the factor group $\operatorname{AUT}_X(A)/\operatorname{Aut}_X(A)$ is isomorphic to a subgroup of $\operatorname{Aut}(S/\mu_M)$.
- (2) $\text{END}_X(A)/\tau_E$ is isomorphic to a submonoid of $\text{End}(S/\mu_M)$ if A is perfect.

DEFINITION. Let $A = (M, X, \delta)$ be an automaton. Let $\Omega_M = \{f : M \to M \text{ is a transformation map}\}$. i.e., the semigroup of all arbitrary maps of M into M. (1) We define the *centralizer* $C(T_X)$ and the *normalizer* $N(T_X)$ of T_X in Ω_M as follows:

$$C(T_X) = \{ f \in \Omega_M : T_a f = f T_a \text{ for all } T_a \in T_X \}$$

$$N(T_X) = \{ f \in \Omega_M : T_X f = f T_X \}.$$

(2) We define the permutation centralizer (briefly p – centralizer) $C_p(T_X)$ and the permutation normalizer (briefly p-normalizer) $N_p(T_X)$ of T_X as follows:

$$C_p(T_X) = C(T_X) \cap S_M$$
 and $N_p(T_X) = N(T_X) \cap S_M$

where S_M is the symmetric group over M (see Puscas [2]).

NOTE. $N(T_X)$ is a monoid and $C(T_X) \leq N(T_X)$ (a submonoid of $N(T_X)$).

LEMMA 10. Let $A = (M, X, \delta)$ be a faithful automaton. Let $f \in N_p(T_X)$. Then for any $T_a \in T_X$ there is a unique $T_b \in T_X$ such that $fT_b = T_a f$ (or $fT_a = T_b f$).

Proof. Suppose there is another $T_c \in T_X$ such that $T_a f = f T_c$. Then $fT_b = fT_c$ and $fT_b(m) = fT_c(m)$ for all $m \in M$. This implies that f(mb) = f(mc). Since f is 1-1, mb = mc. This means that $T_b(m) = T_c(m)$ for all $m \in M$. i.e., $T_b = T_c$. Hence b = c.

LEMMA 11. Let $A = (M, X, \delta)$ be an automaton. Then

- (1) $\operatorname{End}_X(M) = C(T_X)$ and $\operatorname{Aut}_X(M) = C_p(T_X)$.
- (2) $C_p(T_X)$ is a normal subgroup of $N_p(T_X)$.

Proof. For the first part of (1), $\operatorname{End}_X(M) \subset C(T_X)$: For any $f \in \operatorname{End}_X(M)$, it is enough to show that $fT_a = T_a f$ for all $T_a \in T_X$. To do this, choose any $m \in M$. Then $fT_a(m) = f(ma) = f(m)a = T_a f(m)$. Hence it holds. Similarly, the converse can be shown easily. The second part of (1) follows from the first part of (1). For (2), for any $f \in N_p(T_X)$, $g \in C_p(T_X)$ and $T_a \in T_X$, $T_a f g f^{-1} = f T_b g f^{-1}$ for some $T_b \in T_X = f g T_b f^{-1} = f g f^{-1} T_a$.

PROPOSITION 12. Let $A = (M, X, \delta)$ be a faithful automaton. Then the following statements hold:

- (1) $\operatorname{AUT}_X(A) = N_p(T_X)$.
- (2) $N_p(T_X)/C_p(T_X) \cong \text{a subgroup of } \operatorname{Aut}(S/\mu_M).$
- (3) $\operatorname{Aut}_X(A)$ is a normal subgroup of $\operatorname{AUT}_X(A)$.

Proof. For (1), $AUT_X(A) \subset N_p(T_X)$: To prove this, choose any $f \in$ $AUT_X(A)$ and let f be an αX -automorphism. Then we have f(ma) = $f(m)\alpha(a)$ for all $m \in M$ and $a \in X$. This means that $f[T_a(m)] =$ $T_{\alpha(a)}[f(m)]$. Also, this implies that $fT_a = T_{\alpha(a)}f$. Hence since α is bijective, $fT_X = T_X f$. AUT_X(A) $\supset N_p(T_X)$: By Lemma 10, for any $f \in N_p(T_X)$ and $T_a \in T_X \exists ! T_b \in T_X$ such that $fT_a = T_b f$. Let $\alpha: X \to X$ be a map defined by $\alpha(a) = b$ with $fT_a = T_b f$. Claim: α is bijective. (i) α is well-defined: To prove this, let t = u for $t, u \in X$. By Lemma 10, for T_t and $T_u \exists ! T_c, T_d \in T_X$ such that $fT_t = T_c f$ and $fT_u = T_d f$. This implies $T_c f = T_d f$. Hence $T_c = T_d$. So, we have c=d since X is reduced. Thus, $\alpha(t)=c=d=\alpha(u)$. (ii) $\alpha=1-1$: Suppose $\alpha(t) = \alpha(u)$. Let $\alpha(t) = c$ with $fT_t = T_c f$ and let $\alpha(u) = d$ with $fT_u = T_d f$. Then from $c = d fT_t = fT_u$. Hence $T_t = T_u$. Thus, we have t = u. (iii) α is onto: For any $b \in X$, consider $T_b \in T_X$. By Lemma 10 $\exists ! T_a \in T_X$ such that $T_b f = f T_a$. Hence $\exists a \in X$ such that $\alpha(a) = b$ with $fT_a = T_b f$.

