GEOMETRIC INVARIANTS FOR LIAISON OF SPACE CURVES LYING ON A SMOOTH CUBIC SURFACE

KYUNG HYE CHO

0. Introduction

Let k be an algebraically closed field and let $S = k[x_0, x_1, x_2, x_3]$. By a curve we mean a closed, one-dimensional subscheme of \mathbf{P}^3 which is equidimensional and locally Cohen-Macaulay. We say that two curves C and C' in \mathbf{P}^3 are directly linked by a complete intersection X of two surfaces, written $C \sim_X C'$, if

- (1) C, C' have no component in common,
- (2) $C \cup C' = X$ scheme theoretically (i.e., $I_C \cap I_{C'} = I_X$).

C is linked (resp. evenly linked, oddly linked) to C' if C' can be obtained from C by a finite (resp. even, odd) succession of direct links. We then write $C \sim C'$ (resp. $C \sim_e C'$, $C \sim_o C'$). The equivalence relation generated by direct linkages is called liaison. It was shown in [LR] that for a general smooth irreducible curve $C \subseteq \mathbf{P}^3$ of sufficiently large degree, if C' is a curve linked to C, other than C itself, then $\deg(C') > \deg(C)$ and $P_a(C') > P_a(C)$. Accordingly if C and C' are curves with the same degree and genus, then they are not linked. In this note we study what the geometric invariants are if C is linked to C' of the same degree d and genus g when g = 2, d = 6: g = 3, d = 7. And these invariants will narrow down the possibilities for C to be linked to C' with the same degree d and genus g. Hence these curves will be examples to demonstrate that results in [LR] are also true for curves with small degree.

1. Preliminaries

The main result concerning liaison equivalence classes of curves involves the Hartshorne-Rao module $M(C) = \bigoplus_{n \in \mathbb{Z}} H^1(\mathbf{P}^3, I_C(n))$:

Received April 22, 1993.

Supported in part by Global Analysis Research Center.

THEOREM 1.1. (a) (Hartshorne) If $C \sim_X C'$ where $I(X) = (F_1, F_2)$ and $\deg F_i = d_i$ (i = 1, 2), then $M(C) \cong M'(C')(4 - d_1 - d_2)$, where $M'(C') = \operatorname{Hom}_k(M(C'), k)$.

- (b) (Rao) If $M(C) \cong M(C')(\nu)$ for some $\nu \in \mathbb{Z}$, then $C \sim C'$.
- (c) (Rao) If M is any graded S-module of finite length, then there exists a smooth curve C such that $M(C) \cong M(\nu)$ for some $\nu \in \mathbb{Z}$.

Proof. See [R].

Let $M = \bigoplus_{n \in \mathbb{Z}} M_n$ be a graded S-module of finite length, and let $S_1 = H^0(\mathbf{P}^3, \mathcal{O}_{\mathbf{P}^3}(1))$. The S-module structure of M is given by the collection of vector space homomorphisms $\phi_n : S_1 \to \operatorname{Hom}_k(M_n, M_{n+1})$. If we choose bases for M_n and M_{n+1} , and if $L = a_0 X_0 + a_1 X_1 + a_2 X_2 + a_3 X_3 \in S_1$, then ϕ_n can be viewed as a $(\dim M_{n+1}) \times (\dim M_n)$ matrix A_n whose entries are linear polynomials in the a_i .

DEFINITION 1.2. Let $1 \leq r+1 \leq \min\{\dim M_n, \dim M_{n+1}\}$. Then $W_{n,r}$ is the closed subscheme of $(\mathbf{P}^3)^*$ defined by all the $(r+1) \times (r+1)$ minors of A_n , and $V_{n,r}$ is the variety on which $W_{n,r}$ is supported. Equivalently, $V_{n,r} = \{L^* \in (\mathbf{P}^3)^* | rk\phi_n(L) \leq r\}$, and from this we extended the definition of $V_{n,r}$ to include all integers n and r.

