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CANTOR-BENDIXSON DERIVATIVES
AND o-COMPACT-COVERING MAPS

Myung Hyun CHO

1. Introduction

A map is a continuous onto function and the notation f : X — Y
denotes a map from a space X onto a space Y.

A map f : X — Y is compact-covering (resp. countable-compact-
covering) if every compact (resp. countable and compact) subset of ¥ is
the image of some compact subset of X.

Using the concepts of Cantor-Bendixson derivative (see Definition
2.1), we define (see Definition 3.1) that amap f: X — Y is a-compact-
covering if every countable compact subset of ¥ whose a-th Cantor-
Bendixson derivative is empty is the image of some compact subset of
X.

A map f: X — Y is sequence-covering if every convergent sequence
(including its limit) S C Y is the image of some compact set (not nec-
essarily a convergent sequence) C C X.

It follows simply from the definitions that every countable-compact-
covering map is a-compact-covering, and that a sequence-covering map
1s 2-compact-covering in the above sense.

We now state the following theorem [1]:

THEOREM 1.1. Every countable-compact-covering map f : X — Y
from a separable metrizable space X onto a first-countable regular space
Y with each fiber f™'(y) compact is compact-covering.

This theorem solves affirmatively a question posed by Michael ([6],
Question 1.1 (a)).

The main purpose of this paper is to prove a theorem [Theorem 3.7]
that there is no countable ordinal « such that the assumption on f,
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countable-compact-covering, in Theorem 1.1 could be replaced by the
assumption that f is a-compact-covering.

More precisely, for every o € w;, there exists a map from a separable
metric space X onto a countable and compact metric space Y with each
fiber f~(y) compact that is a-compact-covering but not a + 1-compact-
covering (and hence not compact-covering, not even countable-compact-
covering).

The latter theorem generalizes earlier examples by Michael [4], and
Steprans and Watson [7].

For undefined terminology, see [2].

2. Preliminaries

In this section, we will present the basic theorems needed for the rest
of this paper. Throughout the remainder of the paper we assume that
the spaces considered are at least Hausdorff.

DEFINITION 2.1. Let X be a topological space and a be an ordinal.
The a-th derivative of X, denoted by DX, is defined inductively as
follows:

DOX =X,

DD X = DD X\{z : z is an isolated point in DX},

DX = Ns<a D® X for limit ordinals a.

The smallest a for which DX = DtV X is called the Cantor-
Bendizson height of X (abbreviated CB-height in the sequel) and de-
noted by CB(X). ‘ ‘ '

ExaMPLE 2.2. i X is a finite space, then CB(X) = 1. If X is a
space of a convergent sequence including its limit, then CB(X) = 2.
The Cantor space C is perfect, that is, it has no isolated points. Thus

D C = C for all ordinal a.

We record some wuseful and well-known facts about the
Cantor-Bendixson height.

PROPOSITION 2.3. Let X be a non-empty compact Hausdorff space.
(a) If every point of X is a cluster point of X, then X is uncountable.

(b) If B is a countable and compact subset of X, then D!® B = § for
some a € wi.
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(c) If B is a countable and compact subset of X, then the CB-height
of B is either zero or a successor ordinal o + 1 for some o € w;. In the
latter case, D(® B is finite.

(d) If B is a countable and compact subset of X and W is open in X,
then for every v € wy, DY(BNW)=DMBNW.

(e) If B is a countable and compact subset of X and z € B, then
there is an open neighborhood W of z such that D®(BNW) = {z} for
some « € wy.

(f) If E and B are countable and compact subsets of X such that
E C B, then the CB-height of E is less than or equal to the CB-height
of B (i.e., CB(E) < CB(B)).

(g) IfC = {C; : i € n+ 1} is a finite collection of countable and
compact subsets of X, then D("‘)(Ljie”_H Ci) = Uicnt1 DC; for every
o € wj.

(h) The CB-height of the union of a finite collection C of countable
and compact subsets of X is the supremum of the CB-heights of the
members of C.

Proof. See [1].

PROPOSITION 2.4. Let Y be a first-countable Hausdorff space.

(a) Let a« € wy, y' €Y, let (yn)new be a sequence inY with y, — y'
such that there exists a sequence (Uy)new of open neighborhoods such
that each y, € U, and U, NU,, = 0 if n # m. Suppose (Ep)new
is a sequence of countable and compact sets such that E, C U, and
D@®E, = {y,} for all n € w.

