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GEOMETRIC INVARIANTS FOR LIAISON OF SPACE
CURVES LYING ON A SMOOTH CUBIC SURFACE

Kyung HYE CHo

0. Introduction
Let k£ be an algebraically closed field and let S = k[zg, 21, z2,23]). By

a curve we mean a closed, one-dimensional subscheme of P? which is
equidimensional and locally Cohen-Macaulay. We say that two curves
C and C' in P? are directly linked by a complete intersection X of two
surfaces, written C ~x C', if

(1) C, C' have no component in common,

(2) CUC’ = X scheme theoretically (i.e., Ic NI = Ix).

C is linked (resp. evenly linked, oddly linked) to C' if C' can be
obtained from C by a finite (resp. even, odd) succession of direct links.
We then write C ~ C' (resp. C ~, C', C ~, C'). The equivalence
relation generated by direct linkages is called liaison. It was shown in
[LR] that for a general smooth irreducible curve C' C P? of sufficiently
large degree, if C' is a curve linked to C, other than C itself, then
deg(C") > deg(C) and P,(C’) > P,(C). Accordingly if C and C' are
curves with the same degree and genus, then they are not linked. In this
note we study what the geometric invariants are if C is linked to C' of
the same degree d and genus g wheng =2, d=6: ¢ =3, d=7. And
these invariants will narrow down the possibilities for C' to be linked
to C' with the same degree d and genus g. Hence these curves will be
examples to demonstrate that results in [LR] are also true for curves
with small degree.

1. Preliminaries

The main result concerning liaison equivalence classes of curves in-
volves the Hartshorne-Rao module M(C) = ®p,ezH(P3?, Ic(n)):
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THEOREM 1.1. (a) (Hartshorne) If C ~x C' where I(X) = (Fi, F»)
and degF; = d; (t = 1,2), then M(C) & M'(C')(4 - d; — d3), where
M'(C'") = Homp(M(C"), k).

(b) (Rao) If M(C) = M(C')(v) for some v € Z, then C ~ C".

(c) (Rao) If M is any graded S-module of finite length, then there
exists a smooth curve C such that M(C) = M(v) for some v € Z.

Proof. See [R].

Let M = @®nezM, be a graded S-module of finite length, and let
S1 = H°(P3 0Ops(1)). The S-module structure of M is given by the
collection of vector space homomorphisms ¢, : §; — Homy(M,,, M,,41).
If we choose bases for M,, and M, 4y, and if L = agXo + a1 X7 + a2 X2 +
a3 X3 € 51, then ¢, can be viewed as a (dim M,4;) X (dim M,,) matrix
A, whose entries are linear polynomials in the a;.

DEFINITION 1.2. Let 1 < r + 1 < min{dim M,,,dimM,4+;}. Then
W, is the closed subscheme of (P3)* defined by all the (r + 1) x (r +
1) minors of A,, and V, ; is the variety on which W, , is supported.
Equivalently, Vi, = {L* € (P3)*|rk¢n(L) < r}, and from this we
extended the definition of V,, » to include all integers n and r.

Note that V,, , C V,, 41 for all r, and V, , = (P3)* for r > 0 and we
shall be primarily concerned with the last V, , which is a proper subva-
riety of (P3)*. On the other hand the varieties V,, , are independent of
the choice of vector space bases for the M,,. Hence they are isomorphism
invariants of the module M. Furthermore, since the transpose matrix
*$,(L) has the same (r + 1) X (r + 1) minors, it follows that the dual
module M’ = Hom(M, k) has the same collection of varieties V,, ., but
in the reverse order: V,, . = V_,_;,. Finally, it is clear that they are
preserved under shifts of M or M'. Therefore V,, , are invariants of a
given liaison class by Theorem 1.1.

The following fact, relating the degrees and arithmetic genera of linked
curves, is often useful:

LEMMA 1.3. Let C ~x C' as above. Then
(a) degC’' = dydy — degC.
(b) Pu(C") — Po(C) = 2(dy + da — 4)(degC’ — degC).

Proof. See [M1] p. 550.
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LEMMA 1.4. Let C € P" (r > 2) be an irreducible nondegenerate,
possibly singular, curve of degree d. Then a general hyperplane meets
C in d points any r of which are linearly independent.

Proof. See [ACGH] p. 109.