Note that $V_{n,r} \subseteq V_{n,r+1}$ for all r, and $V_{n,r} = (\mathbf{P}^3)^*$ for $r \gg 0$ and we shall be primarily concerned with the last $V_{n,r}$ which is a proper subvariety of $(\mathbf{P}^3)^*$. On the other hand the varieties $V_{n,r}$ are independent of the choice of vector space bases for the M_n . Hence they are isomorphism invariants of the module M. Furthermore, since the transpose matrix ${}^t\phi_n(L)$ has the same $(r+1)\times (r+1)$ minors, it follows that the dual module $M' = \operatorname{Hom}_k(M,k)$ has the same collection of varieties $V_{n,r}$, but in the reverse order: $V'_{n,r} = V_{-n-1,r}$. Finally, it is clear that they are preserved under shifts of M or M'. Therefore $V_{n,r}$ are invariants of a given liaison class by Theorem 1.1.

The following fact, relating the degrees and arithmetic genera of linked curves, is often useful:

LEMMA 1.3. Let $C \sim_X C'$ as above. Then

- (a) $degC' = d_1d_2 degC$.
- (b) $P_a(C') P_a(C) = \frac{1}{2}(d_1 + d_2 4)(\deg C' \deg C)$.

Proof. See [M1] p. 550.

LEMMA 1.4. Let $C \in \mathbf{P}^r$ $(r \geq 2)$ be an irreducible nondegenerate, possibly singular, curve of degree d. Then a general hyperplane meets C in d points any r of which are linearly independent.

Proof. See [ACGH] p. 109.

LEMMA 1.5. Let A be a $q \times p$ matrix of linear forms in m+1 variables, and let Y_r be the subscheme of \mathbf{P}^m defined by the vanishing of the $(r+1) \times (r+1)$ minors of A. If $Y_r \neq \emptyset$ has the expected codimension (p-r)(q-r), then

$$degY_r = \prod_{i=0}^{p-r-1} \left[\binom{q+i}{r} \middle/ \binom{r+i}{r} \right].$$

Proof. See [M1] p. 550.

2. Main results

THEOREM 2.1. Let C be an irreducible nondegenerate smooth curve of degree d in \mathbf{P}^3 . Let $M(C)_l = H^1(\mathbf{P}^r, I_C(l))$. If $M(C)_l = 0$ for some l with $l \geq \frac{d-3}{2}$, then $M(C)_{l+1} = 0$.

Proof. Let $C \cap H$ be a generic hyperplane section of C. Consider the following exact sequence

$$0 \longrightarrow I_C(l) \longrightarrow I_C(l+1) \longrightarrow I_{C\cap H}(l+1) \longrightarrow 0.$$

Taking cohomology, we get

$$0 \to H^0(\mathbf{P}^3, I_C(l)) \to H^0(\mathbf{P}^3, I_C(l+1)) \to H^0(\mathbf{P}^2, I_{C \cap H}(l+1)) \to 0$$

since we assume $M(C)_l = 0$. On the other hand, in the following exact sequence

$$0 \longrightarrow I_C(l) \longrightarrow \mathcal{O}_{\mathbf{P^3}}(l) \longrightarrow \mathcal{O}_C(l) \longrightarrow 0,$$

by taking cohomology, we also get

$$0 \longrightarrow H^0(\mathbf{P}^3, I_C(l)) \longrightarrow H^0(\mathbf{P}^3, \mathcal{O}_{\mathbf{P}^3}(l)) \longrightarrow H^0(\mathbf{P}^3, \mathcal{O}_C(l)) \longrightarrow 0$$

since $M(C)_l = 0$. Therefore we have

$$h^{0}(\mathbf{P}^{3}, I_{C}(l)) = \frac{(l+3)(l+2)(l+1)}{6} - (dl - g + 1 + i)$$

where i is the index of specialty. Moreover, by general position theorem any three points in $C \cap H$ are linearly independent. Thus $C \cap H = p_1, \dots, p_d$ impose independent conditions on the homogeneous polynomials of degree l+1 by Lemma 1.4 since $d \leq 2l+3$. Therefore

$$h^0(\mathbf{P}^2, I_{C \cap H}(l+1)) = \frac{(l+3)(l+2)}{2} - d$$

and hence we have from (1)

$$h^{0}(\mathbf{P}^{3}, \mathcal{I}_{C}(l+1)) = h^{0}(\mathbf{P}^{3}, I_{C}(l)) + h^{0}(\mathbf{P}^{2}, I_{C\cap H}(l+1))$$
$$= \frac{(l+4)(l+3)(l+2)}{6} - (dl-g+i+1) - d.$$

