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GEOMETRIC INVARIANTS FOR LIAISON OF SPACE

CURVES LYING ON A SMOOTH CUBIC SURFACE

KYUNG RYE CHO

o. Introduction

Let k be an algebraically closed field and let S = k[XO,Xl,XZ,X3]' By
a curve we mean a closed, one-dimensional subscheme of p3 which is
equidimensional and locally Cohen-Macaulay. We say that two curves
C and C' in p 3 are directly linked by a complete intersection X of two
surfaces, written C "'xC', if

(1) C, C' have no component in common,
(2) C U C' = X scheme theoretically (i.e., Ie n Ie' = Ix).
C is linked (resp. evenly linked, oddly linked) to C' if G' can be

obtained from C by a finite (resp. even, odd) succession of direct links.
We then write C '" C' (resp. C "'e C', C "'0 C'). The equivalence
relation generated by direct linkages is called liaison. It was shown in
[LR] that for a general smooth irreducible curve C ~ p3 of sufficiently
large degree, if C' is a curve linked to G, other than G itself, then
deg(C') > deg(C) and Pa(C') > Pa(C), Accordingly if G and C' are
curves with the same degree and genus, then they are not linked. In this
note we study what the geometric invariants are if G is linked to C' of
the same degree d and genus 9 when 9 = 2, d = 6: 9 = 3, d = 7. And
these invariants will narrow down the possibilities for C to be linked
to C' with the same degree d and genus g. Hence these curves will be
examples to demonstrate that results in [LR] are also true for curves
with small degree.

1. Preliminaries

The main result concerning liaison equivalence classes of curves in­
volves the Hartshorne-Roo module M(G) = EBnEzH1 (P3, Ie(n)):
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THEOREM 1.1. (a) (Hartshorne) H G rv X G' where I( X) = (FI, F2 )

and degFi = di (i = 1,2), then M(C) ~ M'(C')(4 - d1 - d2), where
M'(C') = Homk(M(C'),k).

(b) (Rao) H M(C) ~ M(C')(v) for some v E Z, then C rv ct.
(c) (Rao) H M is any graded 5-module of finite length, then there

exists a smooth curve C such that M(C) ~ M(v) for some v E Z.

Proof. See [R].

Let M = EBnEzMn be a graded 5-module of finite length, and let
51 = HO(P3, Opa(l». The 5-module structure of M is given by the
collection of vector space homomorphisms cPn : 51 -+ Homk(Mn, M n+l ).
If we choose bases for M n and M n+l , and if L = aoXo +a1X1 +a2X2 +
a3X3 E 5I, then cPn can be viewed as a (dim Mn+d x (dimMn) matrix
An whose entries are linear polynomials in the ai.

DEFINITION 1.2. Let 1 ::; r + 1 ::; min{dimMn,dimMn+d. Then
Wn,r is the closed subscheme of (P3 )* defined by all the (r + 1) x (r +
1) minors of An, and Vn,r is the variety on which Wn,r is supported.
Equivalently, Vn,r = {L* E (P3)* IrkcPn(L) ::; r}, and from this we
extended the definition of Vn,r to include all integers n and r.

Note that Vn,r ~ Vn,r+l for all r, and Vn,r = (P3 )* for r ~ 0 and we
shall be primarily concerned with the last Vn,r which is a proper'subva­
riety of (P3 )*. On the other hand the varieties Vn,r are independent of
the choice of vector space bases for the M n . Hence they are isomorphism
invariants of the module M. Fw:thennore, since the transpose' matrix
tcPn(L) has the same (r + 1) x (r + 1) minors, it follows that the dual
module M' = Homk(M, k) has the same collection of varieties Vn,r, but
in the reverse order: V~,r = V- n- l ,r. Finally, it is clear that they are
preserved under shifts of M or M'. Therefore Vn,r are invariants of a
given liaison class by Theorem 1.1.

The following fact, relating the degrees and arithmetic genera of linked
curves, is often useful:

LEMMA 1.3. Let C "'x C' as above. Then
(a) degC' = d1d2 - degC.
(b) Pa(C') - Pa(C) = t(dl + d2 - 4)(degC' - degG).

Proof. See [Ml] p. 550.