Then E = |J,._ E. U {y'} is countable, compact, and D®*VE =
{v'}.

(b) Let a € wy, y' €Y, and let (O, )ne. be a decreasing neighborhood
base aty' inY. Suppose (Eyp)new is a sequence of countable and compact
subsets of Y such that E, C O, and D'®E, = {v'}.

Then E = |J,,¢,, En is countable, compact, and DE = {y'}.

Proof. See [1].

DEFINITION 2.5. Let X and Y be spaces, AC X xY,and ECY.
We say that E can be lifted to a compact subset of A if there is a compact

set B C A such that the projection 7 of B onto the second coordinate
1s E. Such a B is called a compact lifting of E.

ncw
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ForyecYand AC X xY, weset Ay = {z € X : (z,y) € A}. We
call A, the horizontal section of A at y.

PROPOSITION 2.6. (a) Let Y be a space. Suppose K CY and A C
I¥ x K are such that every countable compact subset of K can be lifted
to a compact subset of A. Let y € E C K with E countable compact,
and let O be an open neighborhood of y, E' = ENQO, and let G be any
subset of H. Suppose for every compact lifting D C A of E, we have
D, ¢.

Then for any compact lifting D' C A of E', we have D}, ¢ G.

(b) Let Y be a first-countable regular space. Let K C Y be compact
and A C I¥ x K be such that every horizontal section of A is compact.
Let y € E C K with E countable compact and (O(y,n))new be a neigh-
borhood base at y such that ENO(y,n) = ENcl(O(y,n)). Let (6,)new
be a sequence of positive reals converging to zero such that for each
n € w, E, = EN (cd(O(y,n))\O(y,n + 1)) can be lifted to a compact
subset D™ C A with the condition that D} € Bs, (Ay) for all z € E,,.

Then D = cl(|J,,., D™) is a compact lifting (in A) of E.

nEw

Proof. See [1].

REMARK. In (b), the assumption that E N O(y,n) = ENcl(O(y,n))
is possible since every countable non-empty regular space is zero-dimen-
sional (see [2], Theorem 6.2.8 and 6.2.6).

3. Main Theorem

In this section, we prove a theorem [Theorem 3.7] showing that for
every o € w; there exists a map f : X — Y from a separable metric
space X onto a metric space Y with each f~!(y) compact that is a-
compact-covering, but not a + 1-compact-covering,

DEFINITION 3.1. For a € wy, amap f: X — Y from a space X onto
a space Y is a-compact-covering if for every countable and compact
E C Y such that D!®E = § there is a compact C C X such that
flc] = E.
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PROPOSITION 3.2. A map f: X — Y from a space X onto a Haus-
dorff space Y is countable-compact-covering iff f is a-compact-covering
for all & € wy.

Proof. “ Only if ”-part is clear. For “if ”-part, let E C Y be countable
and compact. Then D(®)E = @ for some a € w; by Proposition 2.3(b).

ExaMpLE 3.3. ([4], Example 4.1) There is an open map f: X - Y
from a metric space onto a compact metric space Y which is not compact-
covering,.

REMARK. (1) The fact that the map in Example 3.3 is even countable-
compact-covering was pointed out by Michael in ([5], Example 5.1).

(2) It was noted in ([3], Example 9.13) that the map in Example 3.3 is
sequence-covering (every open surjection f : X — Y with first-countable
X is sequence-covering. In fact, every convergent sequence in Y is the
image of a convergent sequence in X).

Since the main idea in the argument of proof of Theorem 3.9 is from
a proposition by Steprans and Watson [7] and Example 3.3, we present
the following results 3.4 and 3.5 as a preliminary step.

LEMMA 3.4. ([7]) Let n be a fixed natural number, and let A C [0,1]?
be such that for every y € {0, 1] there exists an open interval U, C [0, 1]
of length < ;l-_lﬁ such that {z : {(z,y) € A} = [0,1\U,. Let E be a
compact subset of [0,1] such that D™ E is finite. Then there exists a
compact C C A such that m,[C] = E.

Proof. See [1].

PRrOPOSITION 3.5. For every natural number n, there exist a sub-
space X C [0,1]? and a function f : X — [0,1] with each fiber f(y)
compact that is n-compact-covering, but not compact-covering.