Now consider the following exact sequence

$$0 \longrightarrow H^{0}(\mathbf{P}^{3}, I_{C}(l+1)) \longrightarrow H^{0}(\mathbf{P}^{3}, \mathcal{O}_{\mathbf{P}^{3}}(l+1)) \longrightarrow$$
$$\longrightarrow H^{0}(C, \mathcal{O}_{C}(l+1)) \longrightarrow H^{1}(\mathbf{P}^{3}, I_{C}(l+1)) \longrightarrow 0.$$

Because $h^0(\mathbf{P}^3, \mathcal{O}_{\mathbf{P}^3}(l+1)) = \frac{(l+4)(l+3)(l+2)}{6}$ and $h^0(C, \mathcal{O}_C(l+1)) = d(l+1) - g + 1 + j$ where j is the index of specialty, we get $h^1(\mathbf{P}^3, I_C(l+1)) = -i + j$. But we also know that $i \geq j$ and $h^1(\mathbf{P}^3, I_C(l+1)) \geq 0$. Therefore $M(C)_{l+1} = 0$.

REMARK 2.2. In Theorem 2.1, $l \geq \frac{d-3}{2}$ means that $d \leq 2l+3$. One can see that the above bound " $d \leq 2l+3$ " is sharp as in the following example.: Let C be a smooth irreducible curve of d=6 and g=3 on a smooth quadric hypersurface in \mathbf{P}^3 , then $\dim M(C)_1=0$ but $\dim M(C)_2=1$. In this case, $d=6=2\cdot 1+4=2l+4$.

THEOREM 2.3. Let C and C' be smooth irreducible nondegenerate curves of genus g = 2 and degree d = 6.

(a) C (resp. C') lies on a cubic surface S (resp. S').

- (b) If S (resp. S') is smooth, then C (resp. C') has a unique quadric-secant L_1 (resp. L'_1) and a unique line L_2 (resp. L'_2) which lies on S (resp. S') and disjoint from C (resp. C'). Moreover, L_1 (resp. L'_1) meets L_2 (resp. L'_2).
- (c) If C and C' lie on a smooth cubic surface then $C \sim C'$ if and only if $L_1 \cap L_2 = L'_1 \cap L'_2$.

Proof. In the following exact sequence

$$0 \longrightarrow H^{0}(\mathbf{P}^{3}, I_{C}(l)) \longrightarrow H^{0}(\mathbf{P}^{3}, \mathcal{O}_{\mathbf{P}^{3}}(l)) \longrightarrow \\ \longrightarrow H^{0}(C, \mathcal{O}_{C}(l)) \longrightarrow H^{1}(\mathbf{P}^{3}, I_{C}(l)) \longrightarrow 0,$$

we see that $h^1(\mathbf{P}^3, I_C(1)) = 1$, $h^1(\mathbf{P}^3, I_C(2)) = 1$ and $h^0(\mathbf{P}^3, I_C(3)) \geq 3$. Let S_1 and S_2 be the cubic surfaces containing C, then $S_1 \cap S_2 = C \cup D$ where $\deg D = 3$ and $P_a(D) = -1$ by Lemma 1.3. Therefore D is the disjoint union of a conic and a line. By simple calculation, we see that $\dim M(D)_0 = \dim M(D)_1 = 1$ and all other components are zero. And hence we get $\dim M(C)_1 = \dim M(C)_2 = 1$ and all other components are zero by Theorem 2.1.

