A GENERALIZATION OF LICHNEROWICZ'S THEOREM

Ok Kyung Yoon

1. Introduction

Let M be a compact Riemannian n-manifold and let λ_{1} be the first nonzero eigenvalue of the Laplace operator acting on the space of \mathcal{C}^{∞} functions on M. Then Lichnerowicz has proved the following [Lic]: If the Ricci curvature satisfies Ric $\geq(n-1) k$ for some constant $k \in \mathbb{R}$, then $\lambda_{1} \geq n k$. In this paper we prove the following generalization.

Theorem. Let $E \rightarrow M$ be a flat Riemannian vector bundle and let λ_{1} be the first nonzero eigenvalue of the Laplace operator acting on the space of smooth sections of E. If $\operatorname{Ric}^{E} \geq(n-1) k$ for some $k \in \mathbb{R}$, then $\lambda_{1} \geq n k$.

We will soon describe the meaning of the Ricci curvature Ric ${ }^{E}$ for the vector bundle E, which is equal to the ordinary Ricci curvature when E is the trivial line bundle. Clearly the above theorem generalizes the theorem of Lichnerowicz. The precise condition will be explained in 4.1.

The eigenvalues of the Laplacian Δ of a flat connection D are important to understand the heat trace $Z(t)=\sum e^{-\lambda t}$, or the zeta function $\zeta(s)=\sum_{\lambda \neq 0} \lambda^{-s}$, where λ runs through the spectrum of the Laplacian. These study are related to the index problem [APS] and analytic torsion [Fay, BZ].

For the proof, we use the Weitzenböck formula [Wu , Bou], which is briefly reviewed in section 2. This technique is often used to prove various vanishing theorems (2.2). It is also used in the study of gauge theory [BL, FU].

2. Weitzenböck formula

Let $E \rightarrow M$ be a Riemannian vector bundle with a compatible Riemannian connection D over a compact Riemannian manifold M. Then we have the induced exterior derivative

$$
d_{D}: A^{p}(E) \rightarrow A^{p+1}(E),
$$

where $A^{p}(E)=A^{0}\left(\wedge^{p} T M^{*} \otimes E\right)$ denotes the space of smooth p-forms on M with values in E. Let d_{D}^{*} denote the formal adjoint of d_{D} and let $\Delta=d_{D} d_{D}^{*}+d_{D}^{*} d_{D}$ be the Laplacian. We denote the covariant derivative by

$$
\nabla: A^{0}\left(\wedge^{p} T M^{*} \otimes E\right) \rightarrow A^{0}\left(T M^{*} \otimes \wedge^{p} T M^{*} \otimes E\right)
$$

and its formal adjoint by ∇^{*} so that $\nabla^{*} \nabla$ is the rough Laplacian. An element $\xi \in A^{p}(E)$ is said to be harmonic if $\Delta \xi=0$ and said to be parallel if $\nabla \xi=0$. Since the anti-symmetrization of $\nabla \xi$ is equal to $d_{D} \xi$, a parallel section $s \in A^{0}(E)$ is harmonic.

We also define a vector bundle endomorphism

$$
\mathcal{R}^{p}: \wedge^{p} T M^{*} \otimes E \rightarrow \wedge^{p} T M^{*} \otimes E
$$

as follows: Let v_{1}, \ldots, v_{n} be an orthonormal basis for the tangent space $T M_{m}$ of M at a point $m \in M$, and let $\theta^{1}, \ldots, \theta^{n} \in T M_{m}^{*}$ denote the dual basis. Then

$$
\mathcal{R}^{p}(\xi):=-\sum_{i, j=1}^{n} \theta^{i} \wedge \operatorname{int}\left(v_{j}\right) R_{v_{i} v_{j}}^{p}(\xi), \quad \forall \xi \in\left(\wedge^{p} T M \otimes E\right)_{m}
$$

where R^{p} denotes the curvature tensor for the bundle $\wedge^{p} T M^{*} \otimes E$, and $\operatorname{int}(v): \wedge^{p} T M^{*} \otimes E \rightarrow \wedge^{p-1} T M^{*} \otimes E$ denotes the interior product. The operator \mathcal{R}^{p} is well-defined, i.e., independent of the choice of orthonormal basis v_{1}, \ldots, v_{n}. It is easy to see that \mathcal{R}^{p} is self-adjoint. When E is the trivial line bundle and $p=1$, we have

$$
\mathcal{R}^{1}=\operatorname{Ric}: T M^{*} \rightarrow T M^{*},
$$

the (dual of the) ordinary Ricci curvature of M.