Proof. Let w3, B, zy be as in Example 3.3. Let A be a space obtained
from [0,1])? by removing from each horizontal interval 7, '(y) an open
interval U, containing z, of length < %_H

Then A C B. Let g = m2]4. Then g: A — [0,1] is a map with each
g7 (y) compact (since g7 (y) = 73 (z) N A ~ [0,1]\U, is compact).
Equivalently, every horizontal section ( = [0, 1]\U, ) of A at y is compact.
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Claim: ¢ is n-compact-covering.

Let E C [0,1] be a countable and compact set such that D(™E = §.
Since E is compact, D(»"VE is finite. By Lemma 3.4, there exists a
compact C C A such that g[C] = E. Hence g is n-compact-covering.

Claim: ¢ is not compact-covering.

By Example 3.3, there is no compact C' C B such that 7;|g[C] = [0,
Since A C B, there is no compact D C A such that m;|4[D] = [0,
Hence g = m;|4 is not compact-covering,.

1].
1].

The following Proposition is a special case of Proposition 2.4(a).

PROPOSITION 3.6. Let a € wy, let (On)new be a decreasing neigh-
borhood base at y', let y' € [0,1], let (yn)new be a one-to-one sequence
in [0,1] such that y, — y', and let U,, be a neighborhood of y,, such that
U, CO, andU,NU,, =0 for n # m. Suppose (E,)nec. is a sequence
of countable and compact sets such that E, C U, and DYE, = {y,}
for alln € w. Then E = |, . E, U {y'} is countable, compact, and
DHVE = {y'}.

new

THEOREM 3.7. For every a € w;\{0}, for every y' € [0,1], and for
every open neighborhood V' of y', there exist a subspace X, C [0,1]?,
a countable compact subspace E, C V with D®E, = {y'}, and a
map Ta|x, : Xo — Eo with each fiber (m3|x,) !(y) compact that is
a-compact-covering, but E, cannot be lifted to a compact subset of X,
(hence m3|x_ is not a + 1-compact-covering).

Proof. We prove this by induction on a > 1.

Case 1: a = 1. Before proceeding with the inductive argument, we
fix y’ € [0,1] and an open neighborhood V of ¢, and choose a one-to-one
sequence (Yn )new m V such that y, — y'.

Now let F) = {y, : n € w} U {y'}. Then E; is countable, compact,
and DWE; = {y'}.

Let X; = {{1,ya) :n€ew} U{{0,¥")}.

(i) Then my|x, : X; — E; is a map with each fiber (m|x,) ' (y)
compact (in fact, each fiber is a singleton set).

(ii) We claim that m3]x, is 1-compact-covering,.

Let E C E; be countable and compact with DVE = @§. Then
DOFE = E is finite. If ' ¢ E, then let C = {{1,y) : y € E}. Then
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C is a finite subset of X; and thus compact. Clearly 72|x,[C] = E. If
y' € E, then let C' = {{1,y) : y € E\{y'}} U{(0,%')}. Then C' is a
compact subset of X; and m,|x, [C'] = E.

Hence m3|x, is 1-compact-covering.

(iil) We claim that E; cannot be lifted to a compact subset of X
(and hence w;|x, is not 2-compact-covering).

By way of contradiction, assume that there exists a compact C C X,
such that =[x, [C] = E;. By the construction of X; and since m2|x,
is onto, we have C' = X,. But X; is not compact since {(1,y,) : n €
w} is an infinite set which has no cluster point. This contradicts the
assumption that C is compact.

Case 2: Suppose a = 3 + 1 for some € w;, and the statement is
true for 3.

We fix y' € [0,1] and an open neighborhood V of y', and choose a
one-to-one sequence (¥, )new in V such that y, — y' and a neighborhood
base (On)new at y'.

Let (Up)new be a sequence of neighborhoods such that each y, €
U \Oy, and U, NU,, =0 if n # m.

By the inductive assumption, for each n € w, there exist countable
compact subsets Eg , of U, such that D(’S)E,g,n = {yn}, and subsets
X n of [0,1]% such that Tolxs.n : Xpn — Epn is a map with each fiber
(72]x5 )" (y) compact that is f-compact-covering, but Eg , cannot be
lifted to a compact subset of Xp, (and hence m3|x, , is not 8 + 1-
compact-covering, 1.e., not a-compact-covering).

We can multiply the first coordinates of points in each Xz, by 1
to obtain a homeomorphic image of Xz, in [0, %] X U, which has the
properties stated for 73|x, .. For simplicity of notation, we will denote
this homeomorphic image by X3 . again.