On the other hand since C lies on a smooth cubic surface S, we have $C \sim al - \sum_{i=1}^{6} b_i e_i$ where l and e_i are generators of $PicS \cong \mathbb{Z}^7$. Then

$$(*)$$
 $a>0$ and $b_i>0$ for each i,j , $a>b_i+b_j$ for each i,j , $2a>\sum_{i\neq j}b_j$ for each j

because C is irreducible and smooth. Furthermore,

(1)
$$\deg C = 3a - \sum b_i = 6,$$

(2)
$$P_a(C) = \frac{1}{2}(a^2 - \sum_i b_i^2 - d) + 1 = 2.$$

Recall Schwarz's inequality, which says that if $x_1, x_2, \ldots, y_1, y_2 \ldots$ are two sequences of real numbers, then

$$|\sum x_i y_i|^2 \le |\sum x_i^2| \cdot |\sum y_i^2|.$$

Taking $x_i = 1$, $y_i = b_i$, $i = 1, \dots, 6$, we find $(\sum b_i)^2 \le 6(\sum b_i^2)$. Substitute $\sum b_i = 3a - 6$ and $\sum b_i^2 = a^2 - 8$ from (1) and (2), we obtain $a^2 - 12a + 28 \le 0$. Therefore we have $4 \le a \le 8$. We quickly find all possible values of the b_i satisfying (*) by trial and we see that there are 30 linear systems of smooth sextics with g = 2 of type $(a : b_i) = (5 : 3, 2, 1, 1, 1, 1)$ and 90 linear systems of type $(a : b_i) = (6 : 3, 3, 2, 2, 1, 1)$. Moreover, we know that a smooth cubic surface contains 27 lines i.e., $E_i \sim e_i$, $F_{ij} \sim l - e_i - e_j$, $G_j \sim 2l - \sum_{i \ne j} e_i$. Consequently, we know that in both cases C has a unique quadricsecant L_1 and a unique line L_2 on S which is disjoint from C by calculating intersection number and using the facts that $l^2 = 1$, $e_i^2 = -1$, $l \cdot e_i = 0$ and $e_i \cdot e_j = 0$ for $i \ne j$. Also these two lines meet in both cases and hence (b) is proved.

To prove (c), we consider the following exact sequence

$$0 \longrightarrow H^0(\mathbf{P}^3, I_C(1)) \longrightarrow H^0(\mathbf{P}^3, I_C(2)) \longrightarrow \\ \longrightarrow H^0(\mathbf{P}^2, I_{C \cap H}(2)) \longrightarrow M(C)_1 \stackrel{\phi_1(L)}{\longrightarrow} M(C)_2 \longrightarrow$$

where H is the hyperplane defined by L=0. Then $L^* \in V_{1,0}=\{L^* \in (\mathbf{P}^3)^* \mid rk\phi_1(L) \leq 0\}$ if and only if $h^0(\mathbf{P}^2, I_{C\cap H}(2))=1$ since $h^0(\mathbf{P}^3, I_C(2))=0$ and $\dim M(C)_1=\dim M(C)_2=1$. This happens if and only if either four points of $C\cap H$ are collinear or $C\cap H$ lies on an irreducible conic. Any plane H through the quadricsecant L_1 of C meets C in two more points and hence the six points of $C\cap H$ lie on a reducible conic. Thus $L_1^* \in V_{1,0}$. Any plane H through the disjoint line L_2 from C meets S in the union of L_2 and a conic, so the six points of $C\cap H$ must be coconical. Hence $L_2^* \in V_{1,0}$.

Since C does not lie on a quadric hypersurface, not every hyperplane section of C lies on a conic. Accordingly $V_{1,0}$ has the excepted codimension (1-0)(1-0)=1 and hence $\deg V_{1,0}=1$ by Lemma 1.5 i.e., $V_{1,0}$ is hyperplane. Therefore $V_{1,0}$ must be the plane in $(\mathbf{P}^3)^*$ which is dual to $L_1 \cap L_2$ by the above paragraph. Since $V_{1,0}$ is the invariant of a given liaison class, the conclusion follows.

THEOREM 2.4. Let C be a smooth irreducible nondegenerate curve of degree d=7 with genus g=3 in \mathbf{P}^3 . Then $\dim M(C)_1=1$, $\dim M(C)_2=2$, and all other components are zero.