Now the Weitzenböck formula says that

$$
\begin{equation*}
\Delta=\nabla^{*} \nabla+\mathcal{R}^{p} \quad \text { on } A^{p}(E) \tag{2.1}
\end{equation*}
$$

This is an easy consequence of the following identities:

$$
\begin{aligned}
& d_{D} \xi(m)=\sum_{i} \theta^{i} \wedge \nabla_{v_{i}} \xi \\
& d_{D}^{*} \xi(m)=-\sum_{i} \operatorname{int}\left(v_{i}\right) \nabla_{v_{i}} \xi
\end{aligned}
$$

for any $\xi \in A^{p}(E)$.
For sections $\xi_{1}, \xi_{2} \in A^{p}(E)$, we have a pointwise inner product $\left\langle\xi_{1}, \xi_{2}\right\rangle$ and its total integral

$$
\left\langle\left\langle\xi_{1}, \xi_{2}\right\rangle\right\rangle:=\int_{M}\left\langle\xi_{1}, \xi_{2}\right\rangle \delta g
$$

where δg denotes the Riemannian density of M.
The Weitzenböck formula is often used to prove vanishing theorems, e.g.,

Corollary 2.2. Suppose $\left\langle\left\langle\mathcal{R}^{p} \xi, \xi\right\rangle\right\rangle \geq 0$ for any $\xi \in A^{p}(E)$. Then the dimension of the space of harmonic sections of $\wedge^{p} T M^{*} \otimes E$ is less than or equal to $r\binom{n}{p}$, where r is the rank of E. If $\left\langle\left\langle\mathcal{R}^{p} \xi, \xi\right\rangle>0\right.$ for any nonzero $\xi \in A^{p}(E)$, then there are no nontrivial harmonic sections in $A^{p}(E)$.

Proof. Note that if $\xi \in A^{P}(E)$, then the Weitzenböck formula (2.1) implies, after the integration, that

$$
\langle\langle\Delta \xi, \xi\rangle\rangle=\|\nabla \xi\|^{2}+\left\langle\left\langle\mathcal{R}^{p} \xi, \xi\right\rangle\right\rangle
$$

Thus if ξ is harmonic, then

$$
0=\|\nabla \xi\|^{2}+\left\langle\left\langle\mathcal{R}^{p} \xi, \xi\right\rangle\right\rangle
$$

Thus the condition implies that ξ is parallel and hence it is determined by its value at a point. Now the conclusion is trivial.

3. Hessian

For a section s of $E \rightarrow M$, the Hessian of s is a bilinear bundle homomorphism

$$
\operatorname{Hess} s: T M \times T M \rightarrow E
$$

defined by

$$
(\operatorname{Hess} s)(V, W)=\nabla_{V W}^{2} s
$$

where V and W are vector fields on M and $\nabla_{V W}^{2} s:=\nabla_{V} \nabla_{W} s-\nabla_{\nabla_{V} W} s$. Note that

$$
(\text { Hess } s)(V, W)-(\text { Hess } s)(W, V)=R_{V W}^{E} s
$$

In particular, Hess s is symmetric if and only if D is flat.
Lemma 3.1. $|\operatorname{Hess} s|^{2} \geq \frac{1}{n}|\Delta s|^{2}$ for any $s \in A^{0}(E)$.
Proof. Fix a point $m \in M$ and an orthonormal frame field V_{1}, \ldots, V_{n} for the tangent bundle $T M$ of M around m such that $\nabla V_{i}(m)=0$ for all $i=1, \ldots, n$. Then

$$
\begin{aligned}
|\operatorname{Hess} s|^{2}(m) & =\sum_{i, j}\left|\nabla_{V_{i} V_{j}}^{2} s(m)\right|^{2}=\sum_{i, j}\left|\nabla_{V_{i}} \nabla_{V_{j}} s(m)\right|^{2} \\
& \geq \sum_{i}\left|\nabla_{V_{i}} \nabla_{V_{i}} s(m)\right|^{2} \geq \frac{1}{n}\left(\sum_{i}\left|\nabla_{V_{i}} \nabla_{V_{i}} s(m)\right|\right)^{2} \\
& \geq \frac{1}{n}\left|\sum_{i} \nabla_{V_{i}} \nabla_{V_{i}} s(m)\right|^{2}=\frac{1}{n}|\Delta s|^{2}(m)
\end{aligned}
$$

This completes the proof.