Now, we will show that f is an αX -homomorphism. For any $m \in M$ and $a \in X$,

$$f(m)\alpha(a) = f(m)b$$
 with $fT_a = T_b f$
= $T_b f(m) = fT_a(m) = f(ma)$.

(2) follows from Proposition 9 and Lemma 11. (3) follows from Lemma 11(2).

NOTATION. Let $A = (M, X, \delta)$ be an automaton and $\alpha : S \to S$ be a map. For $m, q \in M$, $H_{m\alpha q} = \{a \in S : m\alpha(a) = q\}$ and $H_{mq} = \{a \in S : ma = q\}$.

The following lemma is a generalization of Lemma 18 of Park [1].

LEMMA 13. Let $A = (M, X, \delta_A)$ and $B = (N, X, \delta_B)$ be automata. Let $m \in M$ be a fixed element and let $\alpha : S \to S$ be a map. If $f : M \to N$ is any map, then the following statements hold:

- (1) If $f(mt) = f(m)\alpha(t)$ for all $t \in S$, then $H_{mq} \subset H_{f(m)\alpha f(q)}$ for all $q \in M$.
- (2) If $H_{mq} \subset H_{f(m)\alpha f(q)}$ for some $q \in M$, then $f(mt) = f(m)\alpha(t)$ for all $t \in H_{mq}$.
- (3) $f(mt) = f(m)\alpha(t)$ for all $t \in H_{mq} \iff H_{mq} \subset H_{f(m)\alpha f(q)}$ for all $q \in M$.
- (4) Assume M is strongly connected. Then $f(mt) = f(m)\alpha(t)$ for all $t \in S \iff H_{mq} \subset H_{f(m)\alpha f(q)}$ for all $q \in M$.

Proof. For (1), for every $a \in H_{mq}$ we have ma = q. This implies $f(q) = f(ma) = f(m)\alpha(a)$. Hence $a \in H_{f(m)\alpha f(q)}$. For (2), for every $t \in H_{mq}$ we have mt = q and also, since $t \in H_{f(m)\alpha f(q)}$, we have $f(m)\alpha(t) = f(q)$. This implies $f(m)\alpha(t) = f(mt)$. (3) is clear from (1) and (2). For (4), suppose M is strongly connected. Then we have M = mS. So, for every $t \in S$, we have k = mt for some $k \in M$. This implies $t \in H_{mk} \subset H_{f(m)\alpha f(k)}$. Thus, $f(m)\alpha(t) = f(k)$. Hence $f(mt) = f(k) = f(m)\alpha(t)$. The converse is clear from (1).

The following proposition is a generalization of Proposition 19 of Park [1].

PROPOSITION 14. Let $A = (M, X, \delta_A)$ and $B = (N, X, \delta_B)$ be automata. Let $f: M \to N$ and $\alpha: S \to S$ be maps. Then the following statements are equivalent:

- (1) $f^{\alpha}: A \to B$ is an αS -homomorphism.
- (2) $H_{mq} \subset H_{f(m)\alpha f(q)}$ for any $m, q \in M$.
- (3) $f(qs) = f(q)\alpha(s)$ for some $q \in M$ and all $s \in S$ if M is strongly connected and α is a semigroup-homomorphism.
- *Proof.* (1) \Longrightarrow (2): For all $m \in M$ and $t \in S$, $f(mt) = f(m)\alpha(t)$. Hence it holds by Lemma 13(1). (2) \Longrightarrow (1): To show $f(mt) = f(m)\alpha(t)$ for all $m \in M$ and $t \in S$, we recall $S = \bigcup_{q \in M} H_{mq}$ (see Proposition 11 of
- Park [1]). Now, for any $t \in S$, we have $t \in H_{mq}$ for some $q \in M$. By the assumption, $t \in H_{mq} \subset H_{f(m)\alpha f(q)}$. Hence it holds from (2) of Lemma 13. (2) \Longrightarrow (3): Since M is strongly connected, we have M = qS for some $q \in M$. This means that for any $s \in S$ there is an $k \in M$ such that k = qs. This implies $s \in H_{qk} \subset H_{f(q)\alpha f(k)}$ by the assumption.