Proof. In the following exact sequence

$$0 \longrightarrow H^{0}(\mathbf{P}^{3}, I_{C}(l)) \longrightarrow H^{0}(\mathbf{P}^{3}, \mathcal{O}_{\mathbf{P}^{3}}(l)) \longrightarrow \\ \longrightarrow H^{0}(C, \mathcal{O}_{C}(l)) \longrightarrow H^{1}(\mathbf{P}^{3}, I_{C}(l)) \longrightarrow 0,$$

we can see that $h^1(\mathbf{P}^3, I_C(1)) = 1$, $h^1(\mathbf{P}^3, I_C(2)) = 2$ and $h^0(\mathbf{P}^3, I_C(3)) \ge 1$. Suppose that $h^0(\mathbf{P}^3, I_C(3)) = 2$ and let S_1 and S_2 be cubic surfaces containing C. Then $S_1 \cap S_2 = C \cup D$, $\deg D = 2$ and $P_a(D) = -2$ by Lemma 1.3. Therefore D is a double line lying on a smooth cubic hypersurface.

Now look at the locus $\Sigma \subset G(1,19)$ of pencils of cubic surfaces whose base locus consists of a curve of degree d=7 with genus g=3 and a double line, and at the map π_C , π_D of Σ to $I'_{7,3,3}$ and $H'_{2,-2,3}$ where the general members of $I'_{7,3,3}$ are smooth irreducible nondegenerate curves of degree d=7 with genus g=3 and the general members of $H'_{2,-2,3}$ are double lines with arithmetic genus $P_a=-2$. Then we know that dim $I'_{7,3,3}=28$ and dim $H'_{2,-2,3}=7$ (see [EH] p.34 and p.61). Let λ be the underlying line of D, then we have the following exact sequence

$$0 \longrightarrow \mathcal{O}_{\lambda}(1) \longrightarrow \mathcal{O}_{D} \longrightarrow \mathcal{O}_{\lambda} \longrightarrow 0.$$

Twisting by 3 and taking cohomology, we obtain

$$0 \longrightarrow H^0(\lambda, \mathcal{O}_{\lambda}(4)) \longrightarrow H^0(D, \mathcal{O}_D(3)) \longrightarrow \\ \longrightarrow H^0(\lambda, \mathcal{O}_{\lambda}(3)) \longrightarrow H^1(\lambda, \mathcal{O}_{\lambda}(4)) \longrightarrow .$$

Then we have $h^0(D, \mathcal{O}_D(3)) = h^0(\lambda, \mathcal{O}_{\lambda}(4)) + h^0(\lambda, \mathcal{O}_{\lambda}(3)) = 5 + 4 = 9$ since $h^1(\lambda, \mathcal{O}_{\lambda}(4)) = 0$. Therefore in the following exact sequence

$$\begin{split} 0 & \longrightarrow H^0(\mathbf{P}^3, I_D(3)) \longrightarrow H^0(\mathbf{P}^3, \mathcal{O}_{\mathbf{P}^3}(3)) \longrightarrow \\ & \longrightarrow H^0(D, \mathcal{O}_D(3)) \longrightarrow M(D)_3 \longrightarrow 0, \end{split}$$

we have $h^0(\mathbf{P}^3, I_D(3)) = 11$ because $\dim M(D)_3 = 0$ (see [M2] p.179). Since the generic residual intersection of a pair of those cubics containing D is indeed a smooth curve of degree 7 with g = 3, π_D is surjective. And its fibers are open subsets of G(1,10) because $h^0(\mathbf{P}^3, I_D(3)) = 11$. Therefore $\dim \Sigma = 7 + \dim G(1,10) = 7 + 18 = 25$. Similarly π_C is also surjective with fibers open in G(1,1) because $h^0(\mathbf{P}^3, I_C(3)) = 2$ and hence $\dim \Sigma = 28 + \dim G(1,1) = 28$. This contradicts above result. Therefore $h^0(\mathbf{P}^3, I_C(3)) = 1$ i.e., $h^1(\mathbf{P}^3, I_C(3)) = 0$. Since $7 \leq 2 \cdot 3 + 3$, $M(C)_n = 0$ for $n \geq 4$ by Theorem 2.1.