"
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LEMMA 1.4. Let C E pr (r ~ 2) be an irreducible nondegenerate,
possibly singular, curve of degree d. Then a general hyperplane meets
C in d points any r of which are linearly independent.

Proof. See [ACGH] p. 109.

LEMMA 1.5. Let A be a q xp matrix of linear forms in m+ 1 variables,
and let Y r be the subscheme of pm defined by the vanishing of the
(r + 1) x (r + 1) minors of A. If Yr =1= 0 has the expected codimension
(p - r)(q - r), then

Proof. See [M1] p. 550.

2. Main results

THEOREM 2.1. Let C be an irreducible nondegenerate smooth curve
of degree din p3. Let M(C)l = H 1(pr, le(l)). If M(C)l = 0 for some
1 with 1~ d~3, then M(C)l+l = O.

Proof. Let C n H be a generic hyperplane section of C. Consider the
following exact sequence

o---t le(l) ---t le(l +1) ---t lenH(l +1) ---t O.

Taking cohomology, we get
(1)
o~ HO(p3 ,Ic(l)) ~ HO(p3 ,le(l + 1)) ~ HO(p2, lenH(l + 1)) ~ 0

since we assume M(C)l = O. On the other hand, in the following exact
sequence

o---t le(l) ---t OP3(l) ---t Oe(l) ---t 0,

by taking cohomology, we also get
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since M(C)l = O. Therefore we have

where i is the index of specialty. Moreover, by general position theorem
any three points in C n H are linearly independent. Thus C n H =
PI, ... ,Pd impose independent conditions on the homogeneous polyno­
mials of degree 1+ 1 by Lemma 1.4 since d ::; 21 + 3. Therefore

and hence we have from (1)

Now consider the following exact sequence

0---+ HO(p3, Ie(l + 1)) ----:-t HO(p3, OP3(l + 1)) ----t

----t HO(C, Oe(l + 1)) ---+ HI (p3 ,le(l + 1)) ---+ O.

Because hO(P3,Op3(l+I}) = (1+4)(1~3)(l+2) and hO(C,Oe(l+I) = d(l+
1) - g+ 1+ j where j is the index of specialty, we get h I (P3, IcC I + 1)) =
-i+j. But we also know that i ~ j and hI (P3,le(l+ 1)) ~ O. Therefore
M(C)l+I = O.

REMARK 2.2. In Theorem 2.1, 1 ~ d~3 means that d ::; 2I + 3.
One can see that the above bound "d S 21 + 3" is sharp as in the
following example.: Let C be a smooth irreducible curve of d = 6 and
9 = 3 on a smooth quadric hypersurface in p3, then dim M( Ch = 0 but
dim M(Ch = 1. In this case, d = 6 = 2· 1 + 4 = 21 + 4.

THEOREM 2.3. Let C and C f be smooth irreducible nondegenerate
curves of genus 9 = 2 and degree d = 6.

(a) C (resp. C
f
) lies on a cubic surface S (resp. Sf).
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(b) If S (resp. 5') is smootb, tben G (resp. C') bas a unique quadric­
secant L1 (resp. L~) and a unique line L2 (resp. L~) wbicb lies on 5
(resp. 5') and disjoint from C (resp. G' ). Moreover, L 1 (resp. L~ )
meets L2 (resp. L~).

(c) If C and C' lie on a smootb cubic surface tben C f'V G' if and only
if L1 n L2 = L~ n L~.

Proof. In the following exact sequence

o-t HO(P3,Ic(1)) -tHO(P3 ,Op3(1))-t

-t HO(G,Oc(l)) -t H 1 (P3,Ic (l)) -t 0,

we see that h1 (P 3 ,Ic(1)) = 1, hI (P3,Jc(2)) = 1 and hO(P3 ,Ic(3)) ~ 3.
Let 51 and 52 be the cubic surfaces containing G, then 51 n 52 = CUD
where degD = 3 and Pa(D) = -1 by Lemma 1.3. Therefore D is the
disjoint union of a conic and a line. By simple calculation, we see that
dimM(D)o = dimM(Dh = 1 and all other components are zero. And
hence we get dim M(Ch = dim M( Gh = 1 and all other components
are zero by Theorem 2.1.