LEMMA 1.5. Let A be a ¢ X p matrix of linear forms in m+1 variables,
and let Y, be the subscheme of P™ defined by the vanishing of the
(r+1) x (r + 1) minors of A. Y, # 0 has the expected codimension

(p—r)(g—r), then

o))

=0
Proof. See [M1] p. 550.

2. Main results

THEOREM 2.1. Let C be an irreducible nondegenerate smooth curve
of degree d in P3. Let M(C), = HY(P",Ic(l)). If M(C); = 0 for some
[l with 1> 012;3’ then M(C)i+; =0.

Proof. Let C'N H be a generic hyperplane section of C. Consider the
following exact sequence

0— Ic(l) — Ic(l+ 1) — ICnH(l + 1) —s 0.
Taking cohomology, we get
(1)
0 — HYP3, Ic(l)) = HY(P®, Ic(1+ 1)) —» HY(P?, Icnu(l+1)) — 0

since we assume M(C); = 0. On the other hand, in the following exact
sequence

0 — Ic(l) — Ops(l) — Oc¢(l) — 0,
by taking cohomology, we also get

0 — HY(P?, Ic(1)) — H°(P?,0ps(1)) — H°(P?,0c(l)) — O
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since M(C); = 0. Therefore we have

(+3)(+2(+1)

KB, I(l)) = :

(dl—g+1+7)

where 7 1s the index of specialty. Moreover, by general position theorem
any three points in C N H are linearly independent. Thus C N H =
Pi1," -+ ,Pq impose independent conditions on the homogeneous polyno-
mials of degree ! + 1 by Lemma 1.4 since d < 2] + 3. Therefore

(+3)(1+2)

5 d

RO (P% Ioap(l+ 1)) =
and hence we have from (1)

R(P?, Io(l + 1)) = B (P*, Ic(1)) + RO (P2, Ionu(l +1))
_U+90+3)(1+2)
6

(dl—g+:+1)—d.
Now consider the following exact sequence

0 —s HYP3 Ic(14+1)) — H(P?,0ps(i +1)) —
— H(C,00(1 +1)) — HY(P3,Ic(I+1)) — 0.

Because h%(P?, Ops(l+1)) = SN o1 100, O6(141)) = d(I+
1) — g+ 14 j where j is the index of specialty, we get h}(P*, Ic(I+1)) =
—i+j. But we also know that : > j and h!(P3,Ic(I+1)) > 0. Therefore
M(C)l+1 = 0

REMARK 2.2. In Theorem 2.1, | > 4—5—:’1 means that d < 21 + 3.
One can see that the above bound “d < 2] 4+ 3” is sharp as in the
following example.: Let C be a smooth irreducible curve of d = 6 and
g = 3 on a smooth quadric hypersurface in P3, then dim M(C); = 0 but
dim M(C); = 1. In thiscase, d=6=2-1+4=2[+4.

THEOREM 2.3. Let C and C' be smooth irreducible nondegenerate

curves of genus ¢ = 2 and degree d = 6.
(a) C (resp. C') lies on a cubic surface S (resp. S').
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(b) If S (resp. S') is smooth, then C (resp. C') has a unique quadric-
secant L, (resp. L) and a unique line L, (resp. L)) which lies on S
(resp. S') and disjoint from C (resp. C'). Moreover, Ly (resp. L})
meets Ly (resp. L}).

(¢) If C and C'’ lie on a smooth cubic surface then C ~ C' if and only
if LN Ly = L NI,

Proof. In the following exact sequence
0 — H°(P? Ic(l)) — HY(P3?, 0ps(l)) —
— H*(C,0¢(l)) — HY (P2, I(1)) — 0,
we see that h'(P3, Ic(1)) = 1, R} (P3,Ic(2)) = 1 and RY(P3,1(3)) > 3.
Let S; and S; be the cubic surfaces containing C, then S NS, = CUD
where degD = 3 and P,(D) = —1 by Lemma 1.3. Therefore D is the

disjoint union of a conic and a line. By simple calculation, we see that
dim M(D)y = dim M(D); = 1 and all other components are zero. And
hence we get dim M(C); = dim M(C); = 1 and all other components
are zero by Theorem 2.1.