Hence $f(q)\alpha(s) = f(k) = f(qs)$. (3) \Longrightarrow (1): We have M = qS from the strong connectedness of M. This implies that for any $m \in M$ there is an $a \in S$ such that m = qa. So, we have ms = (qa)s. Hence for any $m \in M$ and $s \in S$ we have $f(ms) = f(qa)s = f(qa)s = f(q)\alpha(as) = f(q)\alpha(as) = f(qa)s = f(qa)s = f(qa)s$.

COROLLARY 14.1. Let $A = (M, X, \delta)$ be an automaton. Then f^{α} : $M \to M$ is an αS -automorphism $\iff f$ and α are permutations on M and S respectively and $H_{mq} \subset H_{f(m)\alpha f(q)}$ for any $m, q \in M$.

The following lemma is a generalization of Lemma 1 of Park [1].

LEMMA 15. Let $A = (M, X, \delta_A)$ and $B = (N, X, \delta_B)$ be automata. Let $HOM_S(A, B)$ be the set of all αS -homomorphisms of A into B for all α 's where $\alpha : S \to S$ is a map. If A is strongly connected, then for every $f^{\alpha}, g^{\beta} \in HOM_S(A, B), f^{\alpha} = g^{\beta} \iff \alpha = \beta$ and f(p) = g(p) for some $p \in M$.

Proof. To show f(m)=g(m) for all $m\in M$, from the strong connectedness of A we have M=qS for all $q\in M$. This implies that M=pS. So, for every $m\in M$, m=pt for some $t\in S$. Hence $f(m)=f(pt)=f(p)\alpha(t)=g(p)\beta(t)=g(pt)=g(m)$. The converse is trivial.

NOTE. If $f^{\alpha} \in \text{AUT}_{S}(M)$, then $(f^{n})^{\alpha^{n}} \in \text{AUT}_{S}(M)$ for any nonnegative integer n where $f^{n} = fff \cdots f$ (n times) and the product means the composition of f's.

DEFINITION. Let $A = (M, X, \delta)$ be an automaton. Then we say that a mapping $\alpha : S \to S$ is an *M-homomorphism* if $m\alpha(a) = ma$ for all $m \in M$ and $a \in S$. We recall that f is a regular permutation on a set M if f is a permutation on M and for every power, say f^n , of f, it is the case that $f^n(p) = p$ for some $p \in M$ implies $f^n = 1$.

PROPOSITION 16. Let $A = (M, X, \delta)$ be strongly connected and let $f^{\alpha} \in AUT_{S}(M)$. Then f is a regular permutation on M if $\alpha : S \to S$ is an M-homomorphism.

Proof. Suppose that for any $n \in N$, $f^n(x) = x$ for some $x \in M$. Claim: $f^n = I$ (identity). (Proof). Since $f^{\alpha} \in AUT_S(M)$, $(f^n)^{\alpha^n} \in AUT_S(M)$. So, this implies $(f^n)^{\alpha^n} \in END_S(M)$. Also, $I^{\alpha n} \in END_S(M)$. We will show this. For all $m \in M$ and $a \in S$, $I(ma) = ma = m\alpha(a) = I(m)\alpha(a)$. This implies $I^{\alpha} \in \operatorname{AUT}_{S}(M)$ and $(I^{n})^{\alpha^{n}} \in \operatorname{AUT}_{S}(M)$. Since $I^{n} = I$, we have $I^{\alpha^{n}} \in \operatorname{AUT}_{S}(M)$. Hence $I^{\alpha^{n}} \in \operatorname{END}_{S}(M)$. From Lemma 15, we can conclude $f^{n} = I$.

References

- 1. C. H. Park, Algebraic properties associated with input semigroup S of an automaton, Bull. Korean Math. Soc. 27 (1990), 69-83.
- 2. _____, On right congruences associated with the input semigroup S of Automata, Semigroup Forum, to appear.
- 3. Cs. Puskas, On the generalized automorphism groups of automata without outputs, Papers on automata theory vol. 1, The Department of Mathematics and Computer Science, Karl Marx University of Economics, Budapest (1980).
- 4. A. C. Fleck, Isomorphism groups of automata, J. ACM 9 (1962), 469-476.
- R. H. Oehmke, On right congruences of semigroups, Semigroup Forum 16 (1978), 393-401.

Department of Mathematics The SungHwa University Cheon An, Korea