On the other hand since G lies on a smooth cubic surface 5, we have
C rv al - L:~=l biei where 1 and ei are generators of Pic5 :=! Z7. Then

a > 0 and bi > 0 for each i,

a > bi + bj for each i, j,

2a > L bj for each j
i=f.j

because C is irreducible and smooth. Furthermore,

(1)

(2)

degG = 3a- Lbi = 6,

Recall Schwarz's inequality, which says that if Xl, X2,' .. , Yl, Y2 ... are
two sequences of real numbers, then
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Taking Xi = 1, Yi = bi, i = 1,··· ,6, we find (2:: bi )2 :s; 6(2:: bT). Sub­
stitute 2:: bi = 3a - 6 and 2:: b; = a2 - 8 from (1) and (2), we obtain
a2

- 12a + 28 :s; O. Therefore we have 4 :s; a :s; 8. We quickly find all
possible values of the bi satisfying (*) by trial and we see that there are
30 linear systems of smooth sextics with 9 = 2 of type (a : bi) = (5 :
3,2,1,1,1,1) and 90 linear systems of type (a: bi) = (6: 3,3,2,2,1,1).
Moreover, we know that a smooth cubic surface contains 27 lines i.e.,
E i f"V ei, Fij '" [ - ei - ej, G j f"V 2[ - 2::i#j ei. Consequently, we know
that in both cases C has a unique quadricsecant L 1 and a unique line
L2 on S which is disjoint from C by calculating intersection number and
using the facts that [2 = 1, e; = -1, [. ei = 0 and ei . ej = 0 for i =1= j.
Also these two lines meet in both cases and hence (b) is proved.

To prove (c), we consider the following exact sequence

o--t HO(p3'!c(1)) --t HO(P3,Ic(2))--t

--t HO(p2,IcnH(2)) --t M(Ch ¢>~!:)M(Ch --t

where H is the hyperplane defined by L = O. Then L* E Vi,o =
{L* E (P3)* Irk<f>I(L) :s; O} if and only if hO(P2'!cnH(2)) = 1 since
hO(P3,IC(2)) = 0 and dimM(C)1 = dimM(C)z = 1. This happens if
and only if either four points of C n H are collinear or C n H lies on
an irreducible conic. Any plane H through the quadricsecant L 1 of C
meets C in two more points and hence the six points of C n H lie on a
reducible conic. Thus L; E Vi ,0' Any plane H throygh the disjoint line
L 2 from C meets S in the union of L2 and a conic, so the six points of
C n H must be coconical. Hence L2E VI ,0.

Since C does not lie on a quadric hypersurface, not every hyperplane
section of C lies on a conic. Accordingly V1,0 has the excepted codimen­
sion (1 - 0)(1 - 0) = 1 and hence degV1,0 = 1 by Lemma 1.5 i.e., V1,0 is
hyperplane. Therefore Vi,o must be the plane in (P3 )* which is dual to
L 1 n L2 by the above paragraph. Since V1 ,0 is the invariant of a given
liaison class, the conclusion follows.

THEOREM 2.4. Let C be a smooth irreducible nondegenerate curve
of degree d = 7 with genus 9 = 3 in p 3

. Then dim M(Ch = 1,
dim M(Ch = 2, and all other components are zero.
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Proof. In the following exact sequence

0-+ HO(P3, Ie(l)) -+HO(p3, Op3(l)) -+

----+ HO(C, Oe(l)) ----+ HI (p3 ,Ie(l)) ----+ 0,

we can see that h l (P3, Ie (1)) = 1, h l (P3, Ic(2)) = 2 and hO(P3,Ic(3)) ~
1. Suppose that hO(P3,Ie(3)) = 2 and let 51 and 52 be cubic surfa<;es
containing C. Then 51 n 52 = CUD, degD = 2 and Pa(D) = -2
by Lemma, 1.3. Therefore D is a double line lying on a smooth cubic
hypersurface.

