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A NOTE ON ASYMPTOTIC

GAUSS-BONNET THEOREMS

YOUNG WOOK KIM

1. Introduction

The total curvature on a Riemannian surface M is defined to be the
improper integral over M of Gaussian curvature G :

c(M):= 1M GdVM,

where dVM is the volume form of M. In [10, 11], Shiohama and Shioya
studied the behavior of geodesic rays on ends of noncompact, complete,
finitely connected, Riemannian surfaces which admit total curvature and
they found a relation between the amount of rays and the total curvature.

If M admits total curvature, i.e. the total curvature integral converges,
the Cohn-Vossen inequality{2J says that

c(M) :::; 21l"X(M),

where X(M) is the Euler characteristic of M. Obviously the total cur­
vature depends on the Riemannian metric involved and, therefore, is
not a topological invariant. There arises the question if one can explain
geometrically the meaning of the total curvature. This is from the philos­
ophy that the difference between 21l"X(M) and the total curvature must
tell us about the asymptotic geometry at the opening of the manifold at
the infinity.

Following the work of Maeda[5] and Shiga[6, 7], Shiohama found sev­
eral geometric properties of complete surfaces admitting total curva­
tures.[8, 9, 10] His work depends essentially on the earlier investigations
of Fiala[3] and Hartman[4]. Fiala described in several ways how to fill
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the gap in the Cohn-Vossen inequality and generate an equality out of it.
His work depends on explicit fonnula on the derivative of the length of
geodesic circles and is done in the setting of analytic metrics. Hartman
described the behavior of the geodesics orthogonal to a given curve and
generalized Fiala's work to smooth metrics.

Shiohama generalized Fiala's and Hartman's results and explained the
relationships between total curvature and geometric behavior at the ends
of the manifold which is given below. A ray is, by definition, a geodesic
defined on [0, (0) such that it is distance minimizing between any pair of
points on it. Let P E M and define Ap be the set of unit tangent vectors
at P which is tangent to rays emanating from p. We denote by p. the
standard measure on the unit circle in the tangent space T pM.

THEOREM 1. (Shiohama[10]) Assume tbat a Riemannian surface witb
one end admits total curvature c(M) witb 2?rX(M) = c(M) < 2?r. Let
Pi be an arbitrary divergent sequence of points in M. Tben

.lim p(Api) = 2?rX(M) - c(M).
z-.oo

This theorem is particularly interesting because it shows geometrically
what happens at the ends of a complete manifold. The situation is
considered analogous to a compact manifold from which a disk is cut
off in which case the total curvature is related to the total geodesic
curvature of the boundary by the Gauss-Bonnet formula. Therefore
sl:lch a fonnula on complete Riemannian surfaces can be considered as
a generalized Gauss-Bonnet formula. The consideration of the set of
rays is closely related to the compactification by Anderson and Schoen
of the manifolds with bounded negative curvature [1]. The geometry
of ideal. boundary is being studied by some of the mathematicians. (Cf.
[12]) Following Shiohama, Shioya generalized the result to the case when
2?rX(M) - c(M) ~ 2?r and found that the limit equals 2?r. [11]

When M is multiply connected the proof of the theorem involves some
technical difficulties, but the essential argument lies in the case when M
is simply connected. Also the essential features of the theorem is easily
seen under this assumption. In this paper we prove both cases at the
same time and show the essential. feature of the theorem. This will also
simplify some of their arguments. For some of the lemmas, just the
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sketches of the proofs will be given. From now on we assume that the
topology of M is trivial so that M is diffeomorphic to JR2.

2. Definitions

For geometric definitions and the facts we state in this section, we
mostly follow Shiohama[8] and Shioya[ll], which are referred to for de­
tailed investigations of the geometry of radial geodesics and cut loci. Let
M be as defined above. We fix a compact connected set K in M so that
the total curvature c(K) of K is almost that of M, i.e. Ic(K)-c(M)1 <.. t

for t > 0 sufficiently small. Take a point p outside K. This point will
eventually diverge to infinity and we may assume that it is sufficiently
far away. Now take a real number R > 0 and consider the closed geodesic
ball B(p, R), where R is chosen so large that B(p, R) contains K. Let
A(p) be the set of rays emanating from p. Here we may either consider
each ray as the set of points on it, or associate a unit tangent vector to
the ray in T pM and consider A(p) as a subset of the unit circle S(p) in
the tangent space. Also we denote by fL the Lebesgue measure on the
unit circle. This way we can talk about the measure of rays or geodesics
emanating from p. Ap(K) denotes the set of rays in A(p) intersecting
K, and A~(K) denotes the closure of the set of those in A(p) which do
not intersect the interior of K. Since a limit of rays is a ray again, A(p)
is closed and S(p) \ A(p) consists of (at most) countably many disjoint
open intervals of rays.