Let Eq = (Uneo Ean) U {v'}-

Then, by Proposition 3.6, E, is countable, compact, and DY E, =
{v'}.

Now let

Xo = (U X5) U (1 12} x B3.0) U (10,51 % {4'D)

nEw n€w

Then X, is a subspace of [0,1]2. Let f = my|x, -
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Then f : Xo — E, is a map and f is an extension of each ma|x, ..

(i) We claim that each fiber f~!(y) is compact.

If y € E.\{y'}, then there is some n € w such that y € Eg,. Hence
Fy) = (m2lx,.,) " (w) U {{1,)}. Since (m2]x,.,) " (y) is compact by
the inductive assumption, f~!(y) is compact.

If y =y, then f~!(y) = [0, %] is clearly compact.

(i1) We claim that f is a-compact-covering.

Let E C E, be countable and compact with D(®E = §.

Subcase 1) If y' is not a cluster point of E, then there exists an
open neighborhood U of y' such that U N (E\{y'}) = 8. So E\{y'}
is covered by finitely many Ejz,’s and so there exists m such that
E\{y’} C UOSnSm Eﬁ,n- Let C = {1} X UOSnSm(Eﬁan N E) Then
C is clearly a compact subset of X,.

If y ¢ E, then f[C] = E. If y' € E, then C U ([0,%] x {y'}) is a
compact subset of X4 such that f[CU([0,3] x {y'})]=E

Subcase i) Suppose y' is a cluster point of E. Since DI®E = §, we
have D® E is finite. Note that for all n € w, D®(ENEs,) c DPE
and so {J,e, D¥(ENEg,) C DPE.

Since the sets EN Eg ,, are pairwise disjoint and since D® E is finite,
DB)(ENEg,) =0 for all but finitely many n’s. But since for all n € w,
D¥®(ENEs,) C DP®Eg, = {y,}, we may assume that there is some
i € w such that if m > i, then D®(E N Eg ,,) = 0; but if n < i, then
D(ﬂ)(E NEgn) = {yn}-

By the inductive assumption ( 3-compact-covering) applied to the case
DP)(E N Eg,m) = B above, there exists a compact set C, C X, such
that m2|x, ,.[Cm] = EN Egm. Then Cp, is also compact in X, and
flCn]l =ENEg .

Let C' = cl(|J,,»; Cm)- Then C’ is clearly compact. Also by the same
argument as used in the proof of Proposition 2.6 (b) (with the fact that y’
is a cluster point and [0, 1] is compact), we get C' C [J,,»; Cm U ([0, 1] x
{y'}), and f[C'] = U,,»;(ENEsm)U{y'}. Also for every n < 4, y' is not
a cluster point of EN Eg , and so as in the previous case, there exists a
compact set Cp, C X4 such that f[Cp] = ENEg,. Let C" =/, .; Cxr-
Then C" is a compact subset of X, such that f[C"] =1, (ENEg )
Let C = C'U C". Then C is a compact subset of X, and f[C] = E.
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Hence f is a-compact-covering.

(iii) We claim that E, cannot be lifted to a compact subset of X,
(and hence f is not a + 1-compact-covering).

Recall from the construction that E, is countable and compact with
DE, = {y'}. Then D®*VE,_ = @ and for every n € w, D®Eg,, = 4.
By the inductive assumption, each Eg . cannot be lifted by m2|x, ., =
flxs . to a compact subset of Xg p.

By way of contradiction, suppose that there exists a compact set
C C X, such that f[C] = E,. Since each Eg, cannot be lifted to by
f to X, and since f is onto, there exists y,, € Eg, with (1,y,) €
({1} x Egn) N C for all n € w. So we have a countably infinite set
{(1,9,) : n € w} in C which has no cluster point ( the only possible
candidate for a cluster point is {(1,y'})}, but it is not in X, by the
construction ). Hence C is not countably compact and therefore not
compact. This contradicts the assumption that C is compact.

Case 3: Suppose a is a limit ordinal and assume that the statement
is true for all 8 < a.

Let y' € [0,1] and V be an open neighborhood of y', and let (yn)new
be a one-to-one sequence in V such that y,, — y’ and a neighborhood
base (On)new at ¥'. Let (Uy)new be a sequence of open neighborhoods
such that each y, € U, C Oy, and U, NU,, = 0 if n # m.