Now look at the locus I: C G(l, 19) of pencils of cubic surfaces whose
base locus consists of a curve of degree d = 7 with genus 9 = 3 and a
double line, and at the map 7re, 7rD of I: to I~ 3 3 and H~ -23 where the
general members of I~,3,3 are smooth irreducible nondegen~rate curves
of degree d = 7 with genus 9 = 3 and the general members of H~ -2 3

are double lines with arithmetic genus Pa = -2. Then we know 'th~t
dimI~ 33 = 28 and dimH~ -2 3 = 7 (see [EH] p.34 and p.61). Let>. be
the un:d~rlying line of D, then' we have the following exact sequence

o ----+ 0>.(1) ----+ °D ----+ 0>. ----+ O.

Twisting by 3 and taking cohomology, we obtain

0-+ HO(>., 0>.(4)) ----+HO(D,OD(3)) ----+

-+ HO(>., 0>.(3)) ----+ H l (>., o.x(4)) -+ .

Then we have hO(D,OD(3)) = hO(>.,0>.(4)) + hO(>.,0>.(3)) = 5 + 4 = 9
since h1(>., 0>.(4)) = o. Therefore in the following exact sequence

o-+ HO(p3,ID(3)) -+ HO(p3, Op3(3)) ----+

-+ HO(D, OD(3)) ----+ M(Dh -+ 0,

we have hO(P3, ID(3)) = 11 because dim M(Dh = 0 (see [M2] p.179).
Since the generic residual intersection of a pair of those cubics containing
D is indeed a smooth curve of degree 7 with 9 = 3, 7rD is surjective.
And its fibers are open subsets of G(l, 10) because hO(P3, I D (3)) = 11.
Therefore dim I: = 7 + dim G(l, 10) = 7 + 18 = 25. Similarly 1fe is
also surjective with fibers open in G(l, 1) because hO(P3,Ic(3)) = 2 and
hence dimI: = 28 + dimG(1, 1) = 28. This contradicts above result.
Therefore hO(P3,Ic(3)) = 1 i.e., hl (P3,Ic(3)) = O. Since 7:S; 2·3 + 3,
M( C)n = 0 for n ~ 4 by Theorem 2.1.
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THEOREM 2.5. Let C and C' be a smooth irreducible nondegenerate
curve of degree 7 with g = 3.

(a) C (resp. C') lies on a unique cubic surface S (resp. S' ).
(b) H S (resp. S' ) is smooth, then C (resp. C') has either a unique

quinticsecant L I (resp. LD or a unique line L2 (resp. L~) which lies on
S (resp. S') and disjoint from C (resp. C').

(c) H C and C' lie on a smooth cubic surface then C '"" C' if and only
if either L I = L~ or L 2 = L~.

Proof. From Theorem 2.4, we know that hO(p3, Ic(3» = 1. If C lies
on a smooth cubic surface S, then we see that C is linearly equivalent
to one of the following types: (a : bi )=(5:3,1,1,1,1,1), (7:3,3,3,3,1,1),
(6:3,3,2,1,1,1), (7:4,3,2,2,2,1) and (8:4,4,3,2,2,2) by similar calculations
as Theorem 2.3. We also see that the first two types have a unique
quinticsecant and every 27 lines on S meets C. And the latter three
types have no quinticsecant and a unique line on S which is disjoint
from C by calculating intersection number of C with 27 lines on S.
Hence (b) is proved.

To prove (c),we consider the following exact sequence

o~ HO(P3,Ic(1» ~ HO(P3,Ic(2» ~

~ HO(p2,IcnH(2» ~ M(C)/!i.!:)M(Ch ~

where H is the hyperplane defined by L = O. Then L* E VI,o if and
only if hO(P2,IcnH(2)) = 1 since dimM(C)1 = 1, dimM(Ch = 2 and
hO(P3,Ic(1» = hO(P3,Ic(2» = O. This happens if and only if either
five of the seven points of C n H are collinear or seven points lie on
an irreducible conic. Any plane H through the quinticsecant L I of C
meets C in two more points and hence the seven points of en H lie on a
reducible conic. Thus Li E VI,o. Any plane H through the disjoint line
L2 from C meets S in the union of L2 and a conic, so the seven points
of C n H must be coconical. Hence L; E VI ,0. Since there are a finite
number of these, dim VI,a = 1. But this is the expected dimension of Vi,a
because dimM(Ch = 1 and dimM(C)z = 2. Therefore degV1,0 = 1
by Lemma 1.5. Since Vi ,0 is the invariant of given liaison class, this
completes the proof of (c).
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