For each point q E 8K there is a minimizing geodesic joining p and
q. All such geodesic directions form a compact subset of the unit circle
in TpM, of which the measure is denoted by Op(K). Let Op(K) be the
inner angle of D K at p.

3. Asymptotic Gauss-Bonnet formula

The most interesting case for our purpose is when the total curvature
converges to a finite limit so that outside a compact set the total curva­
ture is almost zero. But we do not assume that the curvature is bounded
uniformly or by any radial function. In our discussion of Theorem 1, we
will generalize some of their results so that one can argue both cases at
the same time.

The most important result of all that will be used in this paper is the
geometry of the boundary curve of the geodesic ball and the cut locus
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of a given curve which goes back to Fiala[3] and Hartman[4] and later
was improved by Shiohama.[8] For these we state only very briefly and
refer the readers to the references above. For our purpose we only need
to consider the geodesic balls and the cut loci of a point p. In our case of
surfaces with total curvature, the boundary curves of geodesic balls are
all homeomorphic to a circle for sufficiently large radii, and are piecewise
smooth for almost every radii, i.e. except for a measure-zero set of radii.
The cut locus consists of several continuous curves diverging to infinity
which are disjoint from each other. The minimizing geodesics from a cut
point to p bounds a disk domain which is monotone increasing as the
cut point moves along the cut locus. The sum of inner angles between
the pairs of geodesics at all the cut point of distance R of such domains
approaches 0 as R approaches infinity.

On B(p, R), consider all the minimizing geodesics joining p and the
boundary points of the ball which does not meet K. Denote by DK(R)
the closure of union of all the disk domains disjoint from K and bounded
by two such geodesics and the boundary of the ball. Let O~(K,R) the
inner angle of DK(R) at p and let

O~(K) = lim O~(K,R).
R .....=

LEMMA 1. (1) Op(K) ---+ 0 as p approaches infinity.
(2) O~(K, R) ---+ p(A~(K)) as R ---+ 00.

(3) p(A~(K)) - p(A(p)) -t 0 as p approaches iDiinity.

(1) holds for arbitrary compact K. It says that the viewing angle of
a compact set from a point gets arbitrarily small as one walks away to
infinity.

The proof of (1) of the Lemma 1 is a repeated application of arguments
in the proof of Theorem A and C of Shiohama in [8]. (2) of the Lemma
1 holds because A~(K) C DK(R) and the radial boundary curves of
D K(R) converge to those of A~(K) as R approaches infinity, and also
because this convergence is uniform in any compact sets.(There may be
countably infinite number of radial geodesic boundary curves of A~(K).)
(3) is an immediate consequence of (1).

LEMMA 2 (Asymptotic Gauss-Bonnet formula of Fiala-Hartman[3,4]).
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H we denote by Lp(R) tbe lengtb of tbe boundary curve of B(p, R) tben

lim Lp(R) = 27f - c(M).
R-+oo R

Using this lemma and the fact that the subdomain of B(p, R) \ A(p)
covered by minimizing geodesics from p to the boundary of the ball

.shrinks in its width uniformly on compact sets, we easily get the following

COROLLARY. Let C'(p, R) be tbe boundary of B(p, R) not lying in
A(p) and L(C'(p, R)) tbe lengtb of C'(p, R), tben as R approaches 00

(1) limL(C'(p, R))jR = 0, and
(2) lim JC/(p,R) Kg = O.

Therefore the role of the boundary of the ball, in the asymptotic
geometry of the domain DK(R), is only important on the portion lying
in the set Ap(K).

