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A GENERALIZATION OF
LICHNEROWICZ’S THEOREM

OK KYUNG YOON

1. Introduction

Let M be a compact Riemannian n-manifold and let A\; be the first
nonzero eigenvalue of the Laplace operator acting on the space of C*®
functions on M. Then Lichnerowicz has proved the following [Lic]: If
the Ricci curvature satisfies Ric > (n — 1)k for some constant k € R,
then Ay > nk. In this paper we prove the following generalization.

THEOREM. Let E — M be a flat Riemannian vector bundle and let
A1 be the first nonzero eigenvalue of the Laplace operator acting on the
space of smooth sections of E. If Ric? > (n — 1)k for some k € R, then
A]_ Z nk

We will soon describe the meaning of the Ricci curvature Ric® for the
vector bundle F, which is equal to the ordinary Ricci curvature when
E is the trivial line bundle. Clearly the above theorem generalizes the
theorem of Lichnerowicz. The precise condition will be explained in 4.1.

The eigenvalues of the Laplacian A of a flat connection D are impor-
tant to understand the heat trace Z(t) = Y e, or the zeta function
(s) = D_xze0 A7, where A runs through the spectrum of the Laplacian.
These study are related to the index problem [APS] and analytic torsion
[Fay, BZ].

For the proof, we use the Weitzenbéck formula [Wu, Bou], which
is briefly reviewed in section 2. This technique is often used to prove
various vanishing theorems (2.2). It is also used in the study of gauge

theory [BL, FUJ.
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2. Weitzenbock formula

Let E —» M be a Riemannian vector bundle with a compatible Rie-
mannian connection D over a compact Riemannian manifold M. Then
we have the induced exterior derivative

dp : AP(E) — APYY(E),

where AP(E) = A%(APTM* @ E) denotes the space of smooth p-forms
on M with values in E. Let d}, denote the formal adjoint of dp and let
A = dpd} +dpdp be the Laplacian. We denote the covariant derivative
by

V:AYANTM* Q@ E) — AY(TM* ® AP TM* ® E)

and its formal adjoint by V* so that V*V is the rough Laplacian. An
element £ € AP(E) is said to be harmonic if Aé = 0 and said to be
parallel if V& = 0. Since the anti-symmetrization of V¢ is equal to dpé,
a parallel section s € A°(E) is harmonic.

We also define a vector bundle endomorphism

RP :NPTM*QFE —- NPTM*QFE

as follows: Let vy,...,v, be an orthonormal basis for {:he tangent space
TM,, of M at a point m € M, and let #*,...,6" € TM}, denote the
dual basis. Then

RP(E) := — zn: ¢ Aint(v;)RE, (€), V&€ (NTM ® E)n,

i,5=1

where R? denotes the curvature tensor for the bundle APTM* ® E, and
int(v) : NTM*Q®E — AP"!'TM* ® E denotes the interior product.
The operator R? is well-defined, i.e., independent of the choice of or-
thonormal basis vy,...,v,. It is easy to see that R? is self-adjoint.
When E is the trivial line bundle and p = 1, we have

R! = Ric: TM* - TM*,

the (dual of the) ordinary Ricci curvature of M.
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Now the Weitzenbock formula says that
(2.1) A=V*'V4+R?P on AP(E).

This is an easy consequence of the following identities:
dpf(m) = 6" AV,.&
bE(m) == int(v:) Vi

for any £ € AP(E).
For sections &3, £, € AP(E), we have a pointwise inner product (&3, £5)
and its total integral

(6, 60) / (61, 62) b9

where 6g denotes the Riemannian density of M.
The Weitzenbock formula is often used to prove vanishing theorems,

e.g.,
COROLLARY 2.2. Suppose ((RPE,€)) > 0 for any £ € AP(E) . Then

the dimension of the space of harmonic sections of AP TM* ® F is less
than or equal to r(:), where r is the rank of E. If (RP¢,£)) > 0 for any

nonzero £ € AP(E), then there are no nontrivial harmonic sections in

AP(E).

Proof. Note that if { € AP(E), then the Weitzenbock formula (2.1)
implies, after the integration, that

(AL, 6) = IVEP + (RPE, €).
Thus if £ is harmonic, then
0= [VE|* + (RPE, &)

Thus the condition implies that £ is parallel and hence it is determined
by its value at a point. Now the conclusion is trivial.
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3. Hessian

For a section s of E — M, the Hessian of s is a bilinear bundle
homomorphism

Hesss: TM xTM — E

defined by
(Hess s)(V, W) = Vi, s,

where V and W are vector fields on M and V%, ;s := Vi Viys— Vv, ws.
Note that

(Hesss)(V,W) — (Hess s)(W,V) = RE 5.
In particular, Hess s is symmetric if and only if D is flat.
LEMMA 3.1. |Hesss|?> > L|As|? for any s € A°(E).

Proof. Fix a point m € M and an orthonormal frame field V;,...,V,
for the tangent bundle TM of M around m such that VV;(m) = 0 for
all:=1,...,n. Then

|Hess s|’(m) = > [V s(m)f = ) Vv, Vi s(m)]?
i, ] 1,5

t
2 |

_ Ll
= ~|Asl’(m).

> Z Vv, Vy;s(m)|? > i— (Z |Vv,-VV.-8(m)l)

1
> =
n

> V% Vys(m)
This completes the proof.

4. Proof of the Theorem

We now assume that D is flat and

(41)  (RI&E) = (n—DEIEP, V¢ e dp(A°(E)) C AN(E).




A generalization of Lichnerowicz’s theorem 721

Let s € A°(E) be a nonzero Aj-eigensection for the Laplacian A.
Then by the Weitzenbock formula (2.1),

«AdDS,dps» = «V*Vdps,dps» + «Rldps,dps»
> |Vdps|? + (n — 1)k]dps}?
| Hess 5] + (n — 1)k||dps|®

v

ASE + (n ~ DHdpsl by (3.)

A
—n—1||dD.s||2 + (n—1)k]dps|® since As = A;s.

Since D is flat, A commutes with dp and hence the left hand side is
equal to
«AdDS,dDS» = «dDA.S,dDS)) = >\1I|dDSHZ.

Thus we have
1
Ml - ;)lldDS“2 > (n —1)k|dps|*.

Since A\; # 0, we have dps # 0 and hence A; > nk. This completes the
proof.
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