Since a is a limit ordinal, there is a strictly increasing sequence
(an)new of ordinals in w; such that for all n € w, @, < a and for
all v < a, there exists n' € w with 7 < an' < a.

By the inductive assumption, for each n € w, there éxist count-
able compact sets E,, C U, such that D®’)E, = {y,}, and subsets
Xo, C [0,1]% such that m3|x,, : Xa, — FEa, is a map with each fiber
(72]x., )" (y) compact that is an-compact-covering, but E,, cannot be
lifted to a compact subset of X, (and hence m2|x, 1is not an, + 1-
compact-covering).

By multiplying the first coordinates of points in each X, by -21-, we
obtain a homeomorphic image of X, in [0, 3] X Uy, which has the prop-
erties stated for m3|x, .

For simplicity of notation, we will denote this homeomorphic image
by X,, again.

Let Eo = U, ¢, Ea, U{y'}. Then, by Proposition 3.6, E, is countable

n€w
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and compact.

We claim that D®E, = {y'}.

It suffices to show that:

(i) if y € Eo\{y'}, then y ¢ DIV E,;

(i) ¥ € Npew D*" TV E,; and

(iii) Npe, PO FVE, = DE,,.

For (i), let y € E,\{y'}. Then there exists n € w such that y €
E,, C U,. By way of contradiction, we assume that y ¢ D(®E,.
Then y € D(@=+DE,_ . This means that every deleted open neighbor-
hood of y contains points of D(e»*DE, . Since D) E, = {y,} for
each n € w, we have D("‘"“)Ean = 0. So U, contains no points of
D(""+1)Ean. Also, since U,NE,, = 0 for n # m, U, contains no points
of D("""'I)Eam. But since y # y’, U, contains no points of Dlentp
which is a contradiction.

For (ii), let n € w be fixed. Suppose W is an open neighborhood of y'.
Since y, — y’, there exists ng > n such that m > ny implies that y,, €
W. Since y,, € D= E, C DemE, Cc D(®r)E, C D(®»)E,, for all
m > ng, it follows that y' € D(e=*+DE, Hence 3’ € Necw Dle=tDp

For (iii), D'WE, = Ng<a PP Es C Nyeu D=tV E,  and since for
all B < a, there exists n € w such that 8 < a, + 1 and DtV E, ¢
DB E,,. it follows that MNhew Dt p = DE, . Hence DE, =
nnew D(a"+l)Ea-

Now let

Xo = (J Xe) U (J (1) % Ba) U (10, 5] % {3')).

n€w new

Then X, is a subspace of [0,1]2. Let f = m|x, -

Then f: X, — FE4 is a map and f is an extension of each ms| R

(i) We claim that each fiber f~(y) is compact.

The proof is the same as the proof of Case 2(3).

(ii) We claim that f is a-compact-covering.

Let E C E, be countable and compact with D(®E = §.

If y' is not a cluster point of E, then by the same argument as used
in Case 2, F can be lifted to a compact subset of E,.
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Suppose y' is a cluster point of E. Since D(®E = Ng<a DPE =14,
there exists an, < a with D@tV E = § and so D(®=)E is finite. As in
the proof of subcase ii) of Casc 2, we may assume that there is some
i € w such that if m > i, then D) (ENE,_) = 0; but if n < 1, then
De)(E N Ea,) = {ya.

By the inductive assumption (a.,-compact-covering) applied to the
case D(*)(EN E, ) = 0 above, for each m > i there exists a compact
set C, C Xa,, such that m|x, [Cwm] = EN E,,. Then Cp, is also
compact in X4 and f[Cr| = ENE,,,.

Let C' = cl(lJ,,5; Cm). Then C’ is clearly compact. Also by the same
argument as in the proof of Case 2, C' C |J,.5; Cr U([0, 1] x {¢'}), and
flC'1=U,,>;(EN E,_\U{y'}. Also for every n < i, y' is not a cluster
point of E N E,_ and so as in the previous case, there exists a compact
set Cp, C Xqo such that f[Cn] = ENE,,. Let C" = |J,;Cn- Then
C" is a compact subset of X, such that f[C"] = |J,,(E N E,,) Let
C = C'UC". Then C is a compact subset of X, and f[C] = E. Hence
f is a-compact-covering.

(ii1) As in the proof of Case 2(ii1), we can show that F, cannot be
lifted to a compact subset of X, (and hence f is not a + l-compact-
covering).
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