LEMMA 3 (Shiohama[10]). Let D be a domain bounded by two rays
emanating from a point p and assume tbat tbere is no otber ray from
p in it. Tben tbe total curvature of tbe domain equals tbe inner angle
between tbe two rays at p.

The following lemma is due to Cohn-Vossen and found in Shioya[ll].

LEMMA 4. Let D be a domain bounded by piecewise smootb curves
and tbe boundary curve c is bomeomorpmc to JR. If cl( -00, a), cl[b, 00)

are geodesics for some a,b E lR, and ifdD(c(t),c(-t)) ~ 2t - r for all
t.2: 0 and for some constant r, tben

c(D) :::; 27fX(D) - 27f - K(D),

wbere dD is tbe induced inner distance on tbe closure of D and K(D) is
tbe total geodesic curvature of D.

Using the standard Gauss-Bonnet formula, one deduces the following

THEOREM A. (1) If tbere is no ray from p tbrougb K,

lim lim [27f - O~(K, R)] = c(M).
p-+oo R-+oo
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(2) H tbere is a ray from Pi through K for a sequence Pi ---4 00, tben
there is a line tbrough K and

lim lim [211" - 8~(K, R)] = O.
p-oo R-+oo

Proof. (1) is obvious from Lemma 1(1) and the Gauss-Bonnet for­
mula. For (2), first we observe the following. For a ray 1i from Pi
through K, choose a point qi on 1i n K. Since the points qi lies inside
a compact set the direction vectors at qi of 1i'S have a convergent sub­
sequence in the tangent bundle. The limit is a geodesic line f passing
through K. Without loss of generality, we may consider only those 1/S
converging to the line. Now assume that 211" - a~.(K) stays 2:: a > O.
From Lemma 1 (1), the viewing angle from Pi of K is negligible com­
pared to a. Therefore there is an open disk domain Ei for each i, whose
boundary consists of one of the rays which bounds Dk:(R), a ray which
bounds APi (K) so that the inner angle 'l/Ji at Pi is still staying away
from 0 and there is no other ray from Pi inside the domain. Moreover,
UiEi = H is the half plane bounded by f. Since 'l/Ji = K(Ei), we have

0< lim'l/Ji = limc(Ei ) = c(H):::; -K(H) = 0,

which is a contradiction. This completes the proof.

This theorem together with the lemmas above gives the results of
Shiohama and Shioya. When c(M) 2:: 0, from Lemma 1 and 3 we get
1211" - p(A(p)) - c(K)1 < E. As we increase K to exhaust M and move P
to infinity accordingly, we see that

211" - c(M) = limp(A(p)).

When -00 < c(M) < 0, same argument as above works if there is no
geodesic line through K. If there is one, then again Theorem A(2) gives
the desired result;

211" =limp(A(p)).

Now to understand the geometry of the surfaces with finite total cur­
vature, it is instructive to observe the following simple fact. We look at



A note on asymptotic Gauss-Bonnet theorems 715

the domains consisting of minimizing geodesics joining p and boundary
points of B(Pi R) which lie inside DK(R), We consider the closed set of
radial geodesics which form a smooth normal variation. This is possi­
ble because of the fact that for almost all sufficiently large radius the
boundary circle is a piecewise smooth curve. Now consider the geodesic
normal coordinate on those geodesic variations. The Riemannian metric
on these geodesics are given by

where r is the distance from P and 0 is the angle at p. Then 8/80 being
a Jacobi field, the Gaussian curvature function G satisfies the equation

f" + G f = 0,

where the differentiation is with respect to r. Therefore on a sector S
covered by such a variation, the total curvature formula is

f G = { f -ff" . f dO dr = { f -fll dO dr
~o,~ ~o,~

= f -L"dr = Ls(O+) - Ls(R),
J[O,Rj

where Ls(r) is the length of the arc of the circle of radius r in S. Thus
the existence of a finite total curvature means the existence of the limit
of L~(R) as R ---t 00. And hence the existence of total curvature suggests
the similarity of such surfaces to that of a Euclidean cone. This is an
infinitesimal version of Fiala and Hartman. From this viewpoint, in the
case of negative total curvature, the measure of rays considered by Shioya
is not showing the asymptotic geometry in the part of the rays through
the set of concentration of the curvature. This we hope to investigate in
a forthcoming paper.
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