THEOREM 2.5. Let C and C' be a smooth irreducible nondegenerate curve of degree 7 with q = 3.

- (a) C (resp. C') lies on a unique cubic surface S (resp. S').
- (b) If S (resp. S') is smooth, then C (resp. C') has either a unique quinticsecant L_1 (resp. L'_1) or a unique line L_2 (resp. L'_2) which lies on S (resp. S') and disjoint from C (resp. C').
- (c) If C and C' lie on a smooth cubic surface then $C \sim C'$ if and only if either $L_1 = L'_1$ or $L_2 = L'_2$.

Proof. From Theorem 2.4, we know that $h^0(\mathbf{P}^3, I_C(3)) = 1$. If C lies on a smooth cubic surface S, then we see that C is linearly equivalent to one of the following types: $(a:b_i)=(5:3,1,1,1,1,1)$, (7:3,3,3,3,1,1), (6:3,3,2,1,1,1), (7:4,3,2,2,2,1) and (8:4,4,3,2,2,2) by similar calculations as Theorem 2.3. We also see that the first two types have a unique quinticsecant and every 27 lines on S meets C. And the latter three types have no quinticsecant and a unique line on S which is disjoint from C by calculating intersection number of C with 27 lines on S. Hence (b) is proved.

To prove (c), we consider the following exact sequence

$$0 \longrightarrow H^{0}(\mathbf{P}^{3}, I_{C}(1)) \longrightarrow H^{0}(\mathbf{P}^{3}, I_{C}(2)) \longrightarrow \\ \longrightarrow H^{0}(\mathbf{P}^{2}, I_{C \cap H}(2)) \longrightarrow M(C)_{1} \stackrel{\phi_{1}(L)}{\longrightarrow} M(C)_{2} \longrightarrow$$

where H is the hyperplane defined by L=0. Then $L^* \in V_{1,0}$ if and only if $h^0(\mathbf{P}^2, I_{C \cap H}(2)) = 1$ since $\dim M(C)_1 = 1$, $\dim M(C)_2 = 2$ and $h^0(\mathbf{P}^3, I_C(1)) = h^0(\mathbf{P}^3, I_C(2)) = 0$. This happens if and only if either five of the seven points of $C \cap H$ are collinear or seven points lie on an irreducible conic. Any plane H through the quinticsecant L_1 of C meets C in two more points and hence the seven points of $C \cap H$ lie on a reducible conic. Thus $L_1^* \in V_{1,0}$. Any plane H through the disjoint line L_2 from C meets S in the union of L_2 and a conic, so the seven points of $C \cap H$ must be coconical. Hence $L_2^* \in V_{1,0}$. Since there are a finite number of these, $\dim V_{1,0} = 1$. But this is the expected dimension of $V_{1,0}$ because $\dim M(C)_1 = 1$ and $\dim M(C)_2 = 2$. Therefore $\deg V_{1,0} = 1$ by Lemma 1.5. Since $V_{1,0}$ is the invariant of given liaison class, this completes the proof of (c).

References

- [ACGH] E. Arbarello, M. Cornalba, P. A. Griffiths, J. Harris, Geometry of algebraic curve I, Springer-Verlag, New York, 1985.
- [EH] D. Eisenbud, J. Harris, Curves in projective space, Les presses de l'Universite de Montreal, 1982.
- [LR] R. Larzarsfeld, P. Rao, Linkage of general curves of large degree, Algebraic geometry-open problem (Ravello, 1982), Lecture Note in Math., vol. 997, Springer, New York, 1983.
- [M1] J. Migliore, Geometric invariants for liaison of space curves, J. Algebra 99 (1986) 548-572.
- [M2] _____, On linking double lines, Trans. Amer. Math. Soc. 294 (1986), 177-
- [R] P. Rao, Liaison among curves in P³, Invent. Math. 50 (1979), 205-217.

Department of Mathematics Seoul National University Seoul 151-742, Korea