On the other hand since C lies on a smooth cubic surface S, we have
C~al— Z?=1 b;e; where [ and e; are generators of PicS = Z7. Then

(%) a>0andb; >0 for each i,
a>b;+b; foreachi,j,
2a > Z b; for eachj

i#£]
because C is irreducible and smooth. Furthermore,
(1) degC =3a— Y b =6,
1 9 2 _
(2) Po(C) = 5(a ~y bi-d)+1=2.
Recall Schwarz’s inequality, which says that if zy,z9,... ,y1,y2... are

two sequences of real numbers, then

1D wl® <1 =i 1) 4l
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Taking z; = 1, y; = b;, : = 1,---,6, we find (3 5;)? < 6(3_b?). Sub-
stitute Y b; = 3a — 6 and Y b? = a? — 8 from (1) and (2), we obtain
a? — 12a + 28 < 0. Therefore we have 4 < @ < 8. We quickly find all
possible values of the b; satisfying (*) by trial and we see that there are
30 linear systems of smooth sextics with ¢ = 2 of type (a : ;) = (5 :
3,2,1,1,1,1) and 90 linear systems of type (a : b;) =(6:3,3,2,2,1,1).
Moreover, we know that a smooth cubic surface contains 27 lines i.e.,
E,~e, Fjj~l—e—e;,Gj~2]— Ei# e;. Consequently, we know
that in both cases C has a unique quadricsecant L; and a unique line
Ly on S which is disjoint from C by calculating intersection number and
using the facts that 2 =1, e? = —1,1-¢; =0 and e; - ¢; = 0 for ¢ # j.
Also these two lines meet in both cases and hence (b) is proved.
To prove (c), we consider the following exact sequence

0 — H(P?,Ic(1)) — H(P?,1(2) —
s BY(P?, Ienn(2) — M(C) 2B M(C), —

where H is the hyperplane defined by L = 0. Then L* € Vi =
{L* € (P*)*|rk¢y(L) < 0} if and only if A°(P?, Icnu(2)) = 1 since
RO(P3,1c(2)) = 0 and dim M(C); = dim M(C); = 1. This happens if
and only if either four points of C N H are collinear or C' N H lies on
an irreducible conic. Any plane H through the quadricsecant L; of C
meets C' in two more points and hence the six points of C N H lie on a
reducible conic. Thus L} € V; 9. Any plane H through the disjoint hne
L, from C meets S in the union of L; and a conic, so the six points of
C N H must be coconical. Hence L € V; 4.

Since C' does not lie on a quadric hypersurface, not every hyperplane
section of C' lies on a conic. Accordingly V; ¢ has the excepted codimen-
sion (1 —0)(1 —0) =1 and hence degV; o = 1 by Lemma 1.51.e., V] o is
hyperplane. Therefore V; ¢ must be the plane in (P*)* which is dual to
L, N Ly by the above paragraph. Since Vj g is the invariant of a given
liaison class, the conclusion follows.

THEOREM 2.4. Let C be a smooth irreducible nondegenerate curve
of degree d = 7 with genus ¢ = 3 in P3. Then dimM(C); = 1,
dim M(C), = 2, and all other components are zero.
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Proof. In the following exact sequence
0 — H(P*, Te(1) — HO(P*, Ops(1)) —>
I HO(Ca OC(Z)) - Hl(PS’IC(l)) —_— 03

we can see that h1(P3, Ic(1)) = 1, A} (P3,I¢(2)) = 2 and h*(P%1c(3)) >
1. Suppose that h°(P3,I-(3)) = 2 and let S; and S2 be cubic surfaces
containing C. Then S NS, = CUD, degD = 2 and P,(D) = -2
by Lemma 1.3. Therefore D is a double line lying on a smooth cubic
hypersurface.

Now look at the locus ¥ C G(1,19) of pencils of cubic surfaces whose
base locus consists of a curve of degree d = 7 with genus ¢ = 3 and a
double line, and at the map 7¢, 7p of ¥ to I7 3 ; and H; _, ; where the
general members of I7 ; , are smooth irreducible nondegenerate curves
of degree d = 7 with genus ¢ = 3 and the general members of H; _, 3
are double lines with arithmetic genus P, = —2. Then we know that
dim I7 5 3 = 28 and dim Hy _, ; = 7 (see [EH] p.34 and p.61). Let A be
the underlying line of D, then we have the following exact sequence

O'—>0)‘(1)——>0D———>(9,\——)0.
Twisting by 3 and taking cohomology, we obtain

0 — H(X, 0x(4) —H*(D,0p(3)) —

— H(X,0A(3)) — H'(X, 0x(4)) — .
Then we have R%(D,0p(3)) = hO(A,0x(4)) + R%(A\,0:(3)) =5+4=9
since h'(A, Ox(4)) = 0. Therefore in the following exact sequence