4. Proof of the Theorem

We now assume that D is flat and

$$
\begin{equation*}
\left\langle\left\langle\mathcal{R}^{1} \xi, \xi\right\rangle\right\rangle \geq(n-1) k\|\xi\|^{2}, \quad \forall \xi \in d_{D}\left(A^{0}(E)\right) \subset A^{1}(E) \tag{4.1}
\end{equation*}
$$

Let $s \in A^{0}(E)$ be a nonzero λ_{1}-eigensection for the Laplacian Δ. Then by the Weitzenböck formula (2.1),

$$
\begin{aligned}
\left\langle\left\langle\Delta d_{D} s, d_{D} s\right\rangle\right\rangle & =\left\langle\left\langle\nabla^{*} \nabla d_{D} s, d_{D} s\right\rangle\right\rangle+\left\langle\left\langle\mathcal{R}^{1} d_{D} s, d_{D} s\right\rangle\right\rangle \\
& \geq\left\|\nabla d_{D} s\right\|^{2}+(n-1) k\left\|d_{D} s\right\|^{2} \\
& =\|\operatorname{Hess} s\|^{2}+(n-1) k\left\|d_{D} s\right\|^{2} \\
& \geq \frac{1}{n}\|\Delta s\|^{2}+(n-1) k\left\|d_{D} s\right\|^{2} \quad \text { by }(3.1) \\
& =\frac{\lambda_{1}}{n}\left\|d_{D} s\right\|^{2}+(n-1) k\left\|d_{D} s\right\|^{2} \quad \text { since } \Delta s=\lambda_{1} s
\end{aligned}
$$

Since D is flat, Δ commutes with d_{D} and hence the left hand side is equal to

$$
\left.\left\langle\Delta \Delta d_{D} s, d_{D} s\right\rangle\right\rangle=\left\langle\left\langle d_{D} \Delta s, d_{D} s\right\rangle\right\rangle=\lambda_{1}\left\|d_{D} s\right\|^{2} .
$$

Thus we have

$$
\lambda_{1}\left(1-\frac{1}{n}\right)\left\|d_{D} s\right\|^{2} \geq(n-1) k\left\|d_{D} s\right\|^{2} .
$$

Since $\lambda_{1} \neq 0$, we have $d_{D} s \neq 0$ and hence $\lambda_{1} \geq n k$. This completes the proof.

References

[APS] M. F. Atiyah, V. K. Patodi and I. M. Singer, Spectral asymmetry and Riemannian Geometry. I, II, III, Math. Proc. Cambridge Philos. Soc., 77 (1975), 43-69; 78 (1975), 405-432; 79 (1976), 71-99.
[BZ] J.-M. Bismut and W. Zhang, An extension of a theorem by Cheeger and Müller, Astérisque, 205 (1992).
[Bou] J. P. Bourguignon, Formules de Weitzenböck en dimension 4, Géometrie riemannienne en dimension 4, CEDIC, Paris, 1981.
[BL] J. P. Bourguignon and H. B. Lawson, Jr., Stability and the isolation phenomena for Yang-Mills fields, Comm. Math. Phys. 79 (1981), 189-230.
[Fay] J. Fay, Kernel Functions, Analytic Torsion, and Moduli Spaces, Mem. Amer. Math. Soc., No. 464, 1992.
[FU] D. Freed and K. K. Uhlenbeck, Instantons and four manifolds, Publ. MSRI, Springer, 1984.
[Lic] A. Lichnerowicz, Géometrie des groupe de transformations, Dunod, 1958.
[Wu] H. Wu, The Bochner Technique, Beijing Symposium, Science Press, Beijing, and Gordon and Breach, New York, 1982.

Department of Mathematics
Seoul National University
Seoul 151-742, Korea