0 — HY(P®,Ip(3)) — H(P?,0ps(3)) —

— H%(D,0p(3)) — M(D); — 0,
we have h%(P3,Ip(3)) = 11 because dim M(D); = 0 (see [M2] p.179).
Since the generic residual intersection of a pair of those cubics containing
D 1s indeed a smooth curve of degree 7 with ¢ = 3, 7mp 1s surjective.
And its fibers are open subsets of G(1,10) because h®(P3, Ip(3)) = 11.
Therefore dimY = 7 + dimG(1,10) = 7+ 18 = 25. Similarly n¢ is
also surjective with fibers open in G(1,1) because h°(P3,1¢(3)) = 2 and
hence dim¥ = 28 + dim G(1,1) = 28. This contradicts above result.
Therefore h°(P3,1(3)) = 1i.e., h}(P3 Is(3)) = 0. Since 7 < 2-3 + 3,
M(C),, =0 for n > 4 by Theorem 2.1.
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THEOREM 2.5. Let C and C' be a smooth irreducible nondegenerate
curve of degree 7 with g = 3.

(a) C (resp. C') lies on a unique cubic surface S (resp. S' ).

(b) If S (resp. S’ ) is smooth, then C (resp. C') has either a unique
quinticsecant Ly (resp. L} ) or a unique line L, (resp. L) which lies on
S (resp. S') and disjoint from C (resp. C').

(¢) If C and C'’ lie on a smooth cubic surface then C ~ C' if and only
if either Ly = L} or Ly = Lj.

Proof. From Theorem 2.4, we know that h°(P3, Ic(3)) = 1. If C lies
on a smooth cubic surface S, then we see that C is linearly equivalent
to one of the following types: (a : b;)=(5:3,1,1,1,1,1), (7:3,3,3,3,1,1),
(6:3,3,2,1,1,1), (7:4,3,2,2,2,1) and (8:4,4,3,2,2,2) by similar calculations
as Theorem 2.3. We also see that the first two types have a unique
quinticsecant and every 27 lines on S meets C. And the latter three
types have no quinticsecant and a unique line on S which is disjoint
from C by calculating intersection number of C with 27 lines on S.
Hence (b) is proved.

To prove (c),we consider the following exact sequence

0 — H(P%Ic(1)) — H(P*,1c(2)) —
SN HO(PZ,ICDH(Z)) J— M(C)1¢£)M(C)2 —

where H is the hyperplane defined by L = 0. Then L* € Vi if and
only if R°(P2, Icnu(2)) = 1 since dim M(C); = 1, dim M(C); = 2 and
RY(P3,Ic(1)) = h%(P3,1c(2)) = 0. This happens if and only if either
five of the seven points of C N H are collinear or seven points lie on
an irreducible conic. Any plane H through the quinticsecant Ly of C
meets C in two more points and hence the seven points of CNH lie on a
reducible conic. Thus L} € V3 o. Any plane H through the disjoint line
L, from C meets S in the union of L, and a conic, so the seven points
of C' N H must be coconical. Hence L} € V; . Since there are a finite
number of these, dim V; ¢ = 1. But this is the expected dimension of V; g
because dim M(C); = 1 and dim M(C); = 2. Therefore degVy o =1
by Lemma 1.5. Since V;p is the invariant of given liaison class, this
completes the proof of (c).



Geometric invariants for liaison of space curves 707

References

[ACGH] E. Arbarello, M. Cornalba, P. A. Griffiths, J. Harris, Geometry of algebraic
curve 1, Springer-Verlag, New York, 1985.

[EH] D. Eisenbud, J. Harris, Curves in projective spacel.es presses de I’Universite
de Montreal, 1982.

[LR] R. Larzarsfeld, P. Rao, Linkage of general curves of large degree, Algebraic
geometry-open problem (Ravello, 1982), Lecture Note in Math., vol. 997,
Springer, New York, 1983.

[M1] J. Migliore, Geometric invariants for liaison of space curves, J. Algebra 99
(1986) 548-572.

[M2] , On linking double lines, Trans. Amer. Math. Soc. 294 (1986), 177-

185.
[R] P. Rao, Liaison among curves in P3 Invent. Math. 50 (1979), 205-217.

Department of Mathematics
Seoul National University
Seoul 151-